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Abstract
To improve our understanding of connected systems, different tools derived from statistics, signal
processing, information theory and statistical physics have been developed in the last decade. Here, we
will focus on the graph comparison problem. Although different estimates exist to quantify how
different two networks are, an appropriatemetric has not been proposed.Within this frameworkwe
compare the performances of two networks distances (a topological descriptor and a kernel-based
approach as representativemethods of themain classes considered)with the simple Euclideanmetric.
We study the performance ofmetrics as the efficiency of distinguish two network’s groups and the
computing time.We evaluate thesemethods on synthetic and real-world networks (brain
connectomes and social networks), andwe show that the Euclidean distance efficiently captures
networks differences in comparison to other proposals.We conclude that the operational use of
complicatedmethods can be justified only by showing that they outperformwell-understood
traditional statistics, such as Euclideanmetrics.

1. Introduction

Despite the success of complex networksmodeling and analysis, somemethodological challenges are still to be
tackled to describe and compare different interconnected systems. Identifying and quantifying dissimilarities
among networks is a challenging problemof practical importance inmany fields of science. Given two graphs

¢{ }G G, , we aim at finding an injective and real-valued function h thatmaps ´ ¢  " ¢{ }G G G G, .
Functions ¢( )h G G, that quantify the (dis)similarity between two networks have been been studied in several
areas such as chemistry, protein structures, social networks up to neuroscience, among others [1–4].Without an
h uniqueness, different approaches have been proposed including graph edit operations, distances based on
divergences, spectral parameters, kernels, or different combinations of the previous [5–11].

Although several of these dissimilaritymetrics have been developed in the framework of complex networks
and can capture the connectivity structure at different different levels (degrees, walks, paths, etc), the natural
question arises as towhether a simplemeasure (e.g. the Euclidean distance) is able to quantify and distinguish
two networks.

In this work, we consider three classes of the function h: thefirst class, which represents a large bunch in the
literature, quantifies local changes via structural differences. Thesemetricsmay range from the simplest
Euclidean distance [12–14] tomore elaborated algorithms that assign costs of different operations tomap
nodes/edges ofG to their ¢G counterparts [5, 15, 16]. Another distance class considers topological descriptors
thatmap each graph into a feature vector (e.g. degree distribution, nodes centrality, etc). These vectors are
comparedwith anymultivariate statistical distance or information-typemetrics to compute the
graph dissimilarity [10, 17, 18].We notice that considering one type of featuremay imply to lose topological
information fromothers parameters, and the price of a complet caracterisationmay be paidwithmore runtime.
The last class considered here includes kernel-based approaches that compare global substructures (i.e. walks,
paths, etc). Thesemethods capture global information of networks (e.g. the graph Laplacian) considered in a
metric space, where a defined inner product directly estimates its dissimilarity [19]. Kernel-basedmethods,
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however, often integrate over local neighborhoods, which renders these approaches less sensitive to small or
local perturbations [7].

In our studywe show than the use of a simple Euclideanmetricmay provides good performances to asses
graph differences, when compared to othermore complicated functions.We propose a framework for
measuring the performance of functions hʼs applied on undirected-binary graphs of equal sizes.We define the
hʼs performance in terms of ‘discriminability’ and ‘runtime’. The former is the capability of h for discriminating
two sets of networks associated to two different groups. The latter is simply the computing time.

2. Comparing network distances in synthetic and real networks

Inwhat follows, we compare the performance of the standard Euclidean distance (Df), the dissimilaritymeasure
(Dd)defined in [10], and the graph diffusion kernel distance (Dk) [9], from each of the classesmentioned above.
As each class encompassesmanymetrics with a common core (e.g. Frobenius norm, Information theory,
Kernel-based types), we chose one of the recent published distances for each class to compare them. For these
algorithms, we evaluate the discriminability and runtime in different synthetic and real-world networks.We
show that the Euclidean distance substantially outperforms othermethods to capture differences between
networks of the same size.

2.1. Euclidean distance
Assuming that {A1,A2} are the adjacencymatrix representations of graphs {G1,G2}, we have the Euclidean
distance defined by:

= -  ( )D A A , 1f 1 2 F

where · F denotes the Frobenius norm.

2.2. Network structural dissimilarity
This dissimilaritymeasure captures several topological descriptors [10]: network distance distributions m{ }A A,1 2

,
node-distance distribution functions { }NND A A,1 2

(local connectivity of each node),α-centrality distributions
a{ }P A A,1 2 , the equivalent for their graph complements a{ }P A A,c c

1 2
and several tuning parameters a{ }w w w, , ,1 2 3 .

The network distance is obtained via the Jensen–Shannon divergenceΓ between different feature vectors.
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2.3. Kernel-based distance
A recently proposed distance is based on diffusion kernels [9]. Thismethod estimates the differences between
diffusion patterns of twonetworks undergoing a continuous node-thermal diffusion. A set of distances at
different scales t can be obtained bymeans of the Laplacian exponential kernels - { }e t A A1, 2 . The kernel-based
distance is obtained by [9]:

 = - - - { ( ) ( ) } ( )D t tmax exp exp , 3k
t

1 2 F

where i denotes the graph Laplacian of network i.
To assess the performances of these functions to capture network’s differences, we consider a networkA and

a set of perturbed networks {Ap} generatedwith a random rewiring (with probability p) of original networkA.
We evaluate hʼs by computing the differences between perturbed versions {Ap} and its original configurationA.
For low values of p, networks are very similar. Network differences are expected to increase with p. The aimof
this random rewiring is to simply produce a randomperturbation similar to that usedwhen studying the
network robustness [20].We then evaluate the dissimilarity value after a given fraction of links is rewiredwhile
preserving the number of links and connectedness.

2.4. Benchmark tests
Webuild binary Barabasi–Albert (BA), Strogatz–Watts (SW) [20] and Lancichinetti–Fortunato–Radicchi (LFR)
[21]models with L links andN=100. In the BAmodel, themean degree is set to 4 and the exponent of the
degree distribution is, by construction, 3. For SWmodel, the number of initial neighbors isK=4 for a

= *L N K edges andmean degree equal to K2 . In LFRmodel, themean andmaximumdegree is set to 15
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and 30, respectively. LFRmodel consists of 100 nodes splitted in 5modules of {30, 24, 16, 16, 14} nodes each,
and 635 links. Degree and community distribution exponents are 3 and 2with amixing parameter of 0.2. For
eachmodel we recreate a continuous perturbation process by reshuffling their links with and incremental
rewiring probability step p=0.001. This allows us to create a set of =∣∣{ }∣∣A 1000p connected networks, each
of themwith *L p rewired links.

Let δp,h be the network-distance vector that contains all differences between perturbed networks {Ap} andA
measured for a givenmetric h.We compute the averaged profiles dá ñp h, aswell as the 5th–95th percentiles
(figure 1). As expected, all the averaged profiles displaymonotonically increasing curves that reach out certain
saturation around p= 10−1. Results suggest that all themeasures (including the Euclidean distance) are sensitive
to small structural changes (10%of reshuffled links), and reflect well the structural perturbations. Beyond this
threshold (p> 10−1), however, all functions cannot distinguish between a graphA and its perturbed version
{Ap}. Results also show that, despite the non-trivial heterogeneous connectivity of the LFRmodel, the network-
distance profiles are quite similar. Further, results clearly indicate that Euclidean distances has lower variability
than the other two distances.

2.5. Assessment of performances
Our results suggest that the dissimilarity curve obtained by comparing a given network and its different
perturbed versions captures relevant features of the original connectivity, which suggests it can be directly used
to compare two networks. To assess the differentmetrics’ performances we quantify the ‘discriminability’ and
the ‘runtime’. Discriminability assesses whether a given function h is sensitive at certain perturbation p, and
whether it is suitable to distinguish two different group of networks at a given p. Discriminability is defined as the
percentage of times a function h distinguishes the differences of each group of networks at certain perturbation
level. Themore times h distinguishes two different datasets, the better the h discriminability is. In addition,
runtime simplymeasures the h execution time. The faster a given function h estimates the differences, the better
the correspondingmetric is. For the sake of applicability we tested the performance of different hʼs in real
networks.

2.6. Real networks
In this work, we evaluatemetric’s performances upon two dataset of different nature: functional brain
connectomes and social networks.We use a recently published brain connectivity dataset [22], which includes
functional connectivitymatrices estimated frommagnetoencephalographic (MEG) signals recorded from23
Alzheimer patients (P) and a set of controls subjects (C) during a condition of resting-state with eyes-closed [23].
Alzheimer disease is caracterised by anatomical brain deteriorations, which are reflected in an abnormal brain
connectivity.MEGactivity was reconstructed on the cortical surface by using a source imaging technique [23].
Connectivitymatrices were obtained fromN=148 regions of interest bymeans of the spectral coherence
between activities in the band of 11–13 Hz.We specifically focused on the functional connectivity in this
frequency band, which is particularly activated during resting activity with closed eyes, and it reflects themain
functional connectivity changes accompanying the disease [24]. All the recording parameters and pre-
processing details of connectivitymatrices are explained in [23].

Following the procedure of [25], we thresholded each connectivitymatrix by recovering itsminimum
spanning tree and thenfilling the network upwith the strongest links until to reach amean degree of three. Our

Figure 1.Network-distances as a function of the rewiring probability p. For visualization purposes, each profile was normalized by
dividing δp,h by themaximumvalue obtained over thewhole range of perturbations. All symbols represent the averages over 100
realizations, and shaded areas indicate theirs 5th and 95th percentiles. (a) For the BAnetworks, (b) for the SWmodel and (c) for the
LFR benchmark. In bothmodels, dá ñp h, values were estimated for the same rewiring probability.
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criterion admits that theweighted links of the rawnetworks had been previously validated, eithermaintained or
canceled [26]. This thresholding criterion ensures a trade-off between network efficiencies (both global and
local) andwiring cost. In [25, 26], theoretical and numerical results show that, for a large class of brain networks
(including functional ones as those used in our study), this balance is obtainedwhen the connection density ρ
follows a fractal scaling regardless of the network size according to the power-law ρ= 3/N. The resulting
connectivity networks are binary adjacencymatrices withN= 148 nodeswith L= 222 links.

A direct comparison of connectivitymatrices between the graphs of two groups Î { }A P C does not not
allow to distinguish them. This result agrees with previous studies that found group differences related to very
local changes in connectivity [23, 24]. Authors in [23] for instance, found that only 3% and 4%of the nodes
accounts for the connectivity differences between groups, when different frequency bands are combined in the
analysis.

The approach proposed to detect global network differences between those groups is based on the
dissimilarity curve of each network. For this, each connectivity graphA isfirstly perturbed by randomly
choosing l links " = ¼l L1, 2, , and reshuffling them such that the graph remains connected.We get thus a
set of =∣∣{ }∣∣A 222l perturbed networks.We then compute the network differences between all pairs (A,Al).
Wefinally repeat this procedure for 20 independent realizations. The distances profile dl h

s
, results from the

average of the network differences across realizations for a given subject S. The set of d =∣∣{ }∣∣ 23l h
s
, distances

profiles per group (one for each subject) is used to compare the differences captured by hwhen l links are
rewired. A function h distinguishes two populations d d{ } { }l h

s P
l h
s C

, , at certain level l, if the group differences
are statistically different at that perturbation level. Discriminability is defined as the hits percentage along all L
perturbations, i.e. the number of times the null hypothesisHo of no difference between the two groups is
rejected. To assess significant differences, we used a non parametric permutation test allowing 500 permutations
for each l andwe rejectHo at p�0.05 (corrected by a Bonferronimethod).

Themean distance profiles dá ñl h
s
, for each h are plotted in figure 2. As in syntheticmodels, profiles show a

monotonically increasing behavior. At low rewiring percentages (�11%) there is no significant differences at
group level. For small perturbation levels, functions h cannot distinguish connectivity between groups.
Something similar is observedwhen links perturbation are above≈70%.On the other hand,Df appears as the
onewith the highest discriminability closely followed byDk, whileDd appears with lowest one. Results clearly
suggest that Euclidean distance distinguishes better the two groups of networks considered here.

We nowmove our attention to the comparison of social networks.We applied our approach to the analysis
of connectivity differences between two social networks. Each connectivitymatrix contains the friendship and
socioemotional interactions amongworkers in a tailor shop in Zambia, during twoperiods of time (seven
months apart), immediately before and unsuccessful (t1) and a successful (t2) strike, respectively [27]. Networks

Figure 2.Mean distances profiles dá ñl h
s
, forP (black) andC (white) are plotted as a function of the rewired l links (rewiring%). The

existence of group statistical differences in each rewiring step are highlighted at the top of each panel by the black stars. (a)Euclidean
distance yields a discriminability of 32.89%. (b)The kernel-based distance yields a discriminability of 26.58%. In (c) for h=Dd the
discriminability performances is poor in comparisonwith the othersmetrics.
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in each group consist of 39 actors forming a giant component. Both networks reflect the changing patterns of
alliance amongworkers during extended negotiations for higher wages.

Each networkwas rewired under the same procedure explained above retrieving =∣∣{ }∣∣A 100l perturbed
networks to compare with.We repeat this process for 20 independent realizations and then average the distance
profiles for each h. Results displayed infigure 3 suggest that Euclidean distance distinguishes better than the
other twometrics the change of alliance patterns amongworkers observed during the two periods of time t1 and
t2.

We assessed the execution time for computing a distances profile for each subject (weusedMATLABR2017a
ran in anOS 10.12.6, 4 GHz Intel dual core i7 processor and 32 GBmemory). Figure 4 shows the relatives orders
ofmagnitude in seconds that eachmetric takes to compute the networks differences. For the analysis of brain
connectomes, the average times obtained are: tf=6.83×10−5, td=2.68×10−2, tk=1.90×10−1 for the
Euclidean distance, the dissimilaritymetric and the kernel-basedmethod, respectively. The results clearly show
Euclidean distance as the fastestmethod in comparisonwith the others two. Clearly,Df is 3 (4) orders of
magnitude faster thanDd (Dk). Similar relative orders ofmagnitude are obtained for the social networks.

Runtime finally determines whichmeasure has the best performancewhen computing graphs distances.
While the discriminability ofDk is close to that ofDf, its runtime is four orders ofmagnitude slower thanDfdue
to the fact thatDk needs to search into several scales tofind the highest difference.Dd runtime is three orders of

Figure 3.Mean distances profiles dá ñl h, for t1 (black) and t2 (white) are plotted as a function of the rewired l links (Rewiring%). (a)
Euclidean distance yields a discriminability of 60.0%. (b)The kernel-based distance yields a discriminability of 9.0%. In (c) for h=Dd

the discriminability is of 33%.

Figure 4.Relative orders ofmagnitude of execution times for three distancemeasures. Violin plots show the distributions of all values
represented by the small circles. Although time differences betweenDd andDk is around one order, they become slower thanDf

execution time.
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magnitude slower thanDf, becauseDd takes into accountmany topological properties under several tuning
parameters.

To rule out the possibility that the differences in the number of connections of the networks could account
for significant differences in the different distances, we have assessed the differences between surrogate graphs of
the two groups, obtained by randomly rewiring the links of the original networks while keeping the same degree
distribution. This procedure allows ‘normalizing’ for the potential influences of changes in the number of
connections.

For brain connectomes, we estimate the distance between the aggregate (averaged)network of each group of
subjects/patients. For the analysis of social networks, instead, we used the original social interactionmatrices.
For both dataset we create a set of 100 surrogate networks as described above and compare, bymeans of a z-
value, a given distance between the original networks with that obtained from surrogate pairs.

Table 1 depicts z-values for the threemetrics. Interestingly, the low z-values obtained byDd suggest that this
distancemainly reflects differences in the degree distribution. In contrast, the Euclidean and kernel-based
distances seem to capture structural differences beyond the degree distribution or density.

In summary, the Euclidean distance emerges as themetric with the highest discriminability to distinguish
groups of networks studied here, and the fastest computation, which is something important when onemanages
large datasets.

3. Concluding remarks

Finding an accurate graph distance is a difficult task, andmanymetrics have been describedwithout a
framework to properly benchmark such proposals. Herewemake a call of the simple Euclidean distance as the
onewith a very good trade-off between good and fast performances in contrast tomore elaborated algorithms.
Herewe propose amethod to detect global network differences with high efficiency and fast computation time.
Althoughwe used a random rewiring, the analysis over other perturbations or networksmodels deserves a
statistically detailed study out of the scope of this rapid communication.

Our results suggest a non-trivial dependence between networks’ structure and networks’ distances.
Appropriate statistical control of distances (e.g. via group comparisons or randomnullmodels) are therefore
necessary to take into account these differences.We also propose a simple framework to assess anymetric’s
performance in terms of discriminability and runtime. Results indicate that, for comparing binary networks of
the same size, the Euclidean distance’s discriminating capabilities outperform those of graph dissimilarity and
diffusion kernel distance.

Our approach is founded on unweighted networkmodels. Its natural application implies binarization after
thresholding, a procedure widely adopted tomitigate the uncertainty carried by theweights estimated from
neuroimaging data. Further work is needed to clarify howour approach can be extended toweighted networks,
where the perturbation of links is less straightforward (simple rewiring, perturbation of weights, etc). Similarly,
more elaborated networkmodels (e.g.multi-layer, signed, spatial, or time-varying networks)might, however,
needmore elaborated tools to account for the geometry or the interdependencies of interacting units, andmake
their comparisonsmore robust.
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Table 1. z-values of different distances for brain
and social networks.

Df Dd Dk

Connectomes 13.82 0.18 13.96

Social 9.34 0.98 5.01
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