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Abstract 24 

 25 

IgE is the antibody isotype found at the lowest concentration in the circulation. However IgE 26 

can undeniably play an important role in mediating allergic reactions; best exemplified by the 27 

clinical benefits of anti-IgE monoclonal antibody (omalizumab) therapy for some allergic 28 

diseases. This review will describe our current understanding of the interactions between IgE 29 

and its main receptors FcεRI and CD23 (FcεRII). We will review the known and potential 30 

functions of IgE in health and disease: in particular, its detrimental roles in allergic diseases 31 

and chronic spontaneous urticaria, and its protective functions in host defense against 32 

parasites and venoms. Finally, we will present an overview of the drugs that are in clinical 33 

development or have therapeutic potential for IgE-mediated allergic diseases. 34 

 35 
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Abbreviations 43 

 44 

AD: atopic dermatitis; Ag: antigen; ADAM10: a disintegrin and metalloprotease 10; ADCC: 45 

antibody-dependent cell-mediated cytotoxicity; AECs: airway epithelial cells; ASST: 46 

autologous serum skin test; Cε: constant epsilon domain of IgE; CL: constant region of an 47 

antibody’s light chains; CSU: chronic spontaneous urticaria; DARPins: designed ankyrin 48 

repeat proteins; DC: dendritic cell; Fab: fragment antigen-binding region; Fc: fragment 49 

crystallizable region of an antibody; HRF: histamine releasing factor; IECs: intestinal 50 

epithelial cells; Ig: immunoglobulin; IL: interleukin; ITAM: immunoreceptor tyrosine-based 51 

activation motif; mIgE: membrane-bound IgE; PCA: passive cutaneous anaphylaxis; PLA2: 52 

phospholipase A2; PSA: passive systemic anaphylaxis; Tg: transgenic; TH2: T cell helper 53 

type 2; TPO: Thyroperoxidase; VH: variable region of an antibody’s heavy chains; VL: 54 

variable region of an antibody’s light chains; WT: wild type. 55 
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1. Introduction 96 

 97 

Immunoglobulin E (IgE) was discovered about 50 years ago. In 1966, the Ishizakas’ 98 

group in Japan described an immunoglobulin different from the known immunoglobulin 99 

classes, that could induce allergic reactions in the skin, and which they called γE antibody 100 

(Ishizaka and Ishizaka 1967). During the same period, the group of Johansson and Bennich in 101 

Sweden isolated a new immunoglobulin class, which they called IgND (Johansson and 102 

Bennich 1967). It soon turned out that γE and IgND belong to the same and unique antibody 103 

class, and the official name IgE was given in 1968 (Bennich, Ishizaka et al. 1968). The story 104 

behind this discovery has been the subject of many reviews, including two recent reviews by 105 

the discoverers themselves	  (Ishizaka and Ishizaka 2016, Johansson 2016). IgE is the isotype 106 

found at the lowest concentration in the circulation (50-200 ng/ml IgE in healthy individuals 107 

vs. ~10 mg/ml for IgG) (Dullaers, De Bruyne et al. 2012). However, IgE levels can increase 108 

dramatically in individuals with allergic diseases	  (Galli and Tsai 2012, Platts-Mills, Schuyler 109 

et al. 2016). Indeed, the importance of IgE in allergy was demonstrated at the time of its 110 

discovery, when the investigators identified that purified IgE was capable of transferring skin 111 

reactivity from sensitized human subjects to naive hosts (Ishizaka and Ishizaka 2016, 112 

Johansson 2016). This discovery has had great importance for both the diagnosis and 113 

treatment of allergic disorders: quantification of allergen-specific IgE is one of the main 114 

diagnostic criteria for allergies (Hamilton, MacGlashan et al. 2010), and the anti-IgE 115 

therapeutic antibody omalizumab is now approved for the treatment of moderate to severe 116 

persistent allergic asthma, and shows great potential for the treatment of other allergic 117 

diseases	   (Humbert, Busse et al. 2014, Pelaia, Vatrella et al. 2015, Kawakami and Blank 118 

2016). Omalizumab has also been approved for the treatment of chronic spontaneous urticaria 119 
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(CSU), demonstrating that the pathologic functions of IgE extend beyond allergy (Maurer, 120 

Rosen et al. 2013, Chang, Chen et al. 2015, Zhao, Ji et al. 2016).	  121 

 122 

IgE antibodies exist in two forms: a membrane-bound form (mIgE) expressed by B cells 123 

that have undergone class switching to IgE, and a secreted form produced by plasma B cells. 124 

mIgE serves as a B cell receptor involved in antigen uptake and presentation. The structure 125 

and functions of mIgE, as well as the regulation of IgE synthesis, have been extensively 126 

reviewed elsewhere (Geha, Jabara et al. 2003, Gould and Sutton 2008, Wu and Zarrin 2014). 127 

This review will focus mainly on the effector functions of secreted IgE (hereafter referred to 128 

as ‘IgE’). 129 

 130 

IgE exerts its biological functions by binding to two main receptors: FcεRI and CD23 131 

(FcεRII). The high affinity IgE receptor, FcεRI, is expressed on the surface of blood basophils 132 

and tissue resident mast cells; and on other cell types in humans (but not in mice), including 133 

neutrophils, eosinophils, platelets, monocytes and dendritic cells (Kraft and Kinet 2007). The 134 

low affinity receptor CD23 is expressed mainly by B cells (Sutton and Davies 2015), but also 135 

by several other cell populations including neutrophils, eosinophils, follicular DCs and 136 

intestinal epithelial cells (IECs) (Acharya, Borland et al. 2010). CD23 on B cells serves 137 

mainly as a negative regulator of IgE synthesis (Acharya, Borland et al. 2010). Crosslinking 138 

of FcεRI-bound IgE can initiate allergic reactions by inducing the activation of mast cells and 139 

basophils, the immediate release of preformed granule-stored mediators such as histamine and 140 

proteases, and the de novo production of lipid mediators (e.g. prostaglandins, leukotrienes), 141 

cytokines and chemokines (Galli, Kalesnikoff et al. 2005, Voehringer 2013, Wernersson and 142 

Pejler 2014).  143 

 144 
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In this review, we will describe our current understanding of the interactions between 145 

IgE and its receptors FcεRI and CD23. We will review the known and potential functions of 146 

IgE antibodies in health and disease, in particular their detrimental roles in allergic diseases 147 

and chronic spontaneous urticaria, as well as their protective functions in host defense against 148 

parasites and venoms. Finally, we will present an overview of the drugs that are in clinical 149 

development or have therapeutic potential for IgE-mediated allergic diseases. 150 



Balbino et al. Page 9 of 52 

2. IgE structure 151 

 152 

IgE antibodies are composed of two identical heavy chains (each comprising a 153 

variable VH domain and four constant Cε domains) and two identical light chains (composed 154 

of a variable VL domain and a constant CL domain) with a total molecular weight of 190 kDa	  155 

(Gould and Sutton 2008, Wu and Zarrin 2014) (Figure 1). Similar to other antibody classes, 156 

the Fab region of IgE is responsible for antigen recognition and binding, while the effector 157 

function of IgE is determined by the carboxy-terminal Fc portion	   (Gould and Sutton 2008, 158 

Wu and Zarrin 2014). IgE shares a similar overall structure with IgG, with the exception of an 159 

additional domain in the heavy chain (Cε2). As detailed in part 3.1.3, this additional Cε2 160 

domain corresponds to the location of the flexible hinge region found in IgG, and plays a 161 

major role in enhancing the stability of the interaction between IgE and its high affinity 162 

receptor FcεRI (McDonnell, Calvert et al. 2001). The FcεRI binding site is located in the Cε3 163 

domain and in the Cε2-Cε3 linker region	  (Garman, Wurzburg et al. 2000) (described in more 164 

detail in part 3.1.3). The binding site to the low affinity IgE receptor CD23 is also primarily 165 

located within the Cε3 domain, with contributions from the Cε4 domain (described in more 166 

detail in part 3.2.3) (Figure 1). The crystal structure of the human Cε3-Cε4 domains revealed 167 

that, by rotating relatively to Cε4, Cε3 can adopt either ‘open’ or ‘closed’ conformations. This 168 

conformational flexibility regulates the binding of IgE to both FcεRI and CD23 (Garman, 169 

Wurzburg et al. 2000, Wurzburg, Garman et al. 2000). These features are discussed in more 170 

detail in part 3.1.3 & 3.2.3. Several intra- and inter-domain disulphide bridges control the 171 

structure and activity of IgE, which is also regulated by glycosylation at various sites (Figure 172 

1). In particular, disruption of the glycosylation site found in the Cε3 domain at asparagine-173 

394 (N394) in humans, and N384 in mouse, abrogates the binding of IgE to FcεRI, 174 
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highlighting the importance of glycosylation modifications in IgE biology (Shade, Platzer et 175 

al. 2015). 176 

 177 

3. IgE receptors 178 

 179 

3.1. The high affinity IgE receptor FcεRI 180 

 181 

3.1.1. FcεRI structure and expression 182 

 183 

FcεRI is the high affinity receptor for IgE (Kd of ~ 10-9 to 10-10 M). It is constitutively 184 

expressed at high levels on both human and rodent mast cells and basophils as a tetramer 185 

formed of one α subunit, one β subunit, and a dimer of disulfide-linked γ subunits (Blank, Ra 186 

et al. 1989). The α subunit (FcεRIα) belongs to the immunoglobulin (Ig) superfamily, with an 187 

extracellular portion composed of two Ig-like domains (D1 and D2), containing the IgE 188 

binding sites, a transmembrane domain and a short cytoplasmic domain which is thought to 189 

have no signaling function (Kraft and Kinet 2007) (Figure 2). Human FcεRIα is glycosylated 190 

at seven sites, and these glycosylations appear to be required for proper interactions with the 191 

folding machinery in the endoplasmic reticulum, rather than for binding to IgE (Letourneur, 192 

Sechi et al. 1995, Sutton and Davies 2015). FcεRIβ has a cytoplasmic immunoreceptor 193 

tyrosine-based activation motif (ITAM), which acts as signal amplifier. The FcεRIγ 194 

homodimer also contains two ITAM domains, which are responsible for signal transduction 195 

(Lin, Cicala et al. 1996, Dombrowicz, Lin et al. 1998).  196 

 197 

In humans, but not in rodents, FcεRI is also constitutively expressed as a αγ2 trimer at 198 

the surface of monocytes	   (Maurer, Fiebiger et al. 1994, Takenaka, Tanaka et al. 1995), 199 
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dendritic cells (DCs)	  (Maurer, Fiebiger et al. 1996), Langerhans cells (Bieber, de la Salle et 200 

al. 1992), neutrophils	  (Gounni, Lamkhioued et al. 2001), eosinophils (Gounni, Lamkhioued et 201 

al. 1994) and platelets	  (Joseph, Gounni et al. 1997, Hasegawa, Pawankar et al. 1999). It was 202 

reported that expression of the αγ2 trimer is increased in peripheral blood monocytes from 203 

atopic patients, as compared to healthy controls (Maurer, Fiebiger et al. 1994).  204 

 205 

A circulating soluble form of FcεRI (sFcεRI) of about 40 kDa, and which contains an 206 

intact IgE binding site, has been described in human serum (Dehlink, Platzer et al. 2011). 207 

However, the cell types that release or shed this protein in humans, and the physiological role 208 

of sFcεRI, remain to be identified (reviewed in (Platzer, Ruiter et al. 2011). 209 

 210 

3.1.2. FcεRI functions 211 

 212 

FcεRI plays a key role in mediating the biological functions of IgE in vivo, which is 213 

best exemplified by the fact that FcεRI-deficient mice are fully resistant to IgE-mediated 214 

passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA)	  (Dombrowicz, 215 

Flamand et al. 1993). These findings are most likely attributable to the αβγ2 FcεRI tetramer 216 

expressed on the surface of mast cells, since mast cell-deficient mice are also resistant to IgE-217 

mediated PCA and PSA (Miyajima, Dombrowicz et al. 1997, Feyerabend, Weiser et al. 2011, 218 

Lilla, Chen et al. 2011). Studies using transgenic mice expressing the human FcεRIα chain 219 

under the control of its own promoter have also given significant insight into the functions of 220 

human FcεRI	  (Dombrowicz, Brini et al. 1996, Dombrowicz, Lin et al. 1998, Greer, Wu et al. 221 

2014). hFcεRIαTg mice (bred on a mouse FcεRI-deficient background) express a ‘humanized’ 222 

FcεRI receptor with a similar cellular distribution as that found in humans (Dombrowicz, 223 

Brini et al. 1996, Dombrowicz, Lin et al. 1998, Mancardi, Iannascoli et al. 2008, Greer, Wu et 224 
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al. 2014). hFcεRIαTg mice can develop PSA reactions upon sensitization with antigen-specific 225 

human or mouse IgE and challenge with the same antigen (Dombrowicz, Brini et al. 1996, 226 

Dombrowicz, Lin et al. 1998). Notably, mouse IgE is able to bind both human and mouse 227 

FcεRI, while human IgE does not bind the mouse receptor (Conrad, Wingard et al. 1983). 228 

PCA reactions can even be induced in hFcεRIαTg mice by intradermal transfer of plasma from 229 

allergic patients followed by challenge with the relevant allergen	   (Zhu, Kepley et al. 2005, 230 

Liu, Sun et al. 2013). The αβγ2 tetramer on mast cells is also probably the main trigger of 231 

IgE-mediated systemic and cutaneous anaphylaxis in hFcεRIαTg mice, although, to the best of 232 

our knowledge, this has not yet been unequivocally demonstrated. 233 

 234 

The biological functions of the αγ2 trimer of FcεRI are less well understood. Greer 235 

and collaborators recently used hFcεRIαTg mice to demonstrate that internalization of human 236 

FcεRI by conventional DCs and monocytes (which express the αγ2 trimer) contributes to 237 

serum IgE clearance (Greer, Wu et al. 2014). They injected human IgE into hFcεRIαTg mice 238 

and control mice (deficient for both human and mouse FcεRI), and found that serum IgE 239 

clearance was markedly accelerated in the transgenic animals. They subsequently 240 

demonstrated that human IgE was rapidly endocytosed by conventional DCs and monocytes, 241 

and that this endocytosis was associated with the rapid clearance of circulating IgE observed 242 

in hFcεRIαTg mice (Greer, Wu et al. 2014). While these findings appear convincing, it 243 

remains to be determined the extent to which trapping of circulating IgE by human FcεRI 244 

expressed on mast cells also contributes to its clearance. It was recently reported that 245 

perivascular mouse mast cells can ‘sample’ circulating IgE directly in the blood by extending 246 

cell processes across the vessel wall	   (Cheng, Hartmann et al. 2013). However, the role of 247 

FcεRI in serum IgE clearance seems to be a specific feature of the human receptor, and not 248 
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the mouse receptor, as mice deficient in FcεRI clear serum IgE to the same extent as WT mice	  249 

(Cheng, Wang et al. 2010). 250 

 251 

It has also been suggested that human peripheral blood DCs use the αγ2 FcεRI trimer 252 

for allergen uptake and presentation to naive T cells (Maurer, Fiebiger et al. 1996). Using 253 

transgenic mice expressing human FcεRIα under the dependency of the CD11c promoter, in 254 

an attempt to restrict expression to DCs, these authors found that hFcεRI-expressing DCs can 255 

efficiently prime naive T cells for TH2 differentiation, and amplify antigen-specific TH2 256 

responses in vivo (Sallmann, Reininger et al. 2011). 257 

 258 

3.1.3. Binding of IgE to FcεRI 259 

 260 

Mutagenesis studies have helped define the FcεRI binding epitope on IgE. 261 

Schwarzbaum and colleagues generated a mutant form of mouse IgE with a deletion of 45 262 

amino acids in the carboxy end of Cε3: this mutant IgE was unable to bind FcεRI 263 

(Schwarzbaum, Nissim et al. 1989). Nissim and collaborators produced several chimeric IgE 264 

containing the Cε2, Cε3 and Cε4 domains of human IgE (hereafter named Cε2-4), in which 265 

various domains were replaced by their murine counterparts. This work confirmed that the 266 

FcεRI binding site mapped to the Cε3 domain of IgE (Nissim, Jouvin et al. 1991). In 2000, 267 

Garman et al. determined the crystal structure of the IgE Cε3-4 dimer bound to the 268 

extracellular part of FcεRIα (Garman, Wurzburg et al. 2000). Analysis of this crystal 269 

structure confirmed that each of the two chains of the IgE Cε3-4 dimer could bind the 270 

receptor using surface loops in Cε3, and revealed contributions of the Cε2-Cε3 linker region	  271 

(Garman, Wurzburg et al. 2000). 272 

 273 



Balbino et al. Page 14 of 52 

Analysis of the crystal structures of the extracellular portion of human FcεRIα alone 274 

(Garman, Kinet et al. 1998) or in complex with a dimeric Cε3-4 fragment (Garman, 275 

Wurzburg et al. 2000) have also provided invaluable insight into how IgE interacts with 276 

FcεRI. The extracellular part of FcεRIα is formed of two immunoglobulin domains of about 277 

85 amino acids each (D1 and D2), with a heavily bent D1-D2 interface forming an overall 278 

structure of an inverted V shape (Garman, Kinet et al. 1998, Garman, Kinet et al. 1999) 279 

(Figure 2). The two Cε3 domains of IgE bind distinct sites on FcεRIα, one site found in the 280 

D2 domain, and a second site formed by a cluster of four surface-exposed tryptophans in the 281 

D1-D2 interface (Garman, Wurzburg et al. 2000). The presence of these two binding sites 282 

explains the 1:1 stoichiometry of the IgE-FcεRIα complex, which is essential to ensure that 283 

receptor crosslinking and activation occurs only upon multivalent antigen binding to IgE 284 

(Garman, Wurzburg et al. 2000). 285 

 286 

A unique feature of the FcεRI receptor, as compared to other Fc receptors, is the 287 

distinctly slow dissociation rate of the IgE-FcεRIα complex (koff ≈ 10-5 s-1). This translates 288 

into a half-life of about two weeks for IgE bound to FcεRI (compared to only hours for IgG 289 

complexes bound to Fcγ receptors), and ensures that tissue mast cells and basophils remain 290 

saturated with IgE	  (Geha, Helm et al. 1985, McDonnell, Calvert et al. 2001). McDonnell and 291 

collaborators showed that full human IgE molecules and dimeric IgE fragments comprising 292 

the Cε2, Cε3 and Cε4 domains (Cε2-4) have identical kinetics of dissociation with FcεRIα, 293 

while Cε3-4 displays a markedly enhanced dissociation kinetic (∼20-fold), indicating that 294 

Cε2 plays a major role in enhancing the stability of the IgE-FcεRIα complex (McDonnell, 295 

Calvert et al. 2001). More recently, Holdom et al. published the crystal structure of human 296 

Cε2-4 bound to the extracellular domain of FcεRIα, and confirmed that the Cε2 domain 297 
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contributes to the slow dissociation rate of IgE-FcεRIα complexes through conformational 298 

changes rather than direct interactions with the receptor (Holdom, Davies et al. 2011). 299 

 300 

Analysis of the crystal structures of free vs. receptor-bound IgE Fc domains have 301 

revealed that the Cε3 domains of IgE undergo a large conformational rearrangement upon 302 

binding to FcεRI	   (Wurzburg, Garman et al. 2000, Wan, Beavil et al. 2002, Wurzburg and 303 

Jardetzky 2009, Holdom, Davies et al. 2011). The free IgE Fc portion was observed in a 304 

‘closed’ conformation in which the FcεRIα binding site in Cε3 is masked (Wurzburg, 305 

Garman et al. 2000, Wan, Beavil et al. 2002, Wurzburg and Jardetzky 2009). This masking is 306 

achieved as the Cε2 domains in the free Fc fragment are folded back asymmetrically onto the 307 

Cε3 and Cε4 domains, locking the Cε3 domains in a ‘closed’ conformation (Wan, Beavil et 308 

al. 2002) (Figure 3). The authors suggest that free ‘bent’ IgE may first engage FcεRI through 309 

only one Cε3 domain, followed by an important conformational change involving Cε2, 310 

whereby Cε3 would adopt an ‘open’ conformation, leading to engagement of the second Cε3.  311 

 312 

3.2. The low affinity IgE receptor CD23 (FcεRII) 313 

 314 

3.2.1. CD23 structure and expression 315 

 316 

CD23, also known as FcεRII, is the low affinity receptor for IgE (Kd = 10–5 M) 317 

(Wurzburg, Tarchevskaya et al. 2006). The structure of CD23 and its interaction with IgE 318 

have been reviewed in detail (Sutton and Davies 2015). CD23 self-associates as trimer, and is 319 

composed of an IgE-binding ‘head domain’ (which belongs to the C-type lectin superfamily) 320 

linked to the membrane by an extracellular coiled-coil stalk region, and a small cytoplasmic 321 

N-terminal domain (Figure 4). CD23 exists in a membrane-bound form of 45 kDa (mCD23), 322 
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as well as in soluble forms of various sizes (sCD23) which are released by proteolytic 323 

cleavage at several sites in the stalk region (Sutton and Davies 2015). ADAM10 (‘a 324 

disintegrin and metalloprotease 10’) is considered to be the main endogenous protease 325 

responsible for cleavage and generation of sCD23 (Weskamp, Ford et al. 2006, Lemieux, 326 

Blumenkron et al. 2007). The exogenous house dust mite cysteine protease Der p I is also 327 

able to cleave mCD23 at two sites (Schulz, Sutton et al. 1997). mCD23 (hereafter referred to 328 

as CD23) is expressed by B cells (Sutton and Davies 2015), and several other cell populations 329 

including neutrophils (Yamaoka, Arock et al. 1996), eosinophils (Capron, Truong et al. 1992), 330 

follicular DCs (Johnson, Hardie et al. 1986) and IECs (Yang, Berin et al. 2000, Yu, 331 

Montagnac et al. 2003). Human CD23 exists as two isoforms (CD23a and CD23b), which 332 

differ in the first seven (CD23a) or six (CD23b) amino-acid residues of the cytoplasmic N-333 

terminal part (Yokota, Yukawa et al. 1992, Sutton and Davies 2015). 334 

 335 

3.2.2. CD23 functions 336 

 337 

CD23 is expressed on the surface of B cells, where it serves as a negative regulator of 338 

IgE synthesis. Several publications show increased levels of IgE in mice deficient for CD23 339 

(Stief, Texido et al. 1994, Yu, Kosco-Vilbois et al. 1994, Haczku, Takeda et al. 2000, Riffo-340 

Vasquez, Spina et al. 2000, Lewis, Rapsomaniki et al. 2004). Conversely, transgenic mice 341 

overexpressing CD23 in B (and T) cells have markedly reduced levels of circulating IgE after 342 

immunization (Payet, Woodward et al. 1999). The regulation of IgE production seems to 343 

require the oligomerization of CD23, since serum IgE levels are also increased in mice treated 344 

with an antibody that binds to the stalk region of CD23 and thus blocks receptor 345 

oligomerization (Kilmon, Ghirlando et al. 2001, Ford, Kilmon et al. 2006). It is possible that 346 

CD23 on B cells plays an additional role(s) in regulating serum IgE levels, independently of 347 

its effects on IgE production. This was suggested by a study showing that exogenous IgE 348 



Balbino et al. Page 17 of 52 

injected into mice deficient for B cells or treated with an anti-CD23 antibody can be detected 349 

in the blood one hour later at levels two-fold higher than in the corresponding control mice 350 

(Cheng, Wang et al. 2010). The mechanism through which CD23 regulates serum IgE levels 351 

is still unclear, and appears to be independent on B cells, since the administered IgE had 352 

similar rates of clearance in B cell-deficient and -sufficient mice (Cheng, Wang et al. 2010). 353 

 354 

In B cells, CD23 has also been implicated in IgE-dependent antigen uptake and 355 

presentation to T cells. In vitro experiments showed that mouse and human B cells incubated 356 

with antigen-specific IgE were up to 100-fold more efficient than untreated B cells at 357 

presenting low concentrations of the respective antigen, and this phenomenon was markedly 358 

reduced by a CD23 blocking antibody	   (Kehry and Yamashita 1989, Pirron, Schlunck et al. 359 

1990).  360 

 361 

CD23 is expressed on IECs, and such expression is enhanced upon antigen 362 

sensitization in rodents (Yang, Berin et al. 2000, Yu, Yang et al. 2001), or exposure to the 363 

TH2 cytokine IL-4 in humans (Tu, Salim et al. 2005). Studies using CD23 blocking antibodies 364 

or mice deficient for CD23 have demonstrated that CD23 in IECs is involved in the 365 

transepithelial transport of IgE and IgE/antigen complexes into the intestinal lumen (Yang, 366 

Berin et al. 2000, Yu, Yang et al. 2001, Tu, Salim et al. 2005). This phenomenon is 367 

potentially important for food allergy, since it could explain how IgE and allergens are 368 

delivered to mast cells located in the lamina propria beneath the epithelial lining of the gut	  369 

(Tu, Salim et al. 2005, Gould and Sutton 2008). Similarly, CD23 is expressed on human 370 

airway epithelial cells (AECs), where it is also subject to upregulation by IL-4, and ex vivo 371 

experiments suggest that CD23 in AECs is involved in transepithelial transport of IgE and 372 

IgE/antigen immune complexes (Palaniyandi, Tomei et al. 2011). A more recent study using 373 
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CD23-deficient mice confirmed that CD23 expressed by AECs is involved in IgE and 374 

IgE/antigen transport, and showed that expression of CD23 in lung structural cells is 375 

important for the development of allergic airway inflammation (Palaniyandi, Liu et al. 2015). 376 

 377 

The soluble form of CD23 (sCD23) can also regulate IgE synthesis. sCD23 exists in 378 

several isoforms of different sizes. All isoforms can interact with IgE, but the shorter sCD23 379 

remains monomeric while the longer isoforms associate in trimers (reviewed in detail in 380 

(Platzer, Ruiter et al. 2011)). sCD23 isomers can have divergent effects on B cells. Trimeric 381 

sCD23 can upregulate IgE synthesis through the co-ligation of CD21 and membrane IgE on B 382 

cells (Aubry, Pochon et al. 1992, Hibbert, Teriete et al. 2005, McCloskey, Hunt et al. 2007, 383 

Cooper, Hobson et al. 2012), whereas monomeric sCD23 inhibits IgE synthesis in human B 384 

cells (McCloskey, Hunt et al. 2007). 385 

 386 

3.2.3. Binding of IgE to CD23 387 

 388 

Early mutagenesis studies mapped the IgE binding site of CD23 to discontinuous 389 

epitopes between residues 160-287 in the C-terminal head domain (Bettler, Maier et al. 1989, 390 

Bettler, Texido et al. 1992). These mutagenesis studies also suggested that binding of IgE 391 

requires six out of eight extracellular cysteine residues of CD23, which are likely involved in 392 

the formation of intramolecular disulfide bridges (Bettler, Texido et al. 1992). The head 393 

domain of CD23 is involved in IgE binding, since its proteolytic cleavage by the house dust 394 

mite protease Der p I abrogates binding (Schulz, Sutton et al. 1997). Nevertheless, one 395 

mutagenesis study suggested that the stalk region of CD23 is also involved in IgE binding 396 

(Chen, Ma et al. 2002); a finding that was recently confirmed, indicating that the IgE-CD23 397 

interaction is more complex than previously anticipated (Selb, Eckl-Dorna et al. 2016). 398 
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Interestingly, the latter study also demonstrated that mutation of the N-glycosylation site of 399 

CD23 (N63) alone is sufficient to enhance binding of IgE (Selb, Eckl-Dorna et al. 2016). 400 

 401 

Vercelli et al. first demonstrated, using a bank of peptides spanning the IgE Cε2-4 402 

domains, that CD23 recognizes a motif in the Cε3 domain of IgE (Vercelli, Helm et al. 1989). 403 

This was confirmed in a study using chimeric IgE molecules in which the human Cε3 domain 404 

was replaced by mouse Cε3: these chimeric molecules bound to mouse CD23 and 405 

concomitantly lost their ability to bind the human receptor	   (Nissim, Schwarzbaum et al. 406 

1993). Thereafter, the CD23 binding site on IgE was more precisely mapped to the A-B loop 407 

of the Cε3 domain (residues 341-356), with a key role for lysine 352	  (Sayers, Housden et al. 408 

2004). More recently, the crystal structure of the soluble head domain of CD23 bound to a 409 

Cε3-4 IgE dimer was resolved by Dhaliwal and collaborators (Dhaliwal, Yuan et al. 2012). 410 

These authors found that one CD23 molecule binds to each IgE heavy chain, principally via 411 

the Cε3 domains but with a contribution from Cε4 (Dhaliwal, Yuan et al. 2012) (Figure 4). 412 

Although the binding sites for FcεRI and CD23 are at opposite ends of the Cε3 domain, 413 

binding of the two receptors to IgE is mutually exclusive. Indeed, binding of IgE to CD23 414 

induces conformational changes in Cε3, leading to a highly ‘closed’ conformation 415 

incompatible with FcεRI binding (Borthakur, Hibbert et al. 2012, Dhaliwal, Yuan et al. 2012). 416 

Similarly, the ‘opened’ conformation adopted by Cε3 upon binding to FcεRI is incompatible 417 

with CD23 binding (Borthakur, Hibbert et al. 2012, Dhaliwal, Yuan et al. 2012) (Figure 3). 418 

Finally, the crystal structure of CD23 bound to a complete IgE Fc fragment was reported, 419 

revealing that the IgE Cε2 domain also contributes to CD23 binding, in addition to the 420 

known contributions of the Cε3 and Cε4 domains	  (Dhaliwal, Pang et al. 2017). 421 

  422 

3.3. Other IgE or FcεRI binding molecules 423 
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  424 

Mast cells and basophils can be activated by the cytokine-like protein histamine-425 

releasing factor (HRF) (reviewed in (Kawakami, Kashiwakura et al. 2014)). It was shown that 426 

HRF could bind to a subset of IgE antibodies via their Fab regions, thereby inducing antigen-427 

independent cross-linking of FcεRI-bound IgE molecules, and that this process could amplify 428 

inflammation in mouse models of cutaneous anaphylaxis or allergic airway inflammation	  429 

(Kashiwakura, Ando et al. 2012). Similarly, the protein Galectin-3 (formerly known as ε 430 

binding molecule), which is released by several cell types, can bind to both IgE and FcεRI 431 

and induce mast cell and basophil activation via antigen-independent crosslinking of FcεRI 432 

(Frigeri, Zuberi et al. 1993, Zuberi, Frigeri et al. 1994). Galectin-3 is also directly produced 433 

by mast cells (it is found in the cytoplasm and nucleus of mast cells	  (Craig, Krishnaswamy et 434 

al. 1995)), and it was shown that mast cells derived from the bone marrow of galectin-3 435 

deficient mice displayed reduced activation by IgE and antigen in vitro as compared to WT 436 

mast cells	  (Chen, Sharma et al. 2006). 437 

 438 

Takizawa and collaborators reported that IgE immune complexes can bind to the 439 

mouse IgG receptors FcγRIIB and FcγRIII expressed on mast cells and macrophages, with an 440 

affinity similar to that of IgG immune complexes (Takizawa, Adamczewski et al. 1992). They 441 

further demonstrated that such binding to FcγRs can induce mast cell activation independently 442 

of FcεRI (Takizawa, Adamczewski et al. 1992). IgE immune complexes were also found to 443 

bind and activate mouse FcγRIV, expressed on monocytes, macrophages and neutrophils 444 

(Hirano, Davis et al. 2007, Mancardi, Iannascoli et al. 2008). Confirming that FcγRIV can act 445 

as a low-affinity receptor for mouse IgE, treatment of mice with an anti-FcγRIV antibody 446 

inhibited late phase reactions in a model of IgE-mediated passive cutaneous allergic 447 

inflammation (Hirano, Davis et al. 2007). In addition, experiments performed in mice 448 
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deficient for FcεRI, CD23 and all FcγRs except FcγRIV suggested that the in vivo 449 

engagement of FcγRIV by IgE immune complexes can synergize with mediators released by 450 

IgE-activated mast cells to induce lung inflammation (Mancardi, Iannascoli et al. 2008). 451 

 452 

4. Roles of IgE in health and disease 453 

 454 

4.1. Pathologic roles of IgE 455 

 456 

4.1.1. Immediate hypersensitivity reactions 457 

 458 

IgE antibodies are probably best known for their critical role in acute allergic 459 

reactions. In allergic individuals, mast cells and basophils have antigen-specific IgE bound to 460 

FcεRI expressed on the cell surface (Galli and Tsai 2012). Antigen-mediated IgE/FcεRI 461 

crosslinking initiates a complex signaling cascade (Reber and Frossard 2014, Sibilano, Frossi 462 

et al. 2014), leading to the eventual activation of these effector cells and the immediate and 463 

rapid release of preformed granule-stored mediators (Wernersson and Pejler 2014) (e.g., 464 

histamine, serotonin, proteoglycans, proteases and cytokines) and de novo production and 465 

release of an impressive range of lipid mediators (e.g., prostaglandins, leukotrienes), 466 

cytokines and chemokines (Galli, Kalesnikoff et al. 2005, Voehringer 2013). These mediators 467 

can act locally or systemically, leading to the clinical features of immediate hypersensitivity, 468 

such as bronchoconstriction, urticaria, diarrhea (when acting locally in the airways, the skin 469 

and the gut, respectively) (Figure 5). 470 

 471 

4.1.2. Anaphylaxis 472 

 473 
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Anaphylaxis is the most extreme manifestation of an allergic reaction. In humans, 474 

anaphylaxis can be attributed to an IgE- and mast cell-dependent immediate hypersensitivity 475 

reaction in individuals previously sensitized to that allergen (Lieberman, Camargo et al. 2006, 476 

Burton and Oettgen 2011, Galli and Tsai 2012). Indeed, quantification of specific IgE levels 477 

is used to identify potential triggers of anaphylaxis in patients with a personal history of 478 

anaphylaxis (Hamilton, MacGlashan et al. 2010). IgE-dependent anaphylactic reactions can 479 

also be recapitulated in mice, in which a local or systemic injection of antigen one day after 480 

passive injection of antigen-specific IgE induces features of anaphylaxis	  (Wershil, Mekori et 481 

al. 1987, Dombrowicz, Flamand et al. 1993, Oka, Kalesnikoff et al. 2012).  482 

 483 

IgE-mediated anaphylaxis is abrogated in mice lacking the high affinity IgE receptor 484 

FcεRI (Dombrowicz, Flamand et al. 1993), as well as in mast cell-deficient mice 485 

(Feyerabend, Weiser et al. 2011, Lilla, Chen et al. 2011, Oka, Kalesnikoff et al. 2012), 486 

highlighting the importance of IgE-mediated mast cell activation in this reaction. Mast cells 487 

likely also play a key role in human anaphylaxis. Indeed, elevated levels of the mast cell 488 

specific protease tryptase have been detected during anaphylactic reactions in humans	  489 

(Schwartz, Metcalfe et al. 1987, Schwartz 2006, Brown, Stone et al. 2013). Moreover, an 490 

increased incidence of anaphylaxis was reported in patients with mastocytosis, a disease 491 

characterized by increased numbers of mast cells (Schuch and Brockow 2017). By contrast, 492 

the role of basophils in anaphylaxis is more debated. So-called “Basophil activation tests” are 493 

used to confirm allergen sensitization in human patients. In these tests, which are performed 494 

on blood samples ex vivo, IgE-mediated activation of basophils is monitored by measuring 495 

up-regulation of surface markers such as CD63 and CD203c	   (Santos, Du Toit et al. 2015, 496 

Kim, Kim et al. 2016, Giavina-Bianchi, Galvao et al. 2017). Recently, Korosec and 497 

colleagues also reported an increase of CD63 expression on circulating basophils, as well as a 498 
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marked reduction in the absolute number of circulating basophils, during anaphylactic 499 

reactions to Hymenoptera venom in humans (Korosec, Turner et al. 2017). While these data 500 

suggest that basophils are activated in human anaphylaxis, they do not however demonstrate a 501 

significant contribution to anaphylaxis pathophysiology. Even in mice, the role of basophils in 502 

IgE-mediated anaphylaxis remains contentious. Different reports indicate that depletion of 503 

basophils does not reduce IgE-mediated local or systemic passive anaphylaxis (Wada, 504 

Ishiwata et al. 2010, Sawaguchi, Tanaka et al. 2012). Mukai and colleagues reported that 505 

intravenous injection of antigen-specific IgE in mice, followed one day later by subcutaneous 506 

challenge with the antigen, can induce a triphasic response	   (Mukai, Matsuoka et al. 2005). 507 

The ‘immediate’ and ‘late-phase’ (6 to 10 h after challenge) responses were dependent on 508 

mast cells. However, the third-phase, beginning one to two days after challenge, was 509 

independent of mast cells and was abrogated upon depletion of basophils	  (Mukai, Matsuoka 510 

et al. 2005, Obata, Mukai et al. 2007, Sawaguchi, Tanaka et al. 2012). This third-phase 511 

delayed response was also absent in mice lacking FcRγ (a signaling subunit shared by FcεRI 512 

and activating IgG Fcγ receptors), and was restored upon engraftment of these mice with 513 

basophils purified from WT mice but not from FcRγ-/- mice	   (Mukai, Matsuoka et al. 2005). 514 

Since this passive model relies on specific IgE antibodies, and not on IgG, these results 515 

strongly suggest that direct activation of basophils through FcεRI is responsible for the 516 

delayed allergic skin inflammation observed this model. Using a similar model of IgE-517 

mediated chronic allergic inflammation, Cheng et al. also reported markedly reduced 518 

eosinophilic dermatitis in basophil-deficient mice as compared to control mice three days 519 

after cutaneous challenge with the relevant antigen	  (Cheng, Sullivan et al. 2015). 520 

 521 

The presence of allergen-specific IgE alone does not explain an individual’s 522 

susceptibility to allergy and anaphylaxis. Allergen-specific IgE can be detected in subjects 523 
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who do not develop clinical symptoms when exposed to the corresponding allergen (Sicherer 524 

and Sampson 2010). Conversely, some patients can experience near fatal anaphylaxis despite 525 

having low or undetectable levels of circulating allergen-specific IgE (Simons, Frew et al. 526 

2007), which suggests (but does not prove) the existence of IgE-independent pathways of 527 

anaphylaxis in humans (recently reviewed in (Finkelman, Khodoun et al. 2016) and (Reber, 528 

Hernandez et al. 2017)). More definitive evidence for IgE-independent pathways of 529 

anaphylaxis has been obtained using mouse models of active systemic anaphylaxis (ASA), in 530 

which mice are sensitized with an antigen (to produce antigen-specific antibodies) and re-531 

exposed later on to the same antigen to induce anaphylaxis (Finkelman, Khodoun et al. 2016, 532 

Munoz-Cano, Picado et al. 2016). Mice deficient for IgE or for FcεRI can still partially (Sun, 533 

Arias et al. 2007, Arias, Chu et al. 2011, Balbino, Sibilano et al. 2017) or fully (Oettgen, 534 

Martin et al. 1994, Dombrowicz, Flamand et al. 1997, Jonsson, Mancardi et al. 2011) develop 535 

features of anaphylaxis in these ASA models. Other studies have subsequently shown that 536 

mouse IgG antibodies can trigger anaphylaxis in ASA models, through activation of IgG 537 

receptors (FcγRs) on the surface of various myeloid cells, including basophils, macrophages 538 

and neutrophils (Miyajima, Dombrowicz et al. 1997, Jonsson, Mancardi et al. 2011, Khodoun, 539 

Kucuk et al. 2013, Finkelman, Khodoun et al. 2016, Balbino, Sibilano et al. 2017). 	  540 

 541 

4.1.3. Allergic asthma 542 

 543 

Asthma is a chronic inflammatory disease of the airways with continual increasing 544 

prevalence (Busse and Lemanske 2001, Subbarao, Mandhane et al. 2009). In many patients, 545 

the asthmatic condition is associated with allergic reactivity to environmental allergens and 546 

elevated levels of IgE antibodies (Busse and Lemanske 2001). In these allergic patients, IgE is 547 

thought to contribute to the asthmatic manifestations (Galli and Tsai 2012). Following antigen 548 
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exposure in the airways, rapid local IgE/FcεRI-dependent mast cell activation and the 549 

immediate hypersensitivity reaction can lead to increased vascular permeability, 550 

bronchoconstriction and increased mucus production. A large array of cytokines, growth 551 

factors and chemokines secreted by activated mast cells can influence airway remodeling 552 

(Galli, Tsai et al. 2008, Moiseeva and Bradding 2011). Finally, IgE can also act on other cell 553 

types that express FcεRI or CD23, such as DCs, B cells, basophils or (in humans) eosinophils, 554 

which may potentially affect several biological responses associated with the asthmatic 555 

response (Galli, Tsai et al. 2008, Galli and Tsai 2012). Supporting the important role of IgE in 556 

asthma, the anti-IgE antibody omalizumab has been shown to reduce asthma symptoms in 557 

several clinical trials involving patients with moderate-to-severe and severe allergic asthma 558 

(reviewed in (Humbert, Busse et al. 2014)) (for more detail see part 5.1, below). 559 

 560 

4.1.4. Atopic dermatitis 561 

 562 

Eczema, or atopic dermatitis (AD), is a pruritic inflammatory skin disease with 563 

dramatically increased incidence over the last decades (Bieber 2008, Dharmage, Lowe et al. 564 

2014). AD manifestations are characterized by pruritus (itching), skin inflammatory lesions 565 

associated with cellular infiltration and histopathological changes, and atopy. Indeed, the 566 

majority of AD patients exhibit increased serum levels of total and antigen-specific IgE 567 

(Leung and Bieber 2003, Laske and Niggemann 2004, Oyoshi, He et al. 2009). The function 568 

of IgE in development of AD is supported by the beneficial effect of anti-IgE therapy in a 569 

number of clinical studies (Belloni, Andres et al. 2008, Liu, Goodarzi et al. 2011).  570 

 571 

Abboud, Staumont-Sallé et al. used a mouse model of AD induced by repeated 572 

epicutaneous sensitizations with ovalbumin. They reported that several features of this model 573 
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(including TH1 and TH2 skin responses, mast cell recruitment into draining lymph nodes and 574 

IgE production) were reduced in FcεRI-/- mice. In this model, TH2 skin response as well as T 575 

cell proliferation and IgG1 production were also reduced in mice lacking the IgG receptor 576 

FcγRIII (Abboud, Staumont-Salle et al. 2009). In addition, symptoms of AD were completely 577 

absent in mice deficient for FcRγ, a subunit shared by FcεRI and FcγRIII (and several other 578 

FcR). The authors therefore concluded that in this model, FcεRI and FcγRIII both contribute 579 

to AD but differentially regulate immune responses associated with the disease (Abboud, 580 

Staumont-Salle et al. 2009). Ando and colleagues developed a mouse model of AD in which 581 

eczematous skin lesions are induced by repeated epicutaneous applications of house dust mite 582 

extract and staphylococcal enterotoxin B (Kawakami, Yumoto et al. 2007, Ando, Matsumoto 583 

et al. 2013). The global skin gene expression pattern in this model was very similar to that 584 

observed in human AD skin. Mast cell-deficient mice had markedly reduced skin 585 

inflammation; and FcεRI expression was required to attain maximal clinical scores in this AD 586 

model (Ando, Matsumoto et al. 2013). However, some features of the model were reduced in 587 

mast cell-deficient mice but not in FcεRI-/- mice, which suggests that mast cells can amplify 588 

inflammation in the context of AD model though both IgE-dependent and IgE-independent 589 

pathways (Ando, Matsumoto et al. 2013).  590 

 591 

4.1.5. Chronic spontaneous urticaria 592 

 593 

Chronic spontaneous urticaria (CSU; also known as chronic idiopathic urticaria) is 594 

defined as itchy wheals, angioedema, or both that reoccur for more than 6 weeks without 595 

a specific trigger	   (Zuberbier, Aberer et al. 2014). Antihistamines show clinical benefit for 596 

many (but not all) CSU patients, and it is therefore believed that skin mast cells, which are a 597 

major source of histamine, play an important role in CSU (Vonakis and Saini 2008). CSU 598 
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patients often have high levels of total IgE (Kessel, Helou et al. 2010). However, CSU may 599 

not be triggered by specific external antigens. By contrast, most CSU patients exhibit 600 

autoimmune responses in the form of serum IgE to autoantigens or IgG autoantibodies to IgE 601 

or FcεRI (reviewed in	  (Kolkhir, Church et al. 2017)). 35-45% of adults with CSU develop a 602 

wheal when injected intradermally with their own serum, a test called autologous serum skin 603 

test (ASST)	   (Metz, Gimenez-Arnau et al. 2009). Such positive ASSTs responses have been 604 

linked to IgG autoantibodies directed against the high-affinity IgE receptor FcεRI, or less 605 

commonly against IgE (Hide, Francis et al. 1993, Chang, Chen et al. 2015, Auyeung, Mittag 606 

et al. 2016). Both types of autoantibodies can trigger activation of mast cells (and other 607 

FcεRI-bearing cells) through cross-linking of FcεRI. In a recent study, autoreactive T cells 608 

specific for FcεRI were also detected in the blood of a large proportion of patients with CSU 609 

(Auyeung, Mittag et al. 2016). The authors therefore proposed that, as for other autoimmune 610 

diseases, activation of autoreactive T cells is likely one of the initial events in CSU	  (Auyeung, 611 

Mittag et al. 2016). Moreover, some CSU patients have high titers of autoreactive IgE 612 

directed against dsDNA or thyroid antigens, such as thyroperoxidase (TPO)	  (Altrichter, Peter 613 

et al. 2011, Hatada, Kashiwakura et al. 2013). It was also recently reported that IL-24 is a 614 

common autoantigen in patients with CSU (Schmetzer, Lakin et al. 2017). Such IgE 615 

autoantibodies could mediate skin reactions in CSU by inducing mast cell degranulation in 616 

response to autoantigens (Altrichter, Peter et al. 2011, Hatada, Kashiwakura et al. 2013, 617 

Chang, Chen et al. 2015). It should be noted, however, that the presence of IgE against 618 

autoantigens is also documented in diseases other than CSU, such as atopic dermatitis 619 

(reviewed in (Hradetzky, Werfel et al. 2015)), and a direct link between autoantibodies and 620 

the clinical manifestations of CSU has not yet been demonstrated. Some reports also indicate 621 

the presence of IgE against exogenous antigens, such as Staphylococcus aureus enterotoxins, 622 

in some CSU patients, which could contribute to the pathogenesis of CSU in a subpopulation 623 
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of patients (Ye, Hur et al. 2008, Altrichter, Hawro et al. 2018). 624 

 625 

In support of a key role of IgE and FcεRI in CSU, the anti-IgE therapeutic antibody 626 

omalizumab is now approved for the treatment of CSU (Maurer, Rosen et al. 2013, Chang, 627 

Chen et al. 2015, Zhao, Ji et al. 2016). Moreover, most patients with CSU who stop 628 

omalizumab treatment relapse within a few months, and a recent study indicates that 629 

total IgE serum levels before omalizumab treatment correlate negatively with the time to 630 

relapse in these patients (Ertas, Ozyurt et al. 2017). As reviewed in detail by Chang and 631 

colleagues (Chang, Chen et al. 2015), the clinical benefits of omalizumab are likely due to a 632 

direct blockade of IgE antibodies before they can bind FcεRI and activate mast cells 633 

(especially in patients with autoreactive IgE), and/or a downregulation of FcεRI on the 634 

surface of mast cells and other effector cells (Chang, Chen et al. 2015).  635 

 636 

4.2. Protective roles of IgE 637 

 638 

IgE and the main FcεRI-expressing effector cells, mast cells and basophils, do not 639 

only play roles in pathology, but also critically contribute to host defense. This has been 640 

convincingly demonstrated using mouse models of host defense against certain parasites and 641 

venoms. 642 

 643 

4.2.1. Host defense against parasites 644 

 645 

Helminth infections are generally associated with a "type 2" immune response, 646 

characterized by helper type 2 T (TH2) cells that typically produce IL-4, IL-5 and IL-13, 647 

increased numbers of tissue mast cells and eosinophils, and elevated levels of antigen-specific 648 
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and unspecific IgE (Finkelman, Shea-Donohue et al. 1997, Anthony, Rutitzky et al. 2007, 649 

Grencis, Humphreys et al. 2014). Data from epidemiological studies in humans point towards 650 

a protective role for IgE in helminth infections, as increased levels of helminth-specific IgE 651 

correlate with host resistance (Hagan, Blumenthal et al. 1991, Rihet, Demeure et al. 1991, 652 

Faulkner, Turner et al. 2002). Remarkably, anti-IgE antibody treatment of human patients at 653 

high risk of helminth infections did modestly increase parasite infection risk, albeit an effect 654 

that did not reach statistical significance (Cruz, Lima et al. 2007). Increased IgE levels might, 655 

however, simply reflect a strong TH2 cell response in infected individuals, the latter being of 656 

unquestionable importance in host defense against parasites. Indeed, the actual contributions 657 

of non-specific vs. specific IgE antibodies in host defense and parasite clearance are still 658 

unclear and numerous experimental studies aiming at addressing this question have led to 659 

different, sometimes opposing, conclusions (recently reviewed in (Mukai, Tsai et al. 2016)). 660 

Also, protective vs. detrimental roles of IgE antibodies in anti-parasite immunity appear to be 661 

parasite-dependent. For instance, data from experiments with IgE-deficient mice indicate 662 

beneficial functions for IgE in models of Trichinella sprialis (Gurish, Bryce et al. 2004), 663 

Schistosoma mansoni (King et al. 1997), Brugia Malayi (Spencer et al. 2003), 664 

Nippostrongylus brasiliensis and Heligmosomoides polygyrus (Schwartz, Turqueti-Neves et 665 

al. 2014). On the other hand, experiments with IgE- or FcεRIα-deficient mice in other studies 666 

showed no effect or decreased parasite burden in infections with H. polygyrus (McCoy, Stoel 667 

et al. 2008), Strongyloides venezuelensis (Matsumoto, Sasaki et al. 2013) or S. mansoni 668 

(Jankovic, Kullberg et al. 1997). Among the factors potentially contributing to these 669 

discrepancies, one could cite differences in experimental approaches (transgenic [IgE- or 670 

FcεRIα-deficient mice] or pharmacological [anti-IgE treatments]), the experimental model 671 

and/or the genetic background of the mice (Mukai, Tsai et al. 2016).  672 

 673 
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4.2.2. Host defense against venoms 674 

 675 

Toxic substances, such as venoms, represent an obvious threat for mammals, against 676 

which defense mechanisms are needed. In 1991, Margie Profet proposed a theory known as 677 

the "toxin hypothesis", suggesting that allergic immune responses (i.e., IgE-associated type 2 678 

immune responses and effector cell-mediated allergic reactions) represent an immunological 679 

defense against toxins (Profet 1991). According to this theory, the purpose of an acute allergic 680 

reaction (manifested by, e.g., scratching, vomiting, diarrhea, and, in extreme cases, 681 

anaphylaxis) is to respond rapidly and avoid, eliminate and/or neutralize toxic substances 682 

indicative of life-threatening situations (Profet 1991, Palm, Rosenstein et al. 2012).  683 

 684 

Recently, Profet's hypothesis was supported by experimental evidence demonstrating 685 

that IgE antibodies could contribute to acquired resistance against honeybee and snake 686 

venoms (Marichal, Starkl et al. 2013, Palm, Rosenstein et al. 2013, Starkl, Marichal et al. 687 

2016). Marichal, Starkl et al. characterized the immune response of mice following 688 

subcutaneous injection of whole bee venom to mimic bee stings (Marichal, Starkl et al. 2013). 689 

The venom induced a robust adaptive type 2 immune response associated with development 690 

of venom-specific TH2 cells and IgE, and this acquired immune response was associated with 691 

increased resistance of mice (quantified by survival and body temperature) against a 692 

subsequent challenge with bee venom. Experiments involving passive immunization and 693 

transgenic animals deficient in IgE or FcεRI demonstrated that IgE antibodies and IgE 694 

effector mechanisms played a crucial role in mediating acquired host resistance against bee 695 

venom (Marichal, Starkl et al. 2013). In a complementary study, Palm, Rosenstein et al. 696 

provided experimental evidence that a type 2 immune response directed against the bee 697 

venom component phospholipase A2 (PLA2) was able to confer protection against a 698 
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subsequent near lethal dose of PLA2, and that such protection was dependent on FcεRI (Palm, 699 

Rosenstein et al. 2013). Subsequently, Starkl, Marichal et al. found that IgE effector 700 

mechanisms also played a critical role in acquired host defense against the venom of the 701 

Russell's viper (Starkl, Marichal et al. 2016).  702 

 703 

The strong evidence for the important protective function of IgE and IgE effector cells 704 

in immune defense against venoms in mice challenges the current view of the function of IgE 705 

in (venom-) allergic humans (Artis, Maizels et al. 2012). Therefore, future investigations are 706 

needed to determine whether IgE-associated responses can enhance resistance to other toxins, 707 

and to understand why, in some species or individuals, exposure to the same venom or venom 708 

component may induce either a protective IgE-dependent adaptive immune response, as in the 709 

mouse studies described above (Marichal, Starkl et al. 2013, Palm, Rosenstein et al. 2013, 710 

Starkl, Marichal et al. 2016), or a deleterious and potentially fatal allergic reaction (i.e., 711 

anaphylaxis) (Saelinger and Higginbotham 1974, Charavejasarn, Reisman et al. 1975). This 712 

question is of great interest and relevance for basic and clinical allergy research.  713 

 714 

5. Targeted anti-IgE therapies  715 

 716 

5.1 Anti-IgE antibodies 717 

 718 

5.1.1. Omalizumab 719 

 720 

Omalizumab is a recombinant humanized IgG1 monoclonal antibody directed against 721 

human IgE sold by Novartis and Genentech under the trade name Xolair® (Presta, Lahr et al. 722 

1993). It binds to the Cε3 domain of free IgE, and thereby impairs binding of IgE to both 723 
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FcεRI and CD23 (Chang, Davis et al. 1990, Selb, Eckl-Dorna et al. 2016, Davies, Allan et al. 724 

2017) (Figure 5). Importantly, omalizumab does not recognize IgE already bound to FcεRI or 725 

CD23, and therefore cannot induce cell activation by crosslinking of IgE receptors (Chang, 726 

Davis et al. 1990, Davies, Allan et al. 2017).  727 

 728 

The IgE binding site of omalizumab has been characterized recently by molecular 729 

modeling and crystallography (Zheng, Li et al. 2008, Wright, Chu et al. 2015, Pennington, 730 

Tarchevskaya et al. 2016, Davies, Allan et al. 2017). Omalizumab binds to symmetric sites on 731 

the two IgE Cε3 domains: it does not directly mask the FcεRI binding site on IgE, but rather 732 

induces major conformational changes in the Cε3 domains that inhibit interaction with FcεRI 733 

(Zheng, Li et al. 2008, Wright, Chu et al. 2015, Pennington, Tarchevskaya et al. 2016, Davies, 734 

Allan et al. 2017). Davies and colleagues reported that, furthermore, IgE binding to CD23 is 735 

sterically hindered by Omalizumab due to overlapping binding sites on each Cε3 domain 736 

(Davies, Allan et al. 2017). While omalizumab is alleged to be unable to bind IgE already 737 

bound to FcεRI, in vitro data suggest that omalizumab could also facilitate the dissociation of 738 

FcεRI-bound IgE (Eggel, Baravalle et al. 2014). 739 

 740 

The first randomized, double blind, placebo controlled trials were conducted in 1996 741 

to assess the tolerability and efficiency of omalizumab in patients with allergic asthma 742 

(Boulet, Chapman et al. 1997, Fahy, Fleming et al. 1997). These trials showed a reduction of 743 

free serum IgE levels (but an increase in total serum IgE, i.e. free IgE and IgE complexed 744 

with omalizumab), and improved responses to inhaled allergens following omalizumab 745 

therapy ((Boulet, Chapman et al. 1997, Fahy, Fleming et al. 1997). In addition to the 746 

reduction of free serum IgE levels, treatment with omalizumab also induced a decrease in the 747 

expression of FcεRI on the surface of basophils, DCs and mast cells (Saini, MacGlashan et al. 748 
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1999, Prussin, Griffith et al. 2003, Lin, Boesel et al. 2004). In 2003, Xolair® was approved 749 

for the treatment of moderate to severe persistent allergic asthma, and is now also approved 750 

for the treatment of chronic spontaneous urticaria (CSU) (Maurer, Rosen et al. 2013, Chang, 751 

Chen et al. 2015, Zhao, Ji et al. 2016). In addition, more than 150 clinical trials of 752 

omalizumab are now listed on the website clinicaltrials.gov, in various diseases including 753 

food and venom allergies (in combination with allergen-specific immunotherapy), allergic 754 

rhinitis or mastocytosis. It is, however, important to note that, although Xolair® is generally 755 

well tolerated, it can induce side effects ranging from skin inflammation (at the site of 756 

subcutaneous injection) to systemic anaphylaxis (in 0.1-0.2% of patients) (Harrison, MacRae 757 

et al. 2015, Lieberman, Umetsu et al. 2016). 758 

 759 

5.1.2. Ligelizumab 760 

 761 

Ligelizumab (QGE031) is a more recent humanized anti-IgE antibody developed by 762 

Novartis. It is also directed against Cε3, but is designed to achieve improved IgE suppression, 763 

with an equilibrium dissociation constant (KD) of 139 pM (as compared to the KD of 764 

omalizumab, ~6-8nm) (Arm, Bottoli et al. 2014) (Figure 5). The first clinical results of 765 

ligelizumab treatment indicated that this antibody can reduce free-IgE and basophil FcεRI 766 

with an efficiency superior to that of omalizumab (NCT01716754). Although the authors did 767 

not observe serious adverse events in this study, one patient treated with ligelizumab 768 

developed systemic symptoms (Arm, Bottoli et al. 2014). In 2016, ligelizumab was tested in 769 

patients with mild allergic asthma, and was shown to have greater efficacy than omalizumab 770 

on inhaled and skin allergen responses in these patients (NCT01703312) (Gauvreau, Arm et 771 

al. 2016). However, in a more recent phase II field study of asthma patients, ligelizumab was 772 
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not seen to be superior to omalizumab (NCT01716754), and further development for asthma 773 

has been discontinued. 774 

 775 

5.1.3. Quilizumab 776 

 777 

Quilizumab (MEMP1972A) is a humanized monoclonal antibody developed by 778 

Genentech targeting the M1’ epitope which is present on membrane IgE (mIgE) but not on 779 

serum IgE (Figure 5). Brightbill and colleagues demonstrated, using genetically modified 780 

mice that contained the human M1' domain inserted into the mouse IgE locus, that quilizumab 781 

could reduce serum IgE and deplete IgE-producing plasma cells in vivo, without affecting 782 

other immunoglobulin isotypes (Brightbill, Jeet et al. 2010). Quilizumab has been tested in 783 

clinical trials in patients with allergic rhinitis (NCT01160861) and mild allergic asthma 784 

(NCT01196039) (Gauvreau, Harris et al. 2014). In both studies, reductions in total and 785 

allergen-specific serum IgE were observed, as well as improved clinical responses to allergen, 786 

suggesting that targeting mIgE can reduce IgE production in humans (Gauvreau, Harris et al. 787 

2014). In a subsequent trial (NCT01582503), treatment with quilizumab also reduced total 788 

and allergen-specific IgE in patients with allergic asthma uncontrolled by standard therapy. 789 

However, treatment with quilizumab had no impact on asthma exacerbations, lung functions, 790 

or patient-reported symptoms in this trial (Harris, Maciuca et al. 2016). Similarly, quilizumab 791 

reduced IgE levels by about 30% in CSU patients, but it did not lead to clinical improvements 792 

in patient’s self-reported itch-severity scores (NCT01987947) (Harris, Cabanski et al. 2016). 793 

 794 

5.1.4. XmAb7195 795 

 796 
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XmAb7195 is a monoclonal anti-IgE antibody developed by Xencor through 797 

humanization, affinity maturation, and Fc engineering of the murine parental antibody of 798 

omalizumab (MaE11) (Chu, Horton et al. 2012). XmAb7195 has an IgE-binding affinity 5.3-799 

fold higher than that of omalizumab. In addition, two point mutations in the IgG1 Fc portion 800 

of the mAb (G236R and L328R) increase the binding affinity to inhibitory IgG receptor 801 

FcγRIIB by 400 times compared to omalizumab (Chu, Horton et al. 2012). The authors 802 

demonstrated that XmAb7195 could block free IgE and inhibit IgE production in B cells 803 

through co-engagement of mIgE and FcγRIIB (Chu, Horton et al. 2012) (Figure 5). In a first-804 

in-human phase 1a trial in healthy volunteers (NCT02148744), XmAb7195 decreased IgE 805 

levels below the limit of detection in 90% of subjects that had detectable IgE levels at 806 

baseline. Transient thrombocytopenia was observed at a dose of 3.0 mg/kg, but no other 807 

major adverse events were reported (Gershman, Goldwater et al. 2016). A phase 1b study on 808 

the safety, tolerability and bioavailability of a subcutaneous formulation of XmAb7195 has 809 

been recently completed (NCT02881853), but the results of this study have not yet been 810 

reported. 811 

 812 

5.1.5. MEDI4212 813 

 814 

MEDI4212 is a human IgG1 anti-IgE antibody developed by MedImmune. MEDI4212 815 

was generated using phage display technology, combined with targeted mutagenesis of VH 816 

and VL sequences to increase its affinity for IgE	   (Cohen, Dobson et al. 2014). Like 817 

omalizumab, MEDI4212 does not recognize IgE already bound to FcεRI, but the authors 818 

report that MEDI4212 binds free IgE with an affinity of 1.95 pM, more than 100-fold higher 819 

than omalizumab (Cohen, Dobson et al. 2014) (Figure 5). Analysis of the crystal structure of 820 

IgE Cε3-4 domains in complex with MEDI4212 Fab portion revealed that MEDI4212 821 
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recognizes residues in the Cε3 and Cε4 domains, and targets critical residues in Cε3 also 822 

involved in binding to FcεRI. This suggests that MEDI4212 directly competes with FcεRI for 823 

IgE binding (Cohen, Dobson et al. 2014). 824 

 825 

Since MEDI4212 recognizes residues in the IgE Cε3-4 domains, it can also bind mIgE 826 

on the surface of B cells. MEDI4212 was further engineered in order to increase its potential 827 

to eliminate IgE-expressing B cells through antibody-dependent cell-mediated cytotoxicity 828 

(ADCC)	  (Nyborg, Zacco et al. 2016). The authors chose to insert mutations in the Fc portion 829 

of MEDI4212 in order to improve its affinity for the IgG receptor FcγRIIIA, as ADCC can be 830 

performed by natural killer (NK) cells that express FcγRIIIA. Indeed, in vitro experiments 831 

revealed that, thus Fc-engineered, MEDI4212 could eliminate class-switched human IgE B 832 

cells more efficiently (Nyborg, Zacco et al. 2016). A phase I study on the pharmacokinetics, 833 

pharmacodynamics, and safety of MEDI4212 in subjects with atopy was initiated in 2012 834 

(NCT01544348); and demonstrated that MEDI4212 rapidly reduced free IgE to a greater 835 

extent than omalizumab. However, recovery of free IgE to baseline was much faster in 836 

patients receiving MEDI4212 as compared as omalizumab, which was attributed to a rapid 837 

decrease of serum MEDI4212. Since then, no other study has been initiated with this 838 

antibody. 839 

 840 

5.2. Anti-IgE, anti-FcεRI and anti-CD23 DARPins 841 

 842 

Designed ankyrin repeat proteins (DARPins) are engineered small proteins that can 843 

recognize targets with high specificity and with affinity in the low nanomolar range (Binz, 844 

Amstutz et al. 2004, Pluckthun 2015). In 2009, Eggel and collaborators reported identification 845 

of two monovalent DARPins, termed B-A4-85 and C-A3-30, displaying high affinity for two 846 
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different epitopes on human FcεRIα (Eggel, Baumann et al. 2009). They further produced a 847 

bispecific anti-FcεRIα DARPin (designated 30/85) by linking sequences of the two 848 

monovalent DARPins with a [Gly4–Ser]4 linker. Remarkably, this bispecific DARPin showed 849 

greater affinity than IgE for FcεRIα, and was able to inhibit IgE-FcεRIα interaction and IgE-850 

mediated degranulation of rat basophilic leukemia cells expressing human FcεRIα (RBL-851 

2H3-huα cells), with an effect similar to that of omalizumab (Eggel, Baumann et al. 2009) 852 

(Figure 5). 853 

 854 

Using a similar strategy, the same group reported identification of several DARPins 855 

binding human IgE (Figure 5). Among these, the DARPins E2_79 and E3_54 were able to 856 

inhibit binding of IgE to either FcεRIα or omalizumab, and inhibit IgE-mediated activation of 857 

RBL-2H3-huα cells with higher efficacy than omalizumab (Baumann, Eggel et al. 2010). It 858 

was further demonstrated that E2_79 not only prevented binding of free IgE to FcεRI, but also 859 

actively disrupted pre-formed IgE:FcεRI complexes (Kim, Eggel et al. 2012). Such facilitated 860 

IgE dissociation was observed both in vitro, ex vivo in primary human basophils, and in vivo 861 

in human FcεRI transgenic mice (Kim, Eggel et al. 2012, Eggel, Baravalle et al. 2014), 862 

suggesting that anti-IgE DARPins might be suitable drug candidates to desensitize allergic 863 

patients. 864 

  865 

Another DARPin (E3_53) can recognize both free IgE and IgE bound to FcεRI. This 866 

DARPin was linked to the Fc portion of human IgG1 (using a [Gly4–Ser]3 linker) to produce a 867 

fusion protein capable of cross-linking FcεRI-bound IgE with the inhibitory receptor 868 

FcγRIIB. This molecule, termed DE53-Fc, was able to reduce allergen-induced basophil 869 

activation ex vivo using whole blood samples from allergic patients (Eggel, Buschor et al. 870 

2011). Furthermore, by using blocking antibodies against FcγRIIB, the authors demonstrated 871 
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that binding of DE53-Fc to FcγRIIB was required for full inhibitory properties of the fusion 872 

molecule (Eggel, Buschor et al. 2011). Confirming this mode of action, it was later reported 873 

that mutant forms of DE53-Fc displaying enhanced affinity for FcγRIIB also have greater 874 

capacity to inhibit basophil activation (Buschor, Eggel et al. 2014). However, while mouse 875 

basophils and mast cells and human basophils express high levels of FcγRIIB, it is still 876 

ambiguous whether human mast cells also express this inhibitory receptor (Zhao, Kepley et 877 

al. 2006). Therefore, whether cross-linking of FcεRI-bound IgE to FcγRIIB could inhibit IgE- 878 

and mast cell-mediated responses in humans remains an open question. 879 

 880 

More recently, two DARPins (D86 and D89), which specifically recognize CD23, 881 

were also identified. These anti-CD23 DARPins inhibited binding of IgE to CD23 (which 882 

suggests that they share a similar binding epitope to IgE), and could inhibit IgE synthesis in 883 

human peripheral B cells (Fellmann, Buschor et al. 2015). 884 

 885 

5.3. Fcε-Fcγ  fusion proteins 886 

 887 

The human Fcγ-Fcε bifunctional fusion protein consists of the Fc region of human 888 

IgG1 (hinge-Cγ2-3) linked to the Fc portion of human IgE (Cε2-4) by a 15 amino acid linker 889 

(Gly4Ser)3 (Zhu, Kepley et al. 2002). As first described by Zhu et al., this fusion protein 890 

(called GE2) was able to compete with IgE for the binding to FcεRI, and could thereby be 891 

used to ‘desensitize’ mast cells and basophils (Figure 5). It could also bind to IgG FcγRs 892 

through its Cγ2-3 domains, and it was therefore proposed that GE2 could block IgE-mediated 893 

mast cell and basophil activation through co-engagement of FcεRI with the inhibitory 894 

receptor FcγRIIB (Zhu, Kepley et al. 2002). Indeed, the authors demonstrated that GE2 was 895 

able to inhibit histamine release in primary human blood basophils sensitized with IgE, and 896 
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could also block IgE-mediated passive cutaneous anaphylaxis (PCA) in transgenic mice 897 

expressing human FcεRI (Zhu, Kepley et al. 2002). In addition to its effect on mast cells and 898 

basophils, it was proposed that the fusion protein could also inhibit allergic inflammation 899 

through effects on FcεRI-expressing Langerhans cells (Kepley, Zhang et al. 2003), and inhibit 900 

IgE class switch recombination in B cells by co-aggregating CD23 and FcγRII (Yamada, Zhu 901 

et al. 2003). Several attempts were subsequently made to improve the efficiency of the fusion 902 

protein, such as removal of the (Gly4Ser)3 linker, or mutations in the Cγ portion to improve 903 

binding to FcγRIIB and/or decrease binding to FcγRIII (Allen, Kepley et al. 2007). However, 904 

most of these modifications altered the effectiveness of the fusion protein to inhibit FcεRI-905 

mediated functions (Allen, Kepley et al. 2007). Nevertheless, and as described above (part 906 

5.2), while basophils undoubtedly express FcγRIIB, it is still unclear whether human mast 907 

cells express FcγRIIB in vivo (Zhao, Kepley et al. 2006).  908 

 909 

The effects of GE2 were also tested in non-human primates. Rhesus monkeys have 910 

been reported to exhibit skin test reactivity and serum IgE directed against dust mites 911 

(Schelegle, Gershwin et al. 2001, Zhang, Kepley et al. 2004). Taking advantage of this, Zhang 912 

and collaborators showed that GE2 was able to inhibit dust mite allergen-induced skin 913 

reactivity in rhesus monkeys in a dose-dependent manner (Zhang, Kepley et al. 2004). In a 914 

subsequent study, GE2 demonstrated efficacy in a model of house dust mite-induced allergic 915 

asthma in cynomolgus monkeys	   (Van Scott, Mertsching et al. 2008). The effects of GE2 916 

lasted for 4 weeks and were associated with reduced numbers of circulating basophils and 917 

reduced FcεRI expression on basophils. However, repeated injections of GE2 induced the 918 

production of serum antibodies against the fusion protein, and increased occurrence of serious 919 

adverse events, including anaphylaxis (Van Scott, Mertsching et al. 2008). 920 

 921 
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6. Concluding remarks 922 

 923 

Discovered some 50 years ago, IgE continues to be the focus of extensive academic 924 

and industrial research. The clinical benefits of the anti-IgE antibody omalizumab best 925 

exemplify the key role of IgE in allergic diseases and chronic spontaneous urticaria. Besides 926 

omalizumab, several new anti-IgE therapies are now at various stages of clinical 927 

development, with some promising early results. Recent insights from crystallographic studies 928 

have also shed light on the mechanisms by which IgE antibodies recognize their main 929 

receptors FcεRI and CD23; findings that should help in the design of additional therapeutic 930 

approaches aimed at blocking these interactions.  931 

 932 

While IgE can undeniably trigger allergic reactions, it is also now clear that not all 933 

allergies are IgE-mediated, and evidence from mouse models suggests that IgE may have 934 

protective functions in host defense against parasites and venoms. An ongoing effort is 935 

therefore necessary to clearly identify the full spectrum of IgE-mediated diseases, but also to 936 

address the potential limitations of targeted anti-IgE therapies.  937 

 938 
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Figure legends 1671 

 1672 

Figure 1. IgE structure. IgE antibodies consist of two identical heavy chains (composed of a 1673 

variable VH domain and four constant Cε domains) and two identical light chains (composed 1674 

of a variable VL domain and a constant CL domain). ‘Fab’: region responsible for antigen 1675 

recognition and binding. ‘Fc’: portion responsible for IgE effector functions. The positions of 1676 

interdomain disulfide bridges, N-linked glycosylation sites (in human IgE), FcεRI- and 1677 

CD23-binding sites are indicated. 1678 

 1679 

Figure 2. Structure of FcεRI and its interaction with IgE. a. FcεRI is expressed on mast 1680 

cells and basophils as a tetramer formed with one α subunit, one β subunit and a dimer of 1681 

disulfide-linked γ subunits. IgE binds the receptor via surface loops in Cε3, with contributions 1682 

from the Cε2-Cε3 linker region. b. The two Cε3 domains of IgE bind distinct sites on 1683 

FcεRIα, one site found in the D2 domain (site 1), and a second site formed by a cluster of 1684 

four surface-exposed tryptophan residues in the D1-D2 interface (site 2) (Protein Data Bank 1685 

ID: 2Y7Q). 1686 

 1687 

Figure 3. Conformational changes in IgE Fc portion upon binding to FcεRI or CD23. 1688 

The Cε3 domains of free IgE are found in a ‘closed’ conformation in which the FcεRIα 1689 

binding site in Cε3 is masked (middle; Protein Data Bank [PDB] ID: 2WQR). Cε3 adopts an 1690 

‘opened’ conformation upon binding to FcεRI, which is incompatible with CD23 binding 1691 

(left; PDB ID: 1F6A-2). By contrast, Cε3 adopts a ‘closed’ conformation upon binding to 1692 

CD23, which is incompatible with FcεRI binding (right; PDB ID: 4GKO). 1693 

 1694 
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Figure 4. Structure of CD23 and its interaction with IgE. a. CD23 self-associates as a 1695 

trimer, and is composed of an IgE-binding ‘head domain’ (which belongs to the C-type lectin 1696 

superfamily) linked to the membrane by an extracellular coiled-coil stalk region, and a small 1697 

cytoplasmic N-terminal domain. b. The IgE binding site of CD23 is located in the C-terminal 1698 

head domain (in green), with some additional contributions from the stalk region (not shown). 1699 

Two CD23 molecules bind to each IgE heavy chain, primarily to the Cε3 domains but with a 1700 

contribution from Cε4 (Protein Data Bank ID: 4GKO). 1701 

 1702 

Figure 5. Key role of IgE in allergic reactions. Stimulation with the TH2 cytokines IL-4 and 1703 

IL-13 induces class-switching of B cells into IgE-producing cells. IgE binds to its high-1704 

affinity receptor FcεRI on the surface of tissue mast cells and blood basophils. Upon exposure 1705 

to an allergen, in allergic patients, allergen recognition by allergen-specific IgE on the surface 1706 

of mast cells and basophils induces crosslinking of FcεRI, leading to degranulation and the 1707 

immediate release of histamine, proteases and other preformed mediators, as well as de novo 1708 

synthesis of lipid mediators (prostaglandins, leukotrienes,…), cytokines and chemokines. 1709 

These mediators can act locally or systemically, leading to the clinical features of immediate 1710 

hypersensitivity, such as bronchoconstriction, urticaria, diarrhea (when acting locally in the 1711 

airways, the skin and the gut, respectively) and vasodilatation. These mediators are also 1712 

responsible for late-phase allergic responses, entailing the recruitment of leukocytes, mainly 1713 

eosinophils and neutrophils. Several drugs have been developed to counteract the effects of 1714 

IgE. These drugs either target IgE production, block free IgE or compete with IgE for binding 1715 

to FcεRI. The only FDA-approved anti-IgE drug is Omalizumab, a humanized anti-IgE mAb 1716 

that blocks free IgE, and which is approved for the treatment of moderate to severe persistent 1717 

allergic asthma, and chronic spontaneous urticaria (CSU). Ag: antigen. 1718 
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