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Abstract

To improve our understanding of connected systems, different tools derived from statistics, signal
processing, information theory and statistical physics have been developed in the last decade. Here, we
will focus on the graph comparison problem. Although different estimates exist to quantify how
different two networks are, an appropriate metric has not been proposed. Within this framework we
compare the performances of two networks distances (a topological descriptor and a kernel-based
approach as representative methods of the main classes considered) with the simple Euclidean metric.
We study the performance of metrics as the efficiency of distinguish two network’s groups and the
computing time. We evaluate these methods on synthetic and real-world networks (brain
connectomes and social networks), and we show that the Euclidean distance efficiently captures
networks differences in comparison to other proposals. We conclude that the operational use of
complicated methods can be justified only by showing that they outperform well-understood
traditional statistics, such as Euclidean metrics.

1. Introduction

Despite the success of complex networks modeling and analysis, some methodological challenges are still to be
tackled to describe and compare different interconnected systems. Identifying and quantifying dissimilarities
among networks is a challenging problem of practical importance in many fields of science. Given two graphs
{G, G'}, we aim at finding an injective and real-valued function h thatmaps G x G’ — R V{G, G'}.
Functions h(G, G’) that quantify the (dis)similarity between two networks have been been studied in several
areas such as chemistry, protein structures, social networks up to neuroscience, among others [1-4]. Without an
huniqueness, different approaches have been proposed including graph edit operations, distances based on
divergences, spectral parameters, kernels, or different combinations of the previous [5-11].

Although several of these dissimilarity metrics have been developed in the framework of complex networks
and can capture the connectivity structure at different different levels (degrees, walks, paths, etc), the natural
question arises as to whether a simple measure (e.g. the Euclidean distance) is able to quantify and distinguish
two networks.

In this work, we consider three classes of the function A: the first class, which represents a large bunch in the
literature, quantifies local changes via structural differences. These metrics may range from the simplest
Euclidean distance [12—14] to more elaborated algorithms that assign costs of different operations to map
nodes/edges of G to their G’ counterparts [5, 15, 16]. Another distance class considers topological descriptors
that map each graph into a feature vector (e.g. degree distribution, nodes centrality, etc). These vectors are
compared with any multivariate statistical distance or information-type metrics to compute the
graph dissimilarity [ 10, 17, 18]. We notice that considering one type of feature may imply to lose topological
information from others parameters, and the price of a complet caracterisation may be paid with more runtime.
The last class considered here includes kernel-based approaches that compare global substructures (i.e. walks,
paths, etc). These methods capture global information of networks (e.g. the graph Laplacian) consideredina
metric space, where a defined inner product directly estimates its dissimilarity [19]. Kernel-based methods,
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however, often integrate over local neighborhoods, which renders these approaches less sensitive to small or
local perturbations [7].

In our study we show than the use of a simple Euclidean metric may provides good performances to asses
graph differences, when compared to other more complicated functions. We propose a framework for
measuring the performance of functions h’s applied on undirected-binary graphs of equal sizes. We define the
h’s performance in terms of ‘discriminability’ and ‘runtime’. The former is the capability of & for discriminating
two sets of networks associated to two different groups. The latter is simply the computing time.

2. Comparing network distances in synthetic and real networks

In what follows, we compare the performance of the standard Euclidean distance (Dy), the dissimilarity measure
(Dg) defined in [10], and the graph diffusion kernel distance (D) [9], from each of the classes mentioned above.
As each class encompasses many metrics with a common core (e.g. Frobenius norm, Information theory,
Kernel-based types), we chose one of the recent published distances for each class to compare them. For these
algorithms, we evaluate the discriminability and runtime in different synthetic and real-world networks. We
show that the Euclidean distance substantially outperforms other methods to capture differences between
networks of the same size.

2.1. Euclidean distance
Assuming that { A}, A, } are the adjacency matrix representations of graphs { Gy, G, }, we have the Euclidean
distance defined by:

Dy = [|A; — Aylfp, (D

where ||-||r denotes the Frobenius norm.

2.2.Network structural dissimilarity

This dissimilarity measure captures several topological descriptors [10]: network distance distributions fi4 4,
node-distance distribution functions NND 4, 4,; (local connectivity of each node), a-centrality distributions

P, {A;, A;}, the equivalent for their graph complements P, (s¢ 45} and several tuning parameters {a, wy, wa, ws}.
The network distance is obtained via the Jensen—Shannon divergence I between different feature vectors.

D(paas 14,

Dy =w, | ———"2 + w)||JNND(4;)) — NND(4,)]
log2
+ w3 F(PaAp PaAz) + F(PaAf) PaAzf) ) Q)
2 log2 log2

2.3.Kernel-based distance

A recently proposed distance is based on diffusion kernels [9]. This method estimates the differences between
diffusion patterns of two networks undergoing a continuous node-thermal diffusion. A set of distances at
different scales ¢ can be obtained by means of the Laplacian exponential kernels e *#t4.%1, The kernel-based
distance is obtained by [9]:

Dy = m?X{H exp(—tLy) — exp(—tLo)|[r}, ®)

where £; denotes the graph Laplacian of network i.

To assess the performances of these functions to capture network’s differences, we consider a network A and
aset of perturbed networks {A,} generated with a random rewiring (with probability p) of original network A.
We evaluate h’s by computing the differences between perturbed versions { A, } and its original configuration A.
For low values of p, networks are very similar. Network differences are expected to increase with p. The aim of
this random rewiring is to simply produce a random perturbation similar to that used when studying the
network robustness [20]. We then evaluate the dissimilarity value after a given fraction of links is rewired while
preserving the number of links and connectedness.

2.4. Benchmark tests

We build binary Barabasi—Albert (BA), Strogatz—Watts (SW) [20] and Lancichinetti-Fortunato—Radicchi (LFR)
[21] models with L linksand N = 100. In the BA model, the mean degree is set to 4 and the exponent of the
degree distribution is, by construction, 3. For SW model, the number of initial neighborsis K = 4 fora

L = N x K edges and mean degree equal to 2K . In LFR model, the mean and maximum degree is set to 15

2
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Figure 1. Network-distances as a function of the rewiring probability p. For visualization purposes, each profile was normalized by
dividing 6, by the maximum value obtained over the whole range of perturbations. All symbols represent the averages over 100
realizations, and shaded areas indicate theirs 5th and 95th percentiles. (a) For the BA networks, (b) for the SW model and (¢) for the
LFR benchmark. In both models, (6,,,) values were estimated for the same rewiring probability.

and 30, respectively. LFR model consists of 100 nodes splitted in 5 modules of {30, 24, 16, 16, 14} nodes each,
and 635 links. Degree and community distribution exponents are 3 and 2 with a mixing parameter of 0.2. For
each model we recreate a continuous perturbation process by reshuffling their links with and incremental
rewiring probability step p = 0.001. This allows us to create aset of || {A, } || = 1000 connected networks, each
of them with L * p rewired links.

Let 0,5, be the network-distance vector that contains all differences between perturbed networks {A,} and A
measured for a given metric h. We compute the averaged profiles (,, ) as well as the 5th-95th percentiles
(figure 1). As expected, all the averaged profiles display monotonically increasing curves that reach out certain
saturation around p = 10" Results suggest that all the measures (including the Euclidean distance) are sensitive
to small structural changes (10% of reshuffled links), and reflect well the structural perturbations. Beyond this
threshold (p > 10™"), however, all functions cannot distinguish between a graph A and its perturbed version
{A,}. Results also show that, despite the non-trivial heterogeneous connectivity of the LFR model, the network-
distance profiles are quite similar. Further, results clearly indicate that Euclidean distances has lower variability
than the other two distances.

2.5. Assessment of performances

Our results suggest that the dissimilarity curve obtained by comparing a given network and its different
perturbed versions captures relevant features of the original connectivity, which suggests it can be directly used
to compare two networks. To assess the different metrics’ performances we quantify the ‘discriminability’ and
the ‘runtime’. Discriminability assesses whether a given function k is sensitive at certain perturbation p, and
whether it is suitable to distinguish two different group of networks at a given p. Discriminability is defined as the
percentage of times a function h distinguishes the differences of each group of networks at certain perturbation
level. The more times h distinguishes two different datasets, the better the h discriminability is. In addition,
runtime simply measures the i execution time. The faster a given function h estimates the differences, the better
the corresponding metric is. For the sake of applicability we tested the performance of different /’s in real
networks.

2.6. Real networks
In this work, we evaluate metric’s performances upon two dataset of different nature: functional brain
connectomes and social networks. We use a recently published brain connectivity dataset [22], which includes
functional connectivity matrices estimated from magnetoencephalographic (MEG) signals recorded from 23
Alzheimer patients (P) and a set of controls subjects (C) during a condition of resting-state with eyes-closed [23].
Alzheimer disease is caracterised by anatomical brain deteriorations, which are reflected in an abnormal brain
connectivity. MEG activity was reconstructed on the cortical surface by using a source imaging technique [23].
Connectivity matrices were obtained from N = 148 regions of interest by means of the spectral coherence
between activities in the band of 11-13 Hz. We specifically focused on the functional connectivity in this
frequency band, which is particularly activated during resting activity with closed eyes, and it reflects the main
functional connectivity changes accompanying the disease [24]. All the recording parameters and pre-
processing details of connectivity matrices are explained in [23].

Following the procedure of [25], we thresholded each connectivity matrix by recovering its minimum
spanning tree and then filling the network up with the strongest links until to reach a mean degree of three. Our

3



I0OP Publishing NewJ. Phys. 21(2019) 013033 JH Martinez and M Chavez

SORRRRRRRRCIOREE Sk otk sk bk Shlololoblle Skl Skl SRRRREROICROR Bk ke bk Kok ol B ok ok k%

- ()

o Patients
- Control subjects

% Significative differences (p< 0.05)

RRERRCRRRE SRBE SRR Kk Rk ok ok SRk Ok OBk Sfobolok K Rk opk * Fk ok ok Rk Rk K

9.01 18.02 27.03 36.04 45.05 54.05 63.06 72.07 81.08 90.09 99.1
Rewiring (%)

Figure 2. Mean distances profiles (6] ;) for P (black) and C (white) are plotted as a function of the rewired /links (rewiring %). The
existence of group statistical differences in each rewiring step are highlighted at the top of each panel by the black stars. (a) Euclidean
distance yields a discriminability of 32.89%. (b) The kernel-based distance yields a discriminability of 26.58%. In (c) for h = D, the
discriminability performances is poor in comparison with the others metrics.

criterion admits that the weighted links of the raw networks had been previously validated, either maintained or
canceled [26]. This thresholding criterion ensures a trade-off between network efficiencies (both global and
local) and wiring cost. In [25, 26], theoretical and numerical results show that, for a large class of brain networks
(including functional ones as those used in our study), this balance is obtained when the connection density p
follows a fractal scaling regardless of the network size according to the power-law p = 3/N. The resulting
connectivity networks are binary adjacency matrices with N = 148 nodes with L = 222 links.

A direct comparison of connectivity matrices between the graphs of two groups A € {P V C} doesnotnot
allow to distinguish them. This result agrees with previous studies that found group differences related to very
local changes in connectivity [23, 24]. Authors in [23] for instance, found that only 3% and 4% of the nodes
accounts for the connectivity differences between groups, when different frequency bands are combined in the
analysis.

The approach proposed to detect global network differences between those groups is based on the
dissimilarity curve of each network. For this, each connectivity graph A is firstly perturbed by randomly
choosingllinks VI = 1, 2, ..., L and reshuffling them such that the graph remains connected. We get thus a
setof || {A;}|| = 222 perturbed networks. We then compute the network differences between all pairs (A, A)).
We finally repeat this procedure for 20 independent realizations. The distances profile ¢; ;, results from the
average of the network differences across realizations for a given subject S. The set of || {6] ,} || = 23 distances
profiles per group (one for each subject) is used to compare the differences captured by & when Ilinks are
rewired. A function h distinguishes two populations {67 ,} ' A {6],,} © at certain level J, if the group differences
are statistically different at that perturbation level. Discriminability is defined as the hits percentage along all L
perturbations, i.e. the number of times the null hypothesis H, of no difference between the two groups is
rejected. To assess significant differences, we used a non parametric permutation test allowing 500 permutations
for each land we reject H,at p < 0.05 (corrected by a Bonferroni method).

The mean distance profiles (6; ;) for each h are plotted in figure 2. As in synthetic models, profiles show a
monotonically increasing behavior. At low rewiring percentages (<11%) there is no significant differences at
group level. For small perturbation levels, functions / cannot distinguish connectivity between groups.
Something similar is observed when links perturbation are above ~70%. On the other hand, Drappears as the
one with the highest discriminability closely followed by Dy, while Dy appears with lowest one. Results clearly
suggest that Euclidean distance distinguishes better the two groups of networks considered here.

We now move our attention to the comparison of social networks. We applied our approach to the analysis
of connectivity differences between two social networks. Each connectivity matrix contains the friendship and
socioemotional interactions among workers in a tailor shop in Zambia, during two periods of time (seven
months apart), immediately before and unsuccessful (¢;) and a successful (t,) strike, respectively [27]. Networks
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Figure 3. Mean distances profiles (6, ,) for t; (black) and t, (white) are plotted as a function of the rewired /links (Rewiring %). (a)
Euclidean distance yields a discriminability of 60.0%. (b) The kernel-based distance yields a discriminability of 9.0%. In (c) for h = Dy
the discriminability is of 33%.
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Figure 4. Relative orders of magnitude of execution times for three distance measures. Violin plots show the distributions of all values
represented by the small circles. Although time differences between Dgand Dy is around one order, they become slower than Dy
execution time.

in each group consist of 39 actors forming a giant component. Both networks reflect the changing patterns of
alliance among workers during extended negotiations for higher wages.

Each network was rewired under the same procedure explained above retrieving || {A;} || = 100 perturbed
networks to compare with. We repeat this process for 20 independent realizations and then average the distance
profiles for each h. Results displayed in figure 3 suggest that Euclidean distance distinguishes better than the
other two metrics the change of alliance patterns among workers observed during the two periods of time #; and
t.

We assessed the execution time for computing a distances profile for each subject (we used MATLAB R2017a
raninan OS 10.12.6, 4 GHz Intel dual core i7 processor and 32 GB memory). Figure 4 shows the relatives orders
of magnitude in seconds that each metric takes to compute the networks differences. For the analysis of brain
connectomes, the average times obtained are: #; = 6.83 x 1075ty = 2.68 x 107 %, = 1.90 x 10" for the
Euclidean distance, the dissimilarity metric and the kernel-based method, respectively. The results clearly show
Euclidean distance as the fastest method in comparison with the others two. Clearly, Dyis 3 (4) orders of
magnitude faster than D4 (D). Similar relative orders of magnitude are obtained for the social networks.

Runtime finally determines which measure has the best performance when computing graphs distances.
While the discriminability of Dy is close to that of D its runtime is four orders of magnitude slower than Dy due
to the fact that Dy needs to search into several scales to find the highest difference. D4 runtime is three orders of
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Table 1. z-values of different distances for brain
and social networks.

Df Dy Dy

Connectomes 13.82 0.18 13.96
Social 9.34 0.98 5.01

magnitude slower than D because Dy takes into account many topological properties under several tuning
parameters.

To rule out the possibility that the differences in the number of connections of the networks could account
for significant differences in the different distances, we have assessed the differences between surrogate graphs of
the two groups, obtained by randomly rewiring the links of the original networks while keeping the same degree
distribution. This procedure allows ‘normalizing’ for the potential influences of changes in the number of
connections.

For brain connectomes, we estimate the distance between the aggregate (averaged) network of each group of
subjects/patients. For the analysis of social networks, instead, we used the original social interaction matrices.
For both dataset we create a set of 100 surrogate networks as described above and compare, by means of a z-
value, a given distance between the original networks with that obtained from surrogate pairs.

Table 1 depicts z-values for the three metrics. Interestingly, the low z-values obtained by D4 suggest that this
distance mainly reflects differences in the degree distribution. In contrast, the Euclidean and kernel-based
distances seem to capture structural differences beyond the degree distribution or density.

In summary, the Euclidean distance emerges as the metric with the highest discriminability to distinguish
groups of networks studied here, and the fastest computation, which is something important when one manages
large datasets.

3. Concluding remarks

Finding an accurate graph distance is a difficult task, and many metrics have been described without a
framework to properly benchmark such proposals. Here we make a call of the simple Euclidean distance as the
one with a very good trade-off between good and fast performances in contrast to more elaborated algorithms.
Here we propose a method to detect global network differences with high efficiency and fast computation time.
Although we used a random rewiring, the analysis over other perturbations or networks models deserves a
statistically detailed study out of the scope of this rapid communication.

Our results suggest a non-trivial dependence between networks’ structure and networks’ distances.
Appropriate statistical control of distances (e.g. via group comparisons or random null models) are therefore
necessary to take into account these differences. We also propose a simple framework to assess any metric’s
performance in terms of discriminability and runtime. Results indicate that, for comparing binary networks of
the same size, the Euclidean distance’s discriminating capabilities outperform those of graph dissimilarity and
diffusion kernel distance.

Our approach is founded on unweighted network models. Its natural application implies binarization after
thresholding, a procedure widely adopted to mitigate the uncertainty carried by the weights estimated from
neuroimaging data. Further work is needed to clarify how our approach can be extended to weighted networks,
where the perturbation of links is less straightforward (simple rewiring, perturbation of weights, etc). Similarly,
more elaborated network models (e.g. multi-layer, signed, spatial, or time-varying networks) might, however,
need more elaborated tools to account for the geometry or the interdependencies of interacting units, and make
their comparisons more robust.
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