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Pico- and nano-phytoplankton (respectively, 0.2–2 and 2–20 µm in cell size) play
a key role in many marine ecosystems. In this size range, Bolidophyceae is a
group of eukaryotes that contains species with cells surrounded by 5 or 8 silica
plates (Parmales) as well as naked flagellated species (formerly Bolidomonadales).
Bolidophyceae share a common ancestor with diatoms, one of the most successful
groups of phytoplankton. This review summarizes the current information on taxonomy,
phylogeny, ecology, and physiology obtained by recent studies using a range of
approaches including metabarcoding. Despite their rather small contribution to the
phytoplankton communities (on average less than 0.1%), Bolidophyceae are very
widespread throughout marine systems from the tropics to the pole. This review
concludes by discussing similarities and differences between Bolidophyceae and
diatoms.

Keywords: bolidophyceae, parmales, diatoms, genetic diversity, mitosis, geographical distribution, seasonal
dynamics and silicification

INTRODUCTION

Following the appearance of oxygenic photosynthesis in the ancestors of cyanobacteria,
this complex process was distributed across all eukaryotic lineages via permanent primary,
secondary, and tertiary endosymbioses (Not et al., 2012). Ocean photosynthesis is dominated by
phytoplankton, a functional group of single cell organisms including prokaryotes and eukaryotes.
In the late 70’s, early 80’s the work of Waterbury et al. (1979) and Johnson and Sieburth
(1982) revealed the importance of very small cells, some below one micron in size, for primary
productivity, which importance was formalized with the concept of the microbial loop by Azam
et al. (1983). However, it was only in the mid 90′s, when researchers began to investigate
the eukaryotic compartment of picophytoplankton, and realized that while cyanobacteria are
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very little diversified, at the least at the genus level with a couple
of taxa (Prochlorococcus, Synechococcus) dominating, eukaryotes
turned out to be very diverse with picoplankton taxa distributed
widely across several branches of eukaryotic tree of life (Vaulot
et al., 2008).

Microphytoplankton such as diatoms, dinoflagellates or
coccolithophorids that produce short lived blooms such as
Emiliania huxleyi, have been extensively investigated, in
contrast to other members of the picoplanktonic community.
A large number of photosynthetic picoeukaryotes species (and
clades) described to date belong to Stramenopiles (also called
Heterokonts), which are characterized by flagellated cells,
produced at least at some point of their life cycles, with two
unequal flagella (heterokont), one being ornamented with hair-
like structures called mastigonemes. Their plastids are thought
to have been acquired through secondary endosymbiosis and
typically contain chlorophylls a and c. Stramenopiles besides
include diatoms, a very successful lineage which cells are encased
in ornamented silica structures, Dictyochophyceae, also called
silicoflagellates, and Pelagophyceae, well known because of
the toxic algal blooms of the brown tide species Aureococcus
anophagefferens and Aureoumbra lagunensis (Gobler and Sunda,
2012) or Pelagomonas calceolata, frequently isolated from
sea water. Although often seen as less diverse, some of these
groups play important ecological roles in marine ecosystems are
fundamental for our understanding of the evolution of algae.

Bolidophyceae, a class created by Guillou et al. (1999a) is
the Stramenopiles group phylogenetically nearest to the diatoms.
They are often detected in molecular surveys, although in low
abundance. We now know that they can occur as two distinct
forms, either silicified pico-sized (2–5 µm) or non-silicified
flagellated (1–1.7 µm) cells (Guillou et al., 1999a; Ichinomiya
et al., 2011, 2016) and cultures from both forms have been
isolated from the marine environment. This review summarizes
the discovery of Bolidophyceae and current information of
phylogeny, ecology, and physiology obtained by recent studies
using a range of approaches. We discuss similarities and
differences between Bolidophyceae and diatoms to explore the
evolutionary link between these silicified algal groups.

DISCOVERY AND TAXONOMY

Well before the creation of the class Bolidophyceae, their silicified
forms (Figure 1) were first reported from scanning electron
microscopy (SEM) images in oceanic samples from the North
Pacific (Iwai and Nishida, 1976). Initially, they were thought
to be resting cysts of silicified loricate choanoflagellates (Silver
et al., 1980). However, the observation of red auto fluorescence
indicating the presence of chlorophyll and the existence of a
chloroplast in sectioned cells observed by transmission electron
microscopy revealed that they were active phytoplankton cells

FIGURE 1 | Silicified and flagellated species of Bolidophyceae. (a) Pentalamina corona, (b) Tetraparma pelagica, (c) Triparma laevis f. inornata, and (d) Triparma
eleuthera. Scale bars = 1 µm. Diagrams of silica plates in the three genera of silicified species (Parmales); D, dorsal plate; G, girdle plate; S, shield plate; and V,
ventral plate. Redrawn from Booth and Marchant (1987) with permission.
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(Marchant and McEldowney, 1986). Marchant and McEldowney
(1986) could not establish their taxonomic position, although
they suggested some morphological similarities with other algae
groups such as Bacillariophyceae and Chrysophyceae.

Booth and Marchant (1987) tentatively established
Parmales (Latin: small round shields) as a new order within
Chrysophyceae. The taxonomy of Parmales was based on the
morphological features of silica plates that can only be observed
with SEM. Two families and three genera were established:
Pentalaminaceae with one genus Pentalamina (Latin: five
plates) and Triparmaceae with two genera, Tetraparma (Latin:
four small round shields) and Triparma (Latin: three small
round shields) (Figures 1a–c). Pentalamina has 2 circular
shield plates of equal size, a larger ventral plate and 2 triradiate
girdle plates. Tetraparma has 3 shield plates of equal size, a
smaller ventral plate, a triradiate dorsal plate and 3 girdle plates.
Triparma has 3 shield plates of equal size, a larger ventral
plate, a triradiate dorsal plate and 3 girdle plates (Booth and
Marchant, 1987, 1988; Kosman et al., 1993; Bravo-Sierra and
Hernández-Becerril, 2003; Konno and Jordan, 2007; Konno
et al., 2007).

The flagellated forms of Bolidophyceae (Figure 1d) were
originally isolated from the Pacific Ocean and Mediterranean Sea,
and described as two flagellated species, Bolidomonas pacifica
and B. mediterranea, differing in the angle of the insertion of
the two flagellum, swimming patterns as well as in 18S rRNA
gene signatures (Guillou et al., 1999a). The name “Bolidomonas”
refers to the rapid swimming behavior of the cells remembering
a racing car. A variety, B. pacifica var. eleuthera, was later
proposed based on both cultures and environmental sequences
(Guillou et al., 1999b). Analyses of photosynthetic pigments as
well as nuclear 18S rRNA and plastid RubisCO large subunit
(rbcL) sequences (Guillou et al., 1999a; Daugbjerg and Guillou,
2001) demonstrated the sister relationship between Bolidomonas
and diatoms, although Bolidomonas are flagellates and lack the
siliceous frustule characteristic of diatoms. Bolidophyceae were
thus proposed to be an intermediate group between diatoms and
all other Stramenopiles (Guillou et al., 1999a).

For more than 24 years, Parmales escaped isolation. These
silicified cells are small and difficult to distinguish them from
other small phytoplankton in field samples under the light
microscope. To overcome this problem, Ichinomiya et al.
(2011) used the fluorescence dye PDMPO (2-(4-pyridyl)-5-
((4-(2-dimethylaminoethylaminocarbamoyl) methoxy)phenyl)
oxazole) (Shimizu et al., 2001), which is co-deposited with
silicon into the solid silica matrix of the newly produced cell
walls and fluoresces under UV excitation whenever silicic acid
is polymerized forming biogenic silica. Using PDMPO staining
and a serial dilution technique, the first Parmales strain was
established from Oyashio region of the western North Pacific
(Ichinomiya et al., 2011).

Scanning electron microscopy established that this strain
belonged to the species Triparma laevis and transmission electron
microscope observations showed the typical ultrastructure of
photosynthetic Stramenopiles, with two endoplasmic reticulate
membranes surrounding the chloroplast, a girdle and two to
three thylakoid lamellae as well as a mitochondrion with tubular

cristae. Phylogenetic analyses based on 18S ribosomal rRNA
sequences from the new strain demonstrated that T. laevis was
closely related to Bolidophyceae (Ichinomiya et al., 2011), rather
than part of Chrysophyceae as hypothesized initially (Booth
and Marchant, 1987). Phylogenetic analyses using plastidial and
mitochondrial encoded genes from T. laevis also confirmed
its sistership with Bolidophyceae and diatoms (Tajima et al.,
2016).

Recent phylogenetic analyses using nuclear, plastidial, and
mitochondrial genes from several novel strains, including a
flagellate form very closely related to the silicified strains, led
to a taxonomic revision (Table 1) in which the order Parmales
was included within the class Bolidophyceae and Bolidomonas
species were transferred to the genus Triparma (Ichinomiya et al.,
2016).

GENETIC DIVERSITY

Clade Diversity
The analysis of full-length nuclear 18S rRNA gene sequences
from public databases revealed the existence of two
environmental clades (Env. clade I and II) in addition to
the group corresponding to the genus Triparma (Ichinomiya
et al., 2016). These clades are only formed by environmental
sequences and no sequences from cultures or isolates
are available. Within the Triparma group, sub-clades
formed by sequences from strains and the environment
corresponded to the species Triparma eleuthera, Triparma
pacifica, and Triparma mediterranea. The “T. laevis” sub-
clade, including the species T. laevis f. inornata, T. laevis f.
longispina, Triparma strigata, Triparma aff. verrucosa and the
flagellated strain Triparma sp. RCC1657. Other molecular
markers (plastid 16S rRNA and rbcL, nuclear ITS rRNA and
mitochondrial nad1) revealed the presence of two distinct
sub-clades within the “T. laevis” sub-clade, hereafter called
for convenience Triparma clade I with the two forms of
T. laevis (f. inornata, and longispina) and Triparma clade II
with T. strigata, T. aff. verrucosa and the flagellated strain
RCC1657.

In order to review the current state of the diversity of
Bolidophyceae, we analyzed existing GenBank sequences
as well as metabarcodes obtained from a range of recent
studies (Table 2) focusing on the V4 region of the 18S rRNA
gene (see Supplementary Material for Methodology). The
phylogenetic analysis of the newly obtained V4 sequences
(Figure 2) recovered the two major environmental clades
previously described (Env. clade I and II, Ichinomiya
et al., 2016), but also revealed the existence of a third
environmental clade (called Env. clade III) within which
two sub-clades IIIA and IIIB can be clearly separated.
Each environmental clade contained sequences from clone
libraries (GenBank) as well as identical or nearly identical
metabarcode sequences from different surveys suggesting
that these environmental clades are not artefactual. These
environmental clades may, for some of them, correspond
to species of Parmales (e.g., from genera Tetraparma
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TABLE 1 | Current taxonomy of Bolidophyceae.

class, order, family, genus, species, subspecies, forma (= synonym, basyonym) Reference

Class Bolidophyceae Guillou et Chrétiennot-Dinet emend. Ichinomiya et Lopes dos Santos Guillou et al., 1999a ; Ichinomiya et al., 2016

Order Parmales Booth et Marchant emend. Konno et Jordan emend. Ichinomiya et Lopes dos
Santos

Booth and Marchant, 1987; Konno and Jordan, 2007;
Ichinomiya et al., 2016

Family Pentalaminaceae Marchant emend. Konno et Jordan Booth and Marchant, 1987; Konno and Jordan, 2007

Genus Pentalamina Marchant Booth and Marchant, 1987

Pentalamina corona Marchant Booth and Marchant, 1987

Family Triparmaceae Booth et Marchant emend. Konno et Jordan emend. Ichinomiya et Lopes dos
Santos (= “Octolaminaceae” Booth et Marchant)

Booth and Marchant, 1987; Booth and Marchant, 1988;
Konno and Jordan, 2007; Ichinomiya et al., 2016

Genus Tetraparma Booth emend. Konno et Jordan Booth and Marchant, 1987; Konno and Jordan, 2007

Tetraparma catinifera Konno et al. Konno et al., 2007

Tetraparma gracilis Konno et al. Konno et al., 2007

Tetraparma insecta Bravo-Sierra et Hernández-Becerril emend. Fujita et Jordan Bravo-Sierra and Hernández-Becerril, 2003; Fujita and
Jordan, 2017

Tetraparma pelagica Booth et Marchant Booth and Marchant, 1987

Tetraparma silverae Fujita et Jordan Fujita and Jordan, 2017

Tetraparma trullifera Fujita et Jordan Fujita and Jordan, 2017

Genus Triparma Booth et Marchant emend. Konno et Jordan emend. Ichinomiya et Lopes dos
Santos (= Bolidomonas Guillou et Chrétiennot-Dinet)

Booth and Marchant, 1987; Guillou et al., 1999a ; Konno
and Jordan, 2007; Ichinomiya et al., 2016

Triparma columacea Booth Booth and Marchant, 1987

Triparma columacea f. convexa Konno et al. Konno et al., 2007

Triparma columacea f. fimbriata Konno et al. Konno et al., 2007

Triparma columacea f. longiseta Fujita et Jordan Fujita and Jordan, 2017

Triparma columacea subsp. alata Marchant

Triparma eleuthera Ichinomiya et Lopes dos Santos ( = “Bolidomonas pacifica var. eleuthera”) Ichinomiya et al., 2016

Triparma laevis Booth Booth and Marchant, 1987

Triparma laevis f. fusiformins Fujita et Jordan Fujita and Jordan, 2017

Triparma. laevis f. inornata Konno et al. Konno et al., 2007

Triparma laevis f. longispina Konno et al. Konno et al., 2007

Triparma laevis f. mexicana (Kosman) Bravo-Sierra et Hernández-Becerril
(=Triparma laevis subsp. mexicana Kosman)

Kosman et al., 1993; Bravo-Sierra and Hernández-Becerril,
2003

Triparma laevis subsp. pinnatilobata Marchant Booth and Marchant, 1987

Triparma laevis subsp. ramispina Marchant Booth and Marchant, 1987

Triparma mediterranea (Guillou et Chrétiennot-Dinet) Ichinomiya et Lopes dos Santos
(= Bolidomonas mediterranea Guillou et Chrétiennot-Dinet)

Guillou et al., 1999a ; Ichinomiya et al., 2016

Triparma pacifica (Guillou et Chrétiennot-Dinet) Ichinomiya et Lopes dos Santos
(= Bolidomonas pacifica Guillou et Chrétiennot-Dinet)

Guillou et al., 1999a ; Ichinomiya et al., 2016

Triparma retinervis Booth Booth and Marchant, 1987

Triparma retinervis f. tortispina Fujita et Jordan Fujita and Jordan, 2017

Triparma retinervis subsp. crenata Booth Booth and Marchant, 1987

Triparma strigata Booth Booth and Marchant, 1987

Triparma verrucosa Booth Booth and Marchant, 1987

Adapted from Ichinomiya and Kuwata (2017) with permission.

or Pentalamina) that have not yet been isolated in
cultures.

Diversity Within the Genus Triparma
We explored the level of inter- and intra-clade diversity within
the genus Triparma by analyzing the folding pattern of the ITS2
(see Supplementary Material for Methodology) from 14 strains
previously described in Ichinomiya et al. (2016). The general ITS2
secondary structure of Bolidophyceae proposed contains the
four-helices domains known in many eukaryotic taxa in addition

to helix B9 (Figure 3). We located in Helices II and III the
universal hallmarks proposed by Mai and Coleman (1997) and
Müller et al. (2007): the pyrimidine–pyrimidine (Y–Y) mismatch
in helix II and YRRY (pyrimidine – purine – pyrimidine) motif
on the 5′ side of Helix III, respectively, at alignment positions
95 and 148 and between nucleotides 205 and 208 (Figures 3,
4). In all strains analyzed, the Y–Y mismatch was represented
by the pair U x C, with the exception of T. pacifica strains (U
x U), and the YRRY motif of helix III by the sequence UGGU
(Figure 3).
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TABLE 2 | List of metabarcoding studies using the V4 region of the 18S rRNA genes that have been used for the phylogenetic (Figure 2) and the biogeography analyses
(Figures 6, 7).

Data set Region Samples # Bioproject Sequencer Clustering Reference

OSD – LGC – 2014 Ocean 157 PRJEB8682 Illumina 0.97 Kopf et al., 2015

MALINA – Monier 2014 Arctic Ocean 24 PRJNA202104 454 0.98 Monier et al., 2013, 2014

ACME – Comeau – 2011 Arctic Ocean 11 SRA029114 454 0.98 Comeau et al., 2011

Nansen Basin – Metfies – 2016 Arctic Ocean 17 PRJEB11449 454 0.97 Metfies et al., 2016

Southern Ocean – Wolf – 2014 Southern Ocean 6 PRJNA176875 454 0.97 Wolf et al., 2014

Fieldes Bay – Luo – 2016 Southern Ocean 10 PRJNA254097 Illumina 0.97 Luo et al., 2015

Fram Strait – Kilias – 2013 Arctic Ocean 5 454 0.97 Kilias et al., 2013

See Supplementary Material for details.

FIGURE 2 | ML phylogenetic tree based on the V4 region of the 18S rRNA gene based both on GenBank sequences available from the PR2 database (Guillou et al.,
2013) and on metabarcodes OTUs obtained from the studies listed in Table 2 (see Methodology in Supplementary Material). The tree was constructed with
phyML and dots correspond to nodes with SH-like branch support >0.90. GenBank sequences from environmental samples are colored in blue and those from
cultures, in red.
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FIGURE 3 | General structure model of the ITS2 molecule of the Triparma clades. The four major helices are labeled as Helix I – Helix IV and the interaction region of
5.8S and 28S rRNA as B9. Numbers refer to the alignment positions and those between brackets to the compared positions in each helix. The nucleotides that are
100% conserved in the helices spacers, hallmarks positions in helices II and III and first two base pairs of the helices are shown. The gray dots represent segments
that display length and sequence variation (see Methodology in Supplementary Material).

The spacers between helices B9 and I, I and II, II and III,
and IV and B9 were conserved in length and sequence among
the clades (Figure 3), as well as the first two base pairs of
helices I, II, and III. In contrast, the spacer between helices
III and IV showed greater variation between Bolidophyceae
clades but it was conserved at the intra-clade level (Figure 3).
Helices B9 (a region of the 5.8S and 28S rRNA interaction) and
III showed good intra and inter-clade conservation (Figure 3
and Supplementary Figure 1). The ITS2 sequence from T. aff.
verrucosa is incomplete and the 3′side arm of helix B9 could not
be determined (Supplementary Figure 1).

The identification of CBCs in Bolidophyceae ITS2 secondary
structure was based on the phenetic approach which relies
on a base pair sequence comparison of all CBCs between
two sequences without direct reference to their evolutionary
origin (Müller et al., 2007; Coleman, 2009). The phylogenetic
approach method which considers the status of a given base
pair in the ancestor of two sister taxon could not be applied
for Bolidophyceae given the conflicting branching pattern among
phylogenies (for more details see Ichinomiya et al., 2016).

Putative CBCs, hCBCs, and non-CBCs type changes were
identified in the conserved regions of the helices B9, I, II,
and III within each clade and between clades (Figure 4 and
Supplementary Figure 1). Helix IV (Figure 4) was not included
in the inter-clade analysis given its known variable nature
(Coleman, 2007). Several CBCs and hCBCs were identified at
inter-clade level suggesting that each clade within Triparma

genus (T. pacifica, T. mediterranea, T. eleuthera, Triparma I and
II, sensu Ichinomiya et al., 2016) is composed by at least one
species (Figure 4).

At the intra -clade level, no CBC, nor hCBCs were identified
between the two forms of T. laevis, f. inornata and f. longispina
(Triparma clade I), that differ by the plate morphology,
suggesting that these two forms may belong to the same species,
although the absence of CBCs is not an absolute indicator that
two organisms belong to the same species (Müller et al., 2007;
Caisová et al., 2011, 2013). However, at least one CBC is a good
indicator (93.1% of confidence for plants and fungi) that in most
of the cases, two organisms represent distinct species (Müller
et al., 2007). For Triparma clade II (T. aff. verrucosa, T. strigata,
and Triparma sp. RCC1657), no CBC or hCBCs were identified
between the morpho species T. aff. verrucosa and T. strigata.
The ITS operon sequences from these two strains, including
the two internal transcribed spacers and 5.8S rRNA, are nearly
identical (99.1%) differing only by six nucleotides. Although three
of these substitutions are within the ITS2, none correspond to
a nucleotide pair in the ITS2 secondary structure (Figure 4).
However, between Triparma sp. RCC1657 on the one side and
T. aff. verrucosa plus T. strigata on the other side, 1 hCBC
(helix B9, position 6, Supplementary Figure 1) and 1 CBC (helix
IV, box, Supplementary Figure 1) were identified, suggesting
that Triparma clade II is composed by at least two species, one
corresponding to Triparma sp. RCC1657 and the other by T. aff.
verrucosa and T. strigata.
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FIGURE 4 | Simplified secondary structural diagram of helices I, II, and III among the different Triparma clades. The conserved base pair among the different clades
are numbered. Double-sided CBCs (compensatory base changes) and hemi-CBCs are highlighted by bold red nucleotides. Non-CBCs (N – N↔ N × N) are
represented by bold blue nucleotides. The pyrimidine-pyrimidine (Y–Y) mismatch in helix II and the YRRY (pyrimidine – purine – pyrimidine) motif on the 5′ side arm of
the helix III are showed by bold nucleotides and by ∗ positions. Single nucleotide substitution between T. aff. verrucosa and T. strigata is showed by gray nucleotides
(see Methodology in Supplementary Material).

ECOLOGY

Oceanic Distribution
We explored the distribution of Bolidophyceae in the ocean using
data obtained by SEM observation, environmental sequencing
and metabarcoding. By compiling available records of observed
silicified morphological species of Bolidophyceae in natural
waters (Supplementary Table 1), we mapped the geographical
and specific distribution pattern of each morphological species
(Figure 5). Tetraparma pelagica, and the Triparma species,
T. laevis, T. columnacea, T. retinervis, and T. strigata are
widely distributed from polar to subtropical regions. In contrast,
Pentalamina corona, Tetraparma gracilis, Tetraparma catinifera,
and Triparma verrucosa are restricted to polar or subpolar
regions. T. gracilis was observed in both, Arctic and Antarctic
regions while P. corona seems endemic to the Antarctic and,
T. verrucosa and T. catinifera to the subarctic region. Tetraparma
insecta and the recently described species Tetraparma silverae and
Tetraparma trullifera seem to be restricted so-far to subtropical
regions.

Using both available environmental GenBank sequences
and 18S rRNA V9 metabarcodes acquired during the Tara
Oceans expedition, Ichinomiya et al. (2016) established the

oceanic distribution of the major Triparma species and of
environmental clades. T. mediterranea metabarcodes dominated
in the Mediterranean Sea while T. pacifica and T. eleuthera were
co-dominant in the tropical and sub-tropical oceans. The T. laevis
clade was clearly associated with cold Antarctic waters but was
also found near the Costa Rica dome. Bolidophyceae sequences
were most abundant in the picoplanktonic fraction (0.8–5 µm)
of the Tara Oceans samples and represented at most 4% of the
photosynthetic reads and less than 1% on average (Ichinomiya
et al., 2016).

In order to obtain a more complete image of the
Bolidophyceae distribution, we used the large data set of
18S rRNA V4 metabarcodes described above. This data set
includes a range of studies (Table 2) including OSD (Ocean
Sampling Day) that sampled an extensive set of coastal stations
(Kopf et al., 2015) and several from Arctic and Antarctic waters
that were not covered by the Tara expedition.

Among these metabarcodes, the Triparma clade was slightly
dominating in terms of total reads followed by the three
environmental clades III, I, and II, respectively, in this order
(Figure 6A). Within Triparma, T. pacifica was most abundant
followed by T. mediterranea. One environmental subclade (IIIA)
was also particularly abundant. The relative contribution of
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FIGURE 5 | Distribution of silicified Bolidophyceae species based on literature records of SEM observations (see Supplementary Table 1).

Bolidophyceae to total metabarcodes at each station varied widely
with an average of 0.23% (Figure 6B). It was highest, up to
12%, in both Arctic and Antarctic regions as well as around the
European coast. In contrast Bolidophyceae were absent at several
stations along the East coast of North America and in the Eastern
Mediterranean Sea (Figure 6C).

The distribution of individual Triparma species and
environmental clades confirmed some of the trends observed
in the Tara Oceans data (Ichinomiya et al., 2016) but also
revealed new features (Figure 7). Among the Triparma species,
T. eleuthera and T. pacifica were the most ubiquitous and
often co-occurred at the same stations, suggesting that their
ecological niches are very close. They did not seem to be
present though in really polar waters such as in the Beaufort
Sea. In contrast, it was confirmed that T. mediterranea was
indeed mostly restricted to the Mediterranean Sea while the
T. laevis clade was only found at high latitudes both in the

Arctic and Antarctic. Some environmental clades had clear
biogeographic distributions such as clade IIIA found mostly in
temperate latitudes and IIIB only in the Arctic and Antarctic
regions. The latter clade seemed particularly prevalent in
the high Arctic Ocean. Clade I was also mostly observed
at high latitudes, although not restricted to polar waters,
in contrast to clade II which was more widespread. These
distribution patterns may reflect the genetic diversity within
these clades. Clades IIIA and B have very low genetic diversity
(Figure 2) in contrast clades I or II. The former may therefore
correspond to a single species with a narrow niche and the
latter to several species or even genera, explaining their wide
distribution.

Seasonal Cycle
Ichinomiya and Kuwata (2015) investigated the seasonal
influence in the abundance and vertical distribution of the
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FIGURE 6 | (A) Distribution of read abundance among the different
environmental Bolidophyceae clades and Triparma species in the
metabarcoding studies based on the 18S rRNA V4 region listed in Table 2.
(B) Overall statistics of the proportion of Bolidophyceae reads related to the
total number of reads from studies listed in Table 2. Only surface samples
were considered. (C) Oceanic distribution of Bolidophyceae. Circle size is
proportional to the number of Bolidophyceae reads related to the total number
of reads at a given station.

silicified forms of Bolidophyceae in the western North Pacific
using SEM. The area investigated is surrounded by the cold
Oyashio current with water temperature below 5–8◦C at
100 m (Shimizu et al., 2009). The Bolidophyceae community
was mainly composed of T. laevis (64 ± 22%) with only
small regional and seasonal differences in contrast to diatoms
that display clear seasonality patterns (Takahashi et al., 2008;
Suzuki et al., 2011). The vertical distribution of the silicified
Bolidophyceae community changed seasonally according to
the hydrographic condition. Silicified Bolidophyceae had a
wide vertical distribution between 0 and 100 m with high
abundance of 10–102 cells mL−1 in March and May at
stations where the water column was well mixed or weakly
stratified (Figure 8). In contrast, from May to October at
stations where the water was stratified Bolidophyceae were
absent from the surface layer, but mainly distributed under
the pycnocline from 20 to 50 m with lower abundance of
<0.1–10 cells mL−1. Komuro et al. (2005) also reported
similar seasonal variations in depth distributions of the silicified
form at Station KNOT (44◦N, 155◦E) in the western North

Pacific. They extended from 0 to 100 m in January and
May, but were restricted to the subsurface layer from 30 to
100 m in August. Silicified Bolidophyceae have optimal growth
temperatures below 10◦C, but do not grow above 15◦C (see
section “Cell Physiology”). These data suggest that silicified
Bolidophyceae actively grow during the cold mixing season
and maintain their population under the pycnocline during
the warm stratified season (Figure 9). Flagellated forms of
Bolidophyceae may also be present in the surface layer during
stratification since they have been reported in the surface
layer during the summer season in the English Channel (Not
et al., 2002) and northern South China Sea (Wu et al., 2017)
using 18S rRNA-targeted oligonucleotide probes specific of
Bolidophyceae detected by in situ hybridization and tyramide
signal amplification (FISH-TSA). 18S rDNA sequences of
Bolidophyceae have also been detected using high-throughput
sequencing (Kataoka et al., 2017) at 10 m in summer and
autumn in the Oyashio region when silicified forms were
absent.

Role in Food Webs
It is not clear how Bolidophyceae contribute to the microbial
food web. Materials resembling silicified Bolidophyceae have
been reported in fecal pellets of copepods (Booth et al., 1980;
Urban et al., 1993) and Antarctic krill (Marchant and Nash,
1986), indicating that they can be grazed by larger predators
(Kosman et al., 1993). Bolidophyceae main grazers are expected
to be small protozoans, such as choanoflagellates (Taniguchi et al.,
1995) although there is no evidence of their direct ingestion by
protists.

CELL PHYSIOLOGY

Temperature
Ichinomiya et al. (2013) and Ichinomiya and Kuwata (2015)
conducted growth experiments at various temperature ranging
from 0 to 15◦C, using three silicified strains: T. laevis f.
inornata, T. laevis f. longispina, and T. strigata. These silicified
Bolidophyceae species were able to grow at 0 to 10◦C (T. laevis
f. inornata and T. strigata) and 5 to 10◦C (T. laevis f. longispina)
but not over 15◦C (Figure 10). The optimal growth temperatures
were 5◦C for T. laevis f. inornata and 10◦C for T. laevis f.
longispina and T. strigata, with growth rates of 0.35 d−1, 0.50 d−1,
and 0.69 d−1, respectively. In contrast, strains of naked flagellated
forms have higher growth rates and grow at higher temperatures
(Figure 10). T. eleuthera showed positive growth at 16–24◦C with
the maximum growth rate of 1.7 d−1 at 22◦C (Stawiarski et al.,
2016) while T. pacifica and Triparma sp. RCC201 had growth
rates of 0.91 d−1 and 0.51 d−1 at 20◦C, respectively (Jacquet et al.,
2001; Thomas and Campbell, 2013).

Silica
The growth of diatoms is limited by dissolved silicate (Martin-
Jézéquel et al., 2000; Sarthou et al., 2005). Diatoms cell cycle
is controlled by silica and silica limitation arrests cells at the
G1–S boundary (Darley and Volcani, 1969; Okita and Volcani,
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FIGURE 7 | Percentage relative to the total number of Bolidophyceae reads of the different environmental Bolidophyceae clades and Triparma species in the
metabarcoding studies based on the 18S rRNA V4 region listed in Table 2. Only surface samples were considered.
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FIGURE 8 | Seasonal variation in vertical distributions of temperature and abundance of the Parmales community along the A-line in March, May, July, and October
2009. Station numbers shaded in yellow indicate the Oyashio region. Redrawn from Ichinomiya and Kuwata (2015) with permission.

FIGURE 9 | A proposed life history of T. laevis (see text for details).

1978; Vaulot et al., 1987) and during the G2–M transition
due to silica requirement for DNA replication and cell wall
formation, respectively (Vaulot et al., 1987; Brzezinski et al.,
1990).

In contrast, Bolidophyceae despite possessing silica plates
can grow in the absence of silica (Yamada et al., 2014).
T. laevis f. inornata cells growing under sufficient silicate
(100 µM) are surrounded by eight plates, rounded shield and
ventral plates, as well as non-rounded dorsal and girdle plates.
However, plate formation becomes incomplete and the fraction
of cells lacking dorsal and girdle plates increases at low silicate
concentration (10 µM). Cells finally loose almost all plates at
silicate concentrations lower than 1 µM (Yamada et al., 2014).
Other silicified Bolidophyceae strains, T. laevis f. longispina
and T. strigata, can also grow under silicate depletion without
formation of a silica cell wall (unpublished data). Cell wall

FIGURE 10 | Growth rates of the silicified (blue symbols) and naked
flagellated (red symbols) Triparma strains. Data redrawn from Stawiarski et al.
(2016) for T. eleuthera (RCC212), Jacquet et al. (2001) for Triparma sp.
(RCC201), Thomas and Campbell (2013) for T. pacifica (RCC205) and
Ichinomiya and Kuwata (2015) for T. laevis f. inornata (NIES-2565), T. laevis f.
longispina (NIES-3699), and T. strigata (NIES-3701).

is restored within a day in about 40% of the naked cells
after replenishment of silicate (Yamada et al., 2014). Direct
observation of regeneration of the silica cell wall in naked cells
after re-supply of silicate using transmission and SEM revealed
that shield plates appear first, followed by ventral, dorsal, and
girdle plates, in this order. The dorsal and girdle plates are
inserted into the space between the previously secreted shield
and ventral plates to complete cell wall (Yamada et al., 2016).
Similar uncoupling between the formation of silica structures
and cell growth has also been observed in other silicified
Stramenopiles such as Dictyochales (Henriksen et al., 1993)
and Synurales (Leadbeater and Barker, 1995; Sandgren et al.,
1996).
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TABLE 3 | Mitotic characters of Stramenopiles.

Bolidophyceae∗1 Diatoms Pelagophyceae Phaeophyceae Xanthophyceae Chrysophyceae/
Synurophyceae

Raphidophyceae Eustigmatophyceae

Interphase
microtubules focus

Centrioles Microtubule center No report Centrioles Centrioles Centrioles Centrioles No report

Spindle pole Centrioles Polar plate Centrioles Centrioles Centrioles Rhizoplast Golgi body barrel/ boomerang-
shaped nuclear pole
body

Extranuclear
spindle

+ + + − − − − −

Bundled
spindle

+ + + − − − − −

References Yamada et al., 2017 Pickett-Heaps et al.,
1975;
Pickett-Heaps, 1991

Vesk and Jeffrey,
1987

Markey and Wilce,
1975

Massalski et al.,
2009

Slankis and Gibbs,
1972; Vesk et al.,
1984, Brugerolle and
Mignot, 2003

Heywood, 1978 Murakami and
Hashimoto, 2009

∗1Reported in only silicified strain Triparma laevis NIES-2565.

Rounded plates of silicified Bolidophyceae have a structure
similar to the valves and scales of auxospores from centric
diatoms (Mann and Marchant, 1989; Yamada et al., 2014). In
other groups that display silica structures such as diatoms,
chrysophytes, synurophytes, and dictyochophytes (Simpson and
Volcani, 1981; Knoll and Kotrc, 2015; Finkel, 2016; Marron
et al., 2016), silica formation takes place within a specialized
membrane-bound compartment termed the Silica Deposition
Vesicle (SDV) (Simpson and Volcani, 1981; Preisig, 1994). The
origin and location of SDV differ among taxa. Diatoms SDVs
for the development of valve, girdle bands of vegetative cells and
auxospores scales are formed adjacent to the plasma membrane
(Stoermer et al., 1965; Edgar and Pickett-Heaps, 1984; Lee and Li,
1992; Idei et al., 2012), possibly generated from the Golgi body
(Lee and Li, 1992). Synurophytes and chrysophytes SDVs are
located in the cytoplasmic or chloroplast endoplasmic reticulum.
Bolidophyceae SDVs forming the shield and ventral plates are
initially produced around the chloroplast and moving toward the
plasma membrane like synurophytes and chrysophytes (Yamada
et al., 2016). In contrast, SDVs for dorsal and girdle plates are
formed adjacent to the plasma membrane like in diatoms. Such
differentiation in the development site of SDVs depending on the
type of silica plates within a single species has not been previously
reported in other organisms (Yamada et al., 2016).

Mitotic Nuclear Division
In eukaryotes, cell division, mitotic process, and related apparatus
are often well conserved within high phylogenetic levels (e.g., at
the class or phylum levels, Heath, 1980; Schmit and Nick, 2008;
De Martino et al., 2009). Among Stramenopiles, the organelles
related to the focus of interphase microtubules and spindle
poles are the centrioles, like recently observed in Bolidophyceae
(Yamada et al., 2017, Table 3). However, some classes have
unique organelles (Table 3), such as the Microtubule Center
(MC) and Polar Plate (PP) in diatoms (Pickett-Heaps et al., 1975;
Tippit and Pickett-Heaps, 1977; Edgar and Pickett-Heaps, 1984;
Pickett-Heaps, 1991; De Martino et al., 2009), the rhizoplast in
chrysophytes and synurophytes (Slankis and Gibbs, 1972; Vesk
et al., 1984; Brugerolle and Mignot, 2003) or a barrel/boomerang-
shaped nuclear pole body in eustigmatophytes (Murakami and
Hashimoto, 2009).

FIGURE 11 | Graphical scheme of the interphase microtubule nucleation and
the spindle formation in bolidophytes (A–D), diatoms (E–H), and
pelagophytes (I–L). See text for details. Figures (A–D) and (E–H) are adapted
from Yamada et al. (2017) and De Martino et al. (2009) with permission.

During the mitosis of T. laevis f. inornata, the interphase
cell has more than four very short centrioles (ca. 80 nm in
contrast to 150–500 nm of typical mature centrioles in other
Stramenopiles, (Figure 11A). In prophase, the spindle bundle
forms at in the extranuclear region (Figure 11B), the centrioles
move to the spindle poles (Figure 11C) and then it moves
to the cytoplasmic tunnel of the nucleus (Figure 11D). All
along metaphase, the kinetochore microtubules elongate from
the spindle poles to the condensed chromatin through the
region of partially disintegrated nuclear envelope (Figure 11D).
Finally, the chromatin is separated to both sides of the
cell.

Spindle configuration and formation of T. laevis f. inornata
are very similar to the process found among diatoms and
pelagophytes (Table 3). They share two conspicuous characters:
extranuclear spindle formation (Figures 11B,C,F,G) and the
bundling of the interpolar microtubules (Figures 11D,H).
However, the organelle serving as a Microtubule Organizing
Center (MTOC) and its behavior differ. T. laevis f. inornata and
pelagophytes have centrioles while diatoms have the specialized
MC and PP (Figures 11E–H). The centrioles of pelagophytes
(reported only in one species, Pelagococcus subviridis) appear
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TABLE 4 | Comparison of selected characters between Bolidophyceae and diatoms.

Properties Bolidophyceae Diatoms

Silicified species Flagellated species

Size (µm) 2–5 1–1.7 2–2000

Level of organization Unicellular Unicellular Unicellular, often form colonies

Silicified cell wall Yes No Yes

Flagellate form Yes Yes Yes in male gametes of centric diatom

Chloroplasts Lamellae with three thylakoids, girdle lamella Lamellae with three thylakoids, girdle lamella

Major Pigments Chl a, Chl c, fucoxanthin, diatoxanthin, diadinoxanthin, b-carotene Chl a, Chl c, fucoxanthin, diatoxanthin, diadinoxanthin,
b-carotene

Mitochondria Tubular type Tubular type

Si requirement for growth No No Yes

Position of SDV Chloroplast ER and plasma
membrane

NA Plasma membrane

Mitotic aparatus Interphase microtubules
focus:Centrioles

NA Interphase microtubules focus:Microtubule center

Spindle pole:Centrioles Spindle pole:Polar plate

Number of species 12 3 30,000–100,000

Oceanic distribution Ubiquitous, but minor Ubiquitous, often dominant

Main habitat Cold eutrophic water Warm oligotrophic water Eutrophic water

(Polar and subpolar region) (Tropical or subtropical) (Polar, coastal, and upwelling region)

NA, not available.

only during the spindle initiation phase (Vesk and Jeffrey, 1987)
while those of T. laevis f. inornata occur after central spindle
formation in the extranuclear region. Since centriole is the most
common organelle serving as MTOC in Stramenopiles (Table 3),
the mitotic apparatus of T. laevis f. inornata shows more ancestral
features than the diatoms.

CONCLUSION – THE EVOLUTIONARY
RELATIONSHIPS BETWEEN DIATOMS
AND BOLIDOPHYCEAE

Diatoms are highly diverse with 30,000 to 100,000 species
(Mann and Vanormelingen, 2013) and constitute one of the
top group of primary producers, contributing to about 20%
of the photosynthesis on Earth, the equivalent of terrestrial
rainforests (Nelson et al., 1995; Falkowski et al., 1998; Mann,
1999). They cover a wide size range from 2 µm to 2 mm
and form large blooms in high-nutrient coastal and upwelling
systems (Margalef, 1978; Hasle and Syvertsen, 1997). They
are the main prey for zooplankton and the carbon that they
fix through photosynthesis is efficiently transferred to higher
trophic levels highlighted by their role in fish production
(Ryther, 1969; Cushing, 1989). From an evolutionary point of
view, the appearance of this highly productive group and the
resulting increase in oceanic primary production may have
driven the evolution of crustaceans, pelagic fish, and whales
and shaped modern marine pelagic ecosystems (Parsons, 1979).
Although, the origin and early evolution of diatoms remain
controversial, the first well–preserved diatom fossils have been
dated from ∼110 Myr ago, in the early Cretaceous (Gersonde
and Harwood, 1990; Harwood and Gersonde, 1990), while

molecular-clock-based estimations suggest that the origin of
diatoms may have occurred 180 – 250 Myr ago (Medlin,
2011).

Recent multigene phylogenetic analyses suggest that
bolidophytes, diatoms, pelagophytes, and dictyochophytes
form a monophyletic lineage (Riisberg et al., 2009; Yang
et al., 2012; Ševèíková et al., 2015; Derelle et al., 2016). This
lineage, called Diatomiista (Derelle et al., 2016) or Khakista
(Riisberg et al., 2009), originally only included diatoms and
bolidophytes (Cavalier-Smith and Chao, 2006).

Recent success in the isolation of strains of both silicified
and naked flagellated Bolidophyceae species allow detailed
phylogenetic studies, clarifying the taxonomic position of this
group as a sister group of diatoms and revealing the close
relationship between silicified and naked strains. Cell wall
formation and mitotic division in the silicified species T. laevis
f. inornata have intermediate features between diatom and more
ancient stramenopiles (Figure 11 and Tables 3, 4). Analysis
of organellar genomes of this species also suggested that it
displays more ancestral characteristics than diatoms (Tajima
et al., 2016). Gene contents of the plastid and mitochondrial
genomes are similar between T. laevis f. inornata and diatoms
whereas the gene order of the mitochondrial genome is different.
The structure of the mitochondrial genome is also more compact
in T. laevis f. inornata than in diatoms since the latter species has
no introns or repeat regions which are often observed in some
diatoms species (Oudot-Le Secq and Green, 2011).

The phylogenetically close relationship between silicified and
naked Bolidophyceae strains and recent occasional observation
of flagellated cells in cultures of T. laevis f. inornata (Ichinomiya
et al., 2016) suggest that bolidophytes may have a life cycle
that switches between silicified non-flagellated and naked
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flagellate stages. This hypothetical life cycle has similarities to
centric diatoms for which the diploid vegetative stage produces
haploid naked flagellated cells (male gametes or spermatozoa)
during sexual reproduction (Drebes, 1977; Vaulot and Chisholm,
1987). The origin, early evolution and key processes for the
acquisition of the silica cell wall are not yet been fully
understood and Bolidophyceae could play a key role in answering
these questions. More comprehensive analyses, including whole
genome sequences, observations of the life-cycle, and fossil
records, would lead a deeper understanding of the evolutionary
relationships between Bolidophyceae and diatoms.
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