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Abstract
Introduction: HIV controllers (HIC) maintain viraemia at low levels without antiretroviral treatment and have small HIV reser-
voirs. Nevertheless, they are heterogeneous regarding their risk of infection progression. The study of reservoirs can help elu-
cidate this control. This study aimed to explore the factors implicated in the pathogenesis of HIV infection that are potentially
associated with HIV reservoirs and their dynamics in HIC.
Methods: Individuals living with HIV included in the ANRS-CODEX cohort with at least two HIV-DNA measurements
between 2009 and 2016 were selected. The total HIV-DNA levels had been quantified prospectively from blood samples.
Mixed-effect linear models estimated the HIV-DNA dynamics over time.
Results: The median (interquartile range (IQR)) HIV-DNA level was 1.5 (1.3 to 1.9) log copies/million peripheral blood
mononuclear cells at inclusion (n = 202 individuals). These low levels showed heterogeneity among HIC. Lower levels were
then associated with the protective HLA-B*27/B*57 alleles and/or lower HIV-RNA level at inclusion, negative hepatitis C virus
serology, lower HIV-suppressive capacity of specific CD8 T cells and lower levels of immune activation and inflammation. Inter-
estingly, mathematical modelling of the dynamics of HIV-DNA over time (840 measurements) showed that the number of
infected cells decreased in 46% of HIC (follow-up: 47.6 months) and increased in 54% of HIC. A multivariate analysis indicated
that HLA-B*27/B*57 alleles, a low level of HIV-RNA and a low level of HIV-DNA at inclusion were markers independently
associated with this decrease.
Conclusions: These results offer new insights into the mechanisms of long-term control in HIC. In half of HIC, the decrease
in HIV-DNA level could be linked to tighter viral control and progressive loss of infected cells. These findings allow the identifi-
cation of HIC with a low risk of progression who may not need treatment.
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1 | INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) controllers
(HIC) are a rare group of individuals living with HIV who
maintain HIV viraemia at extremely low or even undetectable
levels in the absence of antiretroviral treatment [1]. Neverthe-
less, they are a heterogeneous group composed of subsets
with different characteristics; some of them experience
immunologic and/or virologic progression [2,3], whereas
others have an extremely high level of control over infection
for years [4]. Several parameters have been associated with
this spontaneous viral control (among others, protective
human leucocyte antigen (HLA) alleles and effective HIV-spe-
cific CD4 and CD8 T-cell responses) [5,6]. The impact of those
parameters on the control of HIV replication and on the evo-
lution of HIV reservoirs determines the long-term future of
these HIC and raises the question of whether some or all of
them need antiretroviral treatment.

The first studies on HIV-1 reservoirs in HIC reported that
compared with progressors, they had smaller HIV reservoirs
in their blood [1,7-12]. Investigating these reservoirs can help
elucidate this long-term control.
This study aimed to explore the factors involved in HIV patho-

genesis (HIV-RNA load, activation and inflammation biomarkers,
the presence of allele HLA-B*27 and/or -B*57 and specific
immune responses) that could be associated with the magnitude
and dynamics of blood HIV reservoirs in HIC. The large biobank
of samples from the French national cohort of HIC (ANRS CO21
CODEX cohort) allowed the investigation of the HIV-DNA
dynamics in blood over the course of several years.

2 | METHODS

The French multicentre CODEX cohort (ANRS) included HIC
based on the following characteristics: an individual living with
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HIV-1 who never received antiretroviral treatment, with a fol-
low-up time longer than five years and with the last five HIV-
RNA plasma measurements lower than 400 copies/mL. In
total, 222 HIC were included in this cohort and received
annual follow-up. HIC from this cohort with at least two mea-
surements of HIV-DNA between 2009 and 2016 were
selected for this study. All patients gave a written informed
consent. The study protocol was approved by the regional
investigational review board (Comit�e de Protection des Person-
nes Ile-de-France VII, Paris, France) and performed in compli-
ance with the tenets of the Declaration of Helsinki.
Total HIV-DNA had been quantified prospectively in frozen

peripheral blood mononuclear cells (PBMC) by an ultrasensi-
tive method using the real-time PCR GENERIC HIV-DNA
assay (Biocentric, Bandol, France), as described previously
[4,13]. Two to six replicates per PCR were performed to anal-
yse a large number of cells, and the threshold ranged from 3
to 83 copies/million PBMC depending on the available cell
number. More than 90% of quantifications were performed
with a threshold <20 copies/million PBMC.
Ultrasensitive HIV-RNA quantifications (US HIV-RNA) were

performed using the Generic HIV real-time PCR assay (Bio-
centric, Bandol, France) or an adaptation of the Roche Cobas
Ampliprep/Cobas Taqman v2. The threshold ranged from 1 to
40 copies/mL, depending on the available plasma volume (0.5
to 15 mL). More than 90% of quantifications were performed
with a threshold <5 copies/mL.
Cumulative HIV viraemia was calculated by summing the

products of the log viral load and the time interval to the pre-
vious measurement over the entire period of follow-up in the
CODEX cohort.
Human leucocyte antigen typing was performed on PBMC

with the complement-dependent microlymphocytotoxic tech-
nique (InGen).
The activation of CD4 and CD8 T cells was analysed at

inclusion as the surface expression of HLA-DR and CD38 by
flow cytometry on fresh whole blood for 111 HIC.
Interferon gamma-induced protein 10 (IP-10) was measured

as a marker of inflammation in plasma from 58 HIC at inclu-
sion with a FlowCytomix bead-based multiplex immunoassay
(eBioscience Inc., San Diego, CA, USA).
The HIV-suppressive capacity of specific CD8+ T cells was

measured in 199 HIC, as thoroughly described previously (log
decrease in p24 production in cultures of CD4+ T cells
infected in vitro when co-culture in the presence of autologous
CD8+ T cells) [14].

2.1 | Statistical analysis

Baseline demographic and immunovirological characteristics at
the time of enrolment were described by the median and
interquartile range (IQR) or 95% confidence intervals (95%
CI), when necessary, for continuous variables and percentages
for discrete variables. Comparisons of qualitative variables
were performed by using chi-square or Fisher’s exact tests,
while comparisons of quantitative variables were performed
with Student’s t-tests or Wilcoxon–Mann–Whitney tests.
Mixed-effect linear models (MELM) were used to estimate
total HIV-DNA dynamics over time. Predictors of the decrease
in HIV-DNA levels were identified by univariate and multivari-
ate logistic regressions. The decrease in HIV-DNA was defined

in two manners. First, we defined the outcome as binary cate-
gories with the values of HIV-DNA at enrolment below the
median, which was considered as the main category of inter-
est in the model, and the values of HIV-DNA above the med-
ian as the referent group. Second, we then considered the
variation in HIV-DNA over time. We determined the slope
over time of HIV–DNA for each HIC included in the study.
We then categorized this slope into two categories of HIC,
those who had a decrease in slope over time, which was the
group of interest, and those who had an increase or a stable
slope over time, which was the referent group. We tested
each factor or marker significantly associated with these out-
comes in two separate univariate models. The factors or mark-
ers significantly associated with a p ≤ 0.05 with each of these
outcomes in univariate analysis were then included in the
multivariate models. Values of p < 0.05 were considered
significant.
HIV-DNA and HIV-RNA loads were set to the threshold

when the markers were undetectable for statistical analysis.
To evaluate the sensitivity and robustness of the results, the
values of HIV-DNA and HIV-RNA below the threshold were
set to a range of randomized values between 1 and the
threshold. All these analyses gave similar results to those
obtained with the threshold value.

3 | RESULTS

3In total, 202 HIV controllers were selected. The patient char-
acteristics at inclusion are reported in Table 1; 50.5% were
men, and 42% had protective HLA-B*27 and/or HLA-B*57 alle-
les (28 HLA-B*27, 54 HLA-B*57, 3 HLA-B*27 and B*57).
Patient characteristics at inclusion according to their status for
the protective HLA-B*27/B*57 alleles are presented in
Table 2. The median (IQR) US HIV-RNA load was 1.4 (0.6 to
2.1) log copies/mL at inclusion. US HIV-RNA was undetectable
in 68 HIC at inclusion. The median follow-up after inclusion in
the cohort was 47.6 months, IQR (26.2 to 61.8). During this fol-
low-up, 114 measurements of US HIV-RNA from 73 HIC were
undetectable among 838 measurements from the 202 HIC.

3.1 | Blood HIV-DNA levels at inclusion

The HIV-DNA levels were low (median (IQR): 32 (20 to 50)
copies/million PBMC (1.5 (1.3 to 1.9) log copies/million
PBMC)). Sixty HIC had undetectable levels of HIV-DNA.
Women had significantly lower HIV-DNA levels than men 25
(95% CI 22 to 33) copies/million PBMC versus 42 (95% CI
26 to 59) copies/million PBMC ((1.40 (95% CI 1.34 to 1.52)
log vs. 1.62 (95% CI 1.42 to 1.77) log; p = 0.02)) at inclusion
in the cohort. There were no differences in HIV-DNA levels
according to transmission groups, sexual preference, transmis-
sion mode or ethnicity. The HIV-DNA level was significantly
higher in HIC with antibodies against the hepatitis C virus
(HCV) (n = 22/202) than in HIC without antibodies against
the HCV 74 (95% CI 47 to 155) copies/million PBMC versus
28 (95% CI 22 to 35) copies/million PBMC (1.87 (95% CI
1.67 to 2.19) log copies/million PBMC vs. 1.45 (95% CI 1.34
to 1.54) log, p = 0.005), although there was no difference in
HIV-RNA load at inclusion between those two groups
(p = 0.25).
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The HIV-DNA level was significantly higher in HIC with
HIV-RNA ≥1 log copies/mL at inclusion (n = 125) than in HIC
with HIV-RNA <1 log copies/mL at inclusion 65 (95% CI 47
to 81) copies/million PBMC versus 22 (95% CI 20 to 24)
copies/million PBMC (1.81 (95% CI 1.67 to 1.91) log copies/
million PBMC vs. 1.34 (95% CI 1.30 to 1.38) log, p = 0.005).
Moreover, it was also significantly higher in HIC with cumula-
tive HIV viraemia above the median (3.48 log) during the fol-
low-up than in other HIC 48 (95% CI 34 to 65) copies/million
PBMC versus 22 (95% CI 20 to 28) copies/million PBMC
(1.68 (95% CI 1.53 to 1.81) log vs. 1.34 (95% CI 1.30 to
1.44) log, p < 0.001). None of the following factors (T-cell

activation (n = 111), HIV-specific CD8 cell responses
(n = 199) or IP-10 (n = 58)) were found to be significantly
associated with HIV-DNA level < 1.5 log copies/million
PBMCs (32 copies/million PBMC) at inclusion.
Overall, a univariate analysis of the entire group showed

that an HIV-DNA level <1.5 log (median value) was associ-
ated with a low HIV-RNA level at inclusion and hepatitis C
seronegativity. There was a borderline association between
an HIV-DNA level <1.5 log and the presence of HLA-B*27
and/or B*57 alleles. Multivariate analysis showed that an
HIV-DNA level <1.5 log was significantly associated with a
low HIV-RNA level at inclusion, the presence of HLA-B*27

Table 1. HIV controller characteristics at inclusion in the ANRS CODEX cohort according to their protective B*27/B*57 HLA allele

status

HIV controllers Overall

HLA-B*27/B*57

alleles (n = 85)

HLA non-B*27/B*57

alleles (n = 117)

Comparison

between HLA

groups (p)

Men, n (%) 102 (50.5) 47 (55) 55 (47) 0.24

Age, median (IQR) 45.2 (39.2 to 51.2) 47 (41 to 54) 44 (38 to 50) 0.009

Transmission blood, n (%) 43 (21.3) 21 (25) 22 (19)

Sex, n (%) 139 (68.8) 54 (64) 85 (73) 0.38

Other, n (%) 20 (9.9) 10 (11) 10 (8)

HIV-RNA (log copies/mL),

median (IQR)

1.4 (0.6 to 2.1) 1.3 (0.6 to 2.1) 1.5 (0.6 to 2.1) 0.97

HIV-DNA (log copies/million

PBMC), median (IQR)

1.5 (1.3 to 1.9) 1.3 (1.3 to 1.9) 1.5 (1.3 to 1.9) 0.41

CD4 T-cell count (cell/mm3),

median (IQR)

765 (600 to 979) 775 (584 to 957) 762 (601 to 997) 0.55

CD4/CD8 ratio,

median (IQR)

1.12 (0.77 to 1.58) 1.2 (0.7 to 1.6) 1.1 (0.8 to 1.6) (n = 115) 0.86

Expression of HLA-DR

and CD38 on CD4 T

cells (%)

0.9 (0.4 to 1.4) 1.4 (1.1 to 2.0) (n = 35) 0.6 (0.4 to 1.1) (n = 76) <0.001

Expression of HLA-DR and

CD38 on CD8 T cells (%)

2.7 (1.2 to 5.7) 4.7 (2.3 to 7.8) (n = 35) 2.2 (0.9 to 4.5) (n = 76) 0.002

Positive HCV serology, n (%) 22 (10.9) 13 (15) 9 (8) 0.09

HLA, human leucocyte antigen; HCV, hepatitis C virus; IQR, interquartile range.

Table 2. Factors associated with HIV-DNA level <1.5 log copies/million PBMCs at inclusion in the CODEX cohort – univariate and

multivariate analyses

Univariate analysis Multivariate analysis

Odds ratio (95% CI) p-value Odds ratio (95% CI) p-value

Women 1.61 (0.93 to 2.81) 0.09 1.27 (0.68 to 2.37) 0.45

HLA-B*27 and/or B*57 1.70 (0.97 to 2.99) 0.065 2.00 (1.07 to 3.76) 0.03

HIV-RNA load at inclusiona 0.36 (0.24 to 0.55) <0.001 0.37 (0.24 to 0.57) <0.001

CD4 T-cell countb 1.03 (0.95 to 1.12) 0.51 0.98 (0.89 to 1.07) 0.62

Positive HCV serology 0.26 (0.09 to 0.73) 0.01 0.25 (0.08 to 0.76) 0.02

HLA, human leucocyte antigen; HCV, hepatitis C virus; IQR, interquartile range; ORs, Odds ratios. aORs calculated for a 1-log10 increase; bORs
calculated for a 200-cell increase.
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and/or B*57 alleles and hepatitis C seronegativity
(Table 2).
Data concerning activation and inflammation were available

for a subgroup of HIC. Those with CD4 T-cell activation as
assessed by the coexpression of HLA-DR and CD38 above
the median value of 0.9% (n = 51) had significantly higher
HIV-DNA loads 50 (95% CI 25 to 81) copies/million PBMC
versus 30 (95% CI 19 to 34) copies/million PBMC (1.70 (95%
CI 1.40 to 1.91) log copies/million PBMC vs. 1.47 (95% CI
1.28 to 1.53) log for the other 60 HIC, p = 0.003). The 55
HIC with CD8 T-cell activation as assessed by the coexpres-
sion of HLA-DR and CD38 above the median value of 2.7%
had significantly higher HIV-DNA levels 50 (95% CI 25 to 74)
copies/million PBMC versus 28 (95% CI 20 to 33) copies/mil-
lion PBMC (1.70 (95% CI 1.39 to 1.87) log copies/million
PBMC vs. 1.44 (95% CI 1.30 to 1.52) log in the other 56,
p = 0.005), p = 0.005). The 82 HIC with CD4/CD8 ratios <1
also had significantly higher HIV-DNA loads than the 118 HIC
with ratios ≥1 (44 (95% CI 31 to 65) copies/million PBMC vs.
23 (95% CI 21 to 33) copies/million PBMC; 1.64 (95% CI
1.49 to 1.81) log copies/million PBMC vs. 1.36 (95% CI 1.33
to 1.52) log, p = 0.001). Noticeably, HIC with higher levels of
CD8 T-cell activation or CD4/CD8 ratios <1 had also signifi-
cantly higher HIV-RNA loads than other HIC (40 (95% CI 23
to 110) copies/million PBMC vs. 20 (95% CI 12 to 40)
copies/million PBMC; 1.60 (95% CI 1.36 to 2.04) log vs. 1.3
(95% CI 1.08 to 1.60) log, p = 0.01, and 63 (95% CI 40 to
107) copies/million PBMC vs. 20 (95% CI 12 to 40) copies/
million PBMC; 1.80 (95% CI 1.60 to 2.03) log vs. 1.30 (95%
CI 1.08 to 1.60) log, p = 0.0004 respectively).
The HIV-suppressive capacity of specific CD8 T cells was

analysed for 176 HIC. Noticeably, those with CD8 T-cell
antiviral capacity above the median value (0.905 log p24
decrease; n = 88) had significantly higher levels of HIV-DNA
(34 (95% CI 25 to 51) copies/million PBMC vs. 23 (95% CI
20 to 36) copies/million PBMC; 1.53 (95% CI 1.39 to 1.71)
log copies/million PBMC vs. 1.36 (95% CI 1.31 to 1.56) log
for the other HIC, p = 0.02). These HIC with CD8 T-cell
antiviral capacity above the median value also had a cumula-
tive HIV viraemia above the median (3.48 log) more fre-
quently than HIC with lower CD8 T-cell activities (n = 54
(61.4%) vs. n = 37 (42.1%), p = 0.01).
On the 58 subjects with available IP-10, HIC with IP-

10 ≥ 50 pg/mL (median) tended to have higher levels of
HIV-DNA than those with IP-10 < 50 pg/mL (1.60 log copies/
million PBMC vs 1.34 log copies/million PBMC, p = 0.06),
whereas no difference in HIV-RNA load was observed
between the two groups (p = 0.66).

3.2 | Dynamics of HIV-DNA levels in PBMC over
years

In total, 840 measurements of HIV-DNA were performed on
sequential samples for the 202 HIC, with a median of five
samples per individual (range 2 to 8). Among them, HIV-DNA
was undetectable in 181 measurements from 88 HIC. MELM
showed that the slopes of HIV-DNA loads over time were sig-
nificantly different between HIC with protective HLA-B*27
and/or B*57 alleles (�0.023 (95% CI �0.051 to +0.005) log
copies/million PBMC per year, namely, �9 copies/million
PBMC in six years) and HIC without HLA-B*27 and/or B*57

alleles (+0.038 (95% CI +0.010 to +0.065) log copies/million
PBMC per year, namely, +22 copies/million PBMC in six years,
p = 0.002), the latter of whom experienced a small but signifi-
cant increase in the level of HIV-DNA over time (p = 0.006)
(Figure 1).
The HIV-DNA levels of HIC who always had HIV-RNA ≥1

log copies/mL during follow-up (n = 81) significantly increased
over time (slope: +0.060 (95% CI +0.029 to +0.092) log/year,
namely, +42 copies/million PBMC in six years, p < 0.0001)
and differed significantly (p < 0.0001) from the slope of the
HIV-DNA levels of other HIC (slope: �0.022 (95% CI �0.046
to +0.001) log/year, namely, �31 copies/million PBMC in six
years) (Figure 2).
There was no difference in HIV-DNA slopes according to

the HIV CD8 T-cell response. None of the following factors
(T-cell activation, HIV-specific CD8 cell responses or IP-10)
were found to be significantly associated with a decrease in
HIV-DNA over time.
Overall, HIC for whom HIV-DNA load decreased (n = 93,

46%) were more often women (p = 0.025), were significantly
more likely to have HLA-B*27 and/or B*57 alleles
(p = 0.001), had a significantly lower HIV-RNA load at inclu-
sion (median (95% CI): 0.60 (0.30 to 1.02) log copies/mL vs.
1.78 (1.70 to 2.01) log, p < 0.001) and had a significantly
lower HIV-DNA load at inclusion (median (95% CI): 1.30 (1.30
to 1.34) log copies/million PBMC vs. 1.76 (1.60 to 1.89) log,
p < 0.001). The two groups had no difference in CD4 T-cell
counts at inclusion (median (IQR): 864 (792 to 933) vs. 787
(725 to 848) cells/mm3, p = 0.11). A multivariate analysis indi-
cated that the presence of HLA-B*27 and/or B*57 alleles, a
low HIV-RNA level at inclusion and a low HIV-DNA level at
inclusion were independently associated with the decrease in
HIV-DNA load over time (Table 3). Noticeably, HIC who expe-
rienced a decrease in HIV-DNA level over time had a slope of
HIV-RNA load that was not different from 0 (p = 0.75),
whereas HIC who experienced an increase in HIV-DNA over
time also experienced a significant increase in HIV-RNA
(+0.036 log copies/mL per year, p = 0.01).

4 | DISCUSSION

The question of the evolution of HIV reservoirs over the
course of long-term control, which is characteristic of HIC,
may offer new insights into the mechanisms of HIV persis-
tence in HIC. The ANRS CODEX cohort is a large cohort with
long-term follow-up, and it provides the opportunity to study
HIV reservoirs, owing to the regular sampling of blood col-
lected over years. This marker is not perfect as it includes
both integrated and unintegrated forms and could overesti-
mate the reservoir size. However, the role of the defective
forms is associated with viral proteins production, resulting in
immune activation, which participates to the pathogenesis and
maintenance of HIV reservoirs [12,15,16]. The predictive value
of total HIV-DNA level on the course of infection indicates
that it is clinically relevant [12,15,16] even if it quantifies all
HIV-DNA forms, including infectious and defective viruses
[17,18]. It is then a convenient marker to monitor the reser-
voir size in such a large series of HIV-infected patients with
frozen samples. Moreover, this assay has a greater precision
and reproducibility in the context of a low level of detection
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than is possible for other markers of HIV reservoirs
[12,15,16]. Indeed, this marker as well as HIV-RNA must be
quantified by ultrasensitive assays, which are needed in the
context of control in HIC.

In this large cohort of 202 HIC, we confirmed that HIV
blood reservoirs are low; in fact, the reservoirs in HIC are
much lower than those in adults and children who have
received combined antiretroviral treatment for several years
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Figure 1. Model of the dynamics of the total HIV-DNA levels, with 95% confidence intervals, in the blood of HIV controllers during a
follow-up period of more than six years, according to their HLA-B*27 and/or B*57 status.
Slope of HIV-DNA load for HIC with protective HLA-B*27 and/or B*57 alleles: �0.023 log copies/million PBMC/year; for HIC without HLA-B*27
and/or B*57 alleles: +0.038 log copies/million PBMC/year, p = 0.002. Solid lines indicate the estimated means and dashed lines indicate the 95%
confidence intervals around means log 10 DNA copies/million over time. HIC, HIV controllers.
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Slope of HIV-DNA load for HIC who always had HIV-RNA ≥1 log copies/mL during follow-up: +0.060 log/year; for other HIC: �0.022 log/year;
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[1,12,19]. Nevertheless, various levels of HIV-DNA were
observed in HIC, including among individuals with HLA-B*27
and/or B*57 alleles. We identified a group of HIC with particu-
larly low HIV-DNA levels. The different parameters associated
with these low levels of HIV-DNA confirmed a unique mecha-
nism of control that is very efficient in those “super” HIC. Con-
versely, higher HIV-DNA levels were associated with higher
frequencies of activated CD4+ T cells, which was in accordance
with previous data [20]. IP-10 is a pro-inflammatory chemokine
that is positively correlated with the expression of activation
markers in CD8 and CD4 T cells [21] and is lower in HIC who
maintain CD4 T-cell counts >500 cells/mm3 for more than
seven years after HIV-1 diagnosis [22]. IP-10 levels were posi-
tively correlated with levels of blood reservoirs in the present
study. Higher HIV-DNA levels were also associated with a
higher HIV-suppressive capacity mediated by CD8 T cells. This
completes our previous data demonstrating that HIV con-
trollers with higher levels of reactivable viruses had higher
levels of CD8 T-cell responses [23]. These results indicate that
a strong HIV-specific CD8+ T-cell response during the chronic
phase of control is maintained in those HIV controllers with
detectable levels of viral replication. When the control is strong
enough, the systemic CD8 T-cell response (and activation)
would decrease because most replication-competent viruses
would be cleared by the efficient immune responses, or unable
to replicate due to intracellular mechanisms of viral restriction
[24], and periodic reactivation can be locally controlled by
immune responses. Lastly, the higher HIV-DNA loads observed
in HIC seropositive for HCV could be linked to their higher
levels of activation and inflammation. Moreover, positive HCV
serology has been associated with a higher risk of progression
in HIC [3,25].
Interestingly, we report for the first time in such a large

cohort with long-term follow-up that the dynamics of HIV
reservoirs vary according to different groups among HIC. Indi-
viduals with higher levels of viral replication during the follow-
up experienced an increase in HIV reservoir size, and this can
be linked to the higher risk of progression that has been pre-
viously described in such patients [25]. Interestingly, we report
a decrease in HIV-DNA level over the course of years in half
of HIC, suggesting a progressive loss of infected cells. Inter-
estingly, a decrease in HIV reservoir size over time and a low
level of contribution of long half-life T cells to this reservoir
were also observed in post-treatment controllers who lacked
protective HLA alleles [26]. The negative slope observed in
HIC is similar to that observed for patients after 32 months

of combined antiretroviral therapy initiated as soon as the pri-
mary infection (�0.032 log/year) [27]. This is in contrast with
the significant HIV DNA increase that we described using the
same assay, during the natural history of HIV infection in an
historical cohort of non-controller patients (before the cART
era). The median baseline HIV DNA load in these non-control-
ler patients was much higher than for HIV controllers
(1250 copies/million PBMC). With the same mathematical
models, we described an increase of +0.105 log copies/million
PBMCs/year for rapid progressors, who developed AIDS dur-
ing follow-up, (n = 34, 111 samples; +5332 copies/million
PBMC over six years) and +0.096 log copies/million PBMCs/
year for slower progressors, who did not reach the AIDS
stage during the follow-up time (n = 63, 229 samples; +4709
copies/million PBMC over six years) [28].
The decrease in HIV-DNA is notably observed in HIC with

the protective HLA-B*27 and/or B*57 alleles, which are linked
to efficient responses against HIV [29]. This decrease in HIV-
DNA could then be one of the mechanisms underlying the asso-
ciation of this allele with protection against HIV-1 disease pro-
gression in controllers, as has been recently described [22].
HLA-B*57 has been previously associated with the restriction
of viral replication in long-term non-progressors (LTNPs)
[30,31]. Moreover, we previously reported that LTNPs with
HLA-B*27/B*57 had a lower infection level of central memory
CD4 T cells than other LTNPs [32]. Central memory CD4 T
cells are characterized by long half-lives and high proliferative
capacities, and they play a major role in immune responses. In
LTNPs with HLA-B*27 and/or B*57 alleles, central memory
CD4 T-cell protection was correlated with the preservation of
central memory CD4 T-cell counts, which correlated positively
with the magnitude of HIV Gag-specific CD8 T cells [32]. The
fact that cells with short half-lives contribute substantially to
the HIV reservoirs in those individuals with HLA-B*27/B*57
alleles could help account for the decrease in HIV reservoir size
in these HIC, because cells with short half-lives can be more
easily eliminated than long-lived central memory CD4 T cells.
HIC with HLA-B*27 and/or B*57 alleles have a tighter control
of infection and as a consequence they may more efficiently
eliminate infected cells.
Given that low levels of HIV-RNA, low levels of HIV-DNA

and the presence of HLA-B*27 and/or B*57 alleles are signifi-
cantly and independently associated with a decrease in HIV
reservoir size in these HIC, this decrease could be linked to
several mechanisms, including a relative intrinsic resistance of
CD4 T cells/macrophages to infection, as previously described

Table 3. Factors associated with a decrease in HIV-DNA over time in the CODEX cohort – univariate and multivariate analyses

Univariate analysis Multivariate analysis

Odds ratio (95% CI) p-value Odds ratio (95% CI) p-value

Women 1.90 (1.08 to 3.32) 0.025 1.47 (0.73 to 2.96) 0.28

HLA-B*27 and/or B*57 2.68 (1.51 to 4.76) 0.001 3.96 (1.93 to 8.13) <0.001

HIV-RNA load at inclusiona 0.25 (0.16 to 0.40) <0.001 0.31 (0.19 to 0.52) <0.001

HIV-DNA load at inclusiona 0.12 (0.06 to 0.27) <0.001 0.19 (0.09 to 0.44) <0.001

Positive HCV serology 0.51 (0.20 to 0.31) 0.16 0.82 (0.25 to 2.62) 0.73

HLA, human leucocyte antigen; HCV, hepatitis C virus; IQR, interquartile range; ORs, Odds ratios.
aORs calculated for a 1-log10 increase.
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[24]; a low activation level of CD4 T cells that limits the num-
ber of potential target cells for new infection; a low replenish-
ment by infection of new cells due to low residual replication
which can persist in natural controllers as previously
described [33-35]; and a low level of proliferation of infected
cells because of the protection of long-lived T cells against
HIV infection and a short half-life of HIV-infected cells for the
same reasons.
Another non-exclusive hypothesis to explain the decrease in

infected cells over time could be linked to the composition of
total HIV-DNA. The total HIV-DNA quantified in this study
thus includes all forms of HIV-DNA, including integrated HIV-
DNA, the main form of HIV persistence, as well as episomal
and linear unintegrated forms. Graf et al. described that elite
suppressors had large excess amounts of 2-LTR HIV-DNA
among the total HIV-DNA in their blood [11]. Unlike the inte-
grated forms, these forms are diluted during cell division and
can be progressively eliminated over time.
We hypothesize that the decrease in HIV-DNA con-

tributes to the maintenance of a high degree of control,
and vice versa, and can partly explain the clinical, immuno-
logic and viral characteristics of HIC. These findings rein-
force the fact that there is a well-balanced group of HIC
with a very low risk of progression. HIC, a rare group iden-
tified among the HIV-positive population when they have
several years of control, may not all need to initiate an
antiretroviral treatment. A personalized management and
precision medicine could be beneficial for optimizing the
clinical care of these individuals.

5 | CONCLUSIONS

To conclude, among HIC, half of individuals present a very
high level of control of the infection, with a slow and progres-
sive decrease in the HIV blood reservoir and a very low level
of viral replication. As HIC have been proposed as a model for
remission, this subgroup with a very high degree of control
may represent the most informative patient population in this
regard. Some factors are associated with this unique level of
control, namely, very low levels of HIV replication, very low
total HIV-DNA levels and the presence of protective alleles.
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Service de Dermatologie, Hôpital Saint-Jacques, Besanc�on. Dr
Helder Gil, Service de Maladies Infectieuses et Tropicales,
Besanc�on. Dr Laurence G�erard, Pr Eric Oksenhendler, Service
d’Immuno-pathologie, Hôpital Saint Louis, Paris. Pr Fr�ed�eric
Lucht, Mme V�eronique Ronat, Service de Maladies Infec-
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Hôpital Henri Duffaut, Avignon. Dr Yves Welker, Service de
maladies Infectieuses, CHI de Poissy-Saint Germain en Laye,
Saint Germain en Lay. Dr Alain Lafeuillade, Mme Philip Gis�ele,
Service d’Infectiologie, CHITS Hopital Sainte Musse, Toulon.
Pr Christophe Rapp, Melle Lerondel, Service des Maladies
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HCL- Hôpital de la Croix Rousse, Lyon. Pr Patrick Merci�e,
Service de Maladies Infectieuses et Tropicales, CHU- Hôpital
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