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Abstract: Termites are undoubtedly amongst the most important soil macroinvertebrate decomposers
in semi-arid environments in India. However, in this specific type of environment, the influence of
termite foraging activity on soil functioning remains unexplored. Therefore, this study examines
the link between the quality of litter and the functional impact of termite feeding preferences on
soil properties and soil hydraulic conductivity in a deciduous forest in southern India. Different
organic resources (elephant dung: “ED”, elephant grass: “EG”, acacia leaves: “AL” and layers of
cardboard: “CB”) were applied on repacked soil cores. ED appeared to be the most attractive resource
to Odontotermes obesus, leading to a larger amount of soil sheeting (i.e., the soil used by termites for
covering the litter they consume), more numerous and larger holes in the ground and a lower soil
bulk density. As a consequence, ED increased the soil hydraulic conductivity (4-fold) compared with
the control soil. Thus, this study highlights that the more O. obesus prefers a substrate, the more this
species impacts soil dynamics and water infiltration in the soil. This study also shows that ED can be
used as an efficient substrate for accelerating the infiltration of water in southern-Indian soils, mainly
through the production of galleries that are open on the soil surface, offering new perspectives on
termite management in this environment.

Keywords: Odontotermes obesus; sheeting; termite foraging activity; litter quality; organic resource
consumption; soil water dynamic

1. Introduction

Soil biodiversity regulates a large number of ecological functions, such as the degradation of
litter, the cycling of nutrients or the regulation of water dynamics in the soil [1,2]. Amongst soil
organisms, termites are increasingly recognized as playing a role in the provisioning of key ecosystem
services [3,4]. Termites are ubiquitously amongst the most abundant and active litter decomposers in
tropical environments [5] and are also considered significant soil bioturbators or ecosystem engineers
because of the biostructures they produce [6,7]. Indeed, a large body of literature describes the specific
soil biological, chemical and physical properties of termite mound nests [8–17] and the link between
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these properties and the ecological needs of termites (i.e., to main an homeostatic environment within
their nest for the colony and the fungus to grow [18–20]).

However, less is known about the biostructures termites produce while they forage on the ground.
Indeed, termites also build belowground galleries for foraging and translocate large quantities of
soil to the surface (i.e., so-called sheetings) to cover the litter they consume (e.g., leaves, wood and
herbivore dung) [7], and protect themselves from light, desiccation and predators [21–24]. A recent
review revealed that sheetings have different soil properties than the surrounding top-soil, depending
on the properties of the top-soil and the strategy developed by termites (i.e., favouring clay or organic
matter for ensuring the stability of sheetings) [23]. Less is known, however, about the quantity of
sheetings that termites produce on the ground and whether this quantity varies with the quality of the
substrate termites consume [25,26]. The production of sheeting is associated with the construction of
belowground galleries that are used by termites to bring litter into their nest. These galleries have a
significant and positive impact on water infiltration in soil and therefore reduce the susceptibility of
the soil to erosion [27–29], although the opposite can be observed when soil sheetings collapse and
produce a structural crust on the ground, limiting water infiltration and increasing water runoff [30].

Since most of the research on the functional impact of termite foraging activity has been carried
out in Africa and to a lesser extent in South-America and Australia, the aim of this research was to
determine whether termite foraging activity varies with the quality of the litter in a southern-Indian
forest. More precisely, this study also questioned the relationship between termite food preferences
and the abundance of soil sheeting on the ground and water infiltration in the soil.

2. Materials and Methods

2.1. Study Site

This study was performed during the dry season from February to March 2016 in the forest of
the Jubilee Garden of the Indian Institute of Science (13◦01′17′ ′ N and 77◦34′14′ ′ E) in Bangalore city,
Karnataka state, India. This ecosystem has a tropical savannah climate with distinct wet and dry
seasons, and the annual rainfall ranges from 900 to 1100 mm yr−1 [22,31]. The soil is described as an
Alfisol based on U.S. Soil Taxonomy (United States Department of Agriculture, USDA) or a Luvisol
according to Food and Agriculture Organization (FAO) classification. The first soil layer (0–10 cm
depth) is mainly sandy (≈60%) and contains approximately 10 to 20% clay, mainly kaolinite [32]. The
soil pH is 5.7, and its C content reaches 2.2% on average [22]. The vegetation is a deciduous forest
dominated by acacia trees, mainly Acacia auriculiformis.

In this study site, the litter-feeding termites are mainly Odontotermes feae, O. obesus and O. feoides,
and their activity involves the production of soil sheetings on wood logs or fallen leaves on the
ground [22,31]. Odontotermes spp. belong to the Macroterminae subfamily, also named fungus-growing
termites. If Odontotermes spp. may appear as major crop pests in some environments, they also play an
important role in more natural environments where they act as key decomposers and bioturbators.

2.2. Experimental Design

Repacked soil cores were prepared using plastic cylinders (PVC) (5 cm in height and 15 cm in
diameter). The soil was sampled from the 0–10 cm top-soil layer, air dried and sieved through a 2 mm
mesh before being compacted in the cylinders until reaching a density similar to that found in the
field (i.e., 1.2 g cm−3). In total, each cylinder contained 500 g of soil (dry weight, DW). Cylinders
were inserted into the soil to a depth of 3 cm at randomly chosen locations (mean average distance
between samples: ≈2 m). The soil in the cylinders was covered by organic resources, namely leaves
of elephant grass (Pennisetum purpureum: “EG”, 16 g DW) or acacia (Acacia auriculiformis: “AL”, 11 g
DW), elephant dung pats (Elephas maximus: “ED”, 230 g DW) or 10 cm2 layers of cardboard (“CB”,
14 g DW). These substrates were chosen because of their availability and attractiveness to termites
(n = 25 with 4 treatments + 1 control without organic resource × 5 replicates).
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2.3. Biodiversity and Food Consumption Rates

After two months, the soil macrofauna within or below the organic resources were sampled and
preserved in 70% alcohol. Individuals were identified and their numbers were counted. Organic
substrates were collected, air dried and weighed. The food consumption rate was calculated as the
percentage of weight lost.

2.4. Termite Bioturbation

At the end of the experiment, soil sheetings that covered the organic resources were collected,
dried at 40 ◦C for 2 days and weighed. The soil turnover activity was measured by dividing the
dry weight of sheetings by the quantity of organic material removed [26]. The number and diameter
of galleries open on the surface were also measured with a caliper. Soil hydraulic conductivity at
saturation (Ksat) was measured with the Beerkan method [33–35]. A fixed volume of water (100 mL) was
poured into the cylinder, and the time needed for the water to infiltrate was measured. The procedure
was repeated between 7 to 10 times until a steady state of infiltration was reached. The soil cores
(≈530 cm3) were then used to determine the soil bulk density, ρ (g cm−3) and the initial volumetric
water content, θi (m3 m−3), was measured after sampling the surrounding top-soil environment
(0–5 cm depth). The results were analysed with the original BEST algorithm [35].

Root biomass was measured in the soil cylinders. Samples were placed in beakers and soaked
in water for at least 30 min, such that the soil aggregates could be easily broken down, after sieving
through a 200 µm mesh. Roots were rinsed to remove soil particles and dried at 60 ◦C for 48 h.

2.5. Statistical Analyses

The normality of residuals was tested using the Shapiro–Wilk test. One-way analysis of variance
(ANOVA) and least significant difference (LSD) tests were performed to assess differences between
means. Partial least squares regression (PLSR) analysis was used to identify important variables
linked to soil hydraulic conductivity. Correlations between variables were tested using the Pearson
method. All statistical calculations were carried out using R version 3.5.1 (https://www.r-project.org/).
Differences among treatments were declared significant at the < 0.05 probability level.

3. Results and Discussion

3.1. Organic Resource Consumption by Termites

At the end of the experiment, termites were only found in or beneath the elephant dung pads.
A very small amount of earthworm casts was found beneath two cardboard pieces. Termite individuals
were all identified as belonging to O. obesus (Termitidae, Macrotermitinae), thus confirming the
importance of this termite species in southern-Indian ecosystems [17]. Termite occurrence was
associated with a consumption of the organic material, as shown by the more important consumption
rate of ED than the other organic resources (Figure 1, ANOVA test, F4,20 = 5.30, p = 0.005), while no
differences occurred between the AL, EG and CB treatments (p > 0.05 between each pair).

https://www.r-project.org/
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Figure 1. Rate of organic resource consumption by termites, in % of the initial organic resource weight
loss (elephant dung (“ED”), acacia leaves (“AL”), elephant grass (“EG”) and cardboard (“CB”)), Error
bars represent the standard error of the mean. Histograms with the same letter are not significantly
different at p ≥ 0.05 (n = 5). N/A for non-applicable in the case of the control.

The opportunistic consumption of mammalian dung by termites has been described in Africa for
a long time [36,37]. Our study is, however, the first to stress the higher attractiveness of elephant dung
to O. obesus in Asia compared to other organic resources. The rapid detection and consumption of ED
by termites is in line with Cheik et al. [38], who found that elephant dung can be used to stimulate
termite foraging activity in southern India. The low attractiveness of EG, CB, and AL to termites was
more surprising since cellulose baits are commonly used to measure termite foraging activity in dry
regions [39,40] and because termites respond the most to substrates with the highest C:N ratio [41].
We explain this low activity in EG, CB and AL treatments by the high attractiveness of ED in terms
of nutrient content and/or because it provides a thermal shadow [42]. However, our experiment
only lasted for 2 months, and it is likely that these substrates would have been more consumed if the
experiment had lasted longer. Consequently, it can be concluded from this experiment that elephant
dung is a sporadic and unpredictable but effective resource for termites and might be preferred over
plant litter (EG and AL) or only cellulose (CB).

3.2. Relationship between Feeding Preferences and Soil Functioning

Figures 2–4 show that the preference of termites for ED was associated with a more important
production of soil sheeting and more numerous and larger pores at the soil surface compared with
the other substrates (p < 0.05 in all cases, Table 1). Conversely, no significant differences in sheeting
production and diameter of the foraging holes were found between the AL, EG, CB and CTRL
treatments (p > 0.05 in all cases), while the numbers of foraging holes in the CB and AL treatments
were intermediate to those for the ED, EG and CTRL treatments.

Table 1. Results of the ANOVA test showing the influence of organic resource quality (control, elephant
dung, elephant grass, acacia leaves and cardboard) on the food consumption rate (%), diameter (mm)
and number of foraging holes, amount of sheetings (g), soil bulk density (g cm−3), soil turnover activity
(g soil g consumed−1) and root biomass (mg g−1) (n = 5 in all cases).

F4,20 p-Value

Consumption rate 5.29 0.004
Diameter of holes 7.78 <0.001
Number of holes 13.04 <0.001

Amount of sheetings 6.37 0.004
Soil bulk density 4.59 0.009
Turnover activity 1.63 0.207

Roots biomass 1.80 0.168
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Figure 2. Amount of termite sheeting (g) for each treatment. Treatments are: control (“CTRL”), elephant
dung (“ED”), acacia leaves (“AL”), elephant grass (“EG”) and cardboard (“CB”). Error bars represent
the standard error of the mean. Histograms with the same letter are not significantly different at
p ≥ 0.05 (n = 5).
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Figure 3. Number of foraging holes observed on the soil surface. Treatments are: control (“CTRL”),
elephant dung (“ED”), acacia leaves (“AL”), elephant grass (“EG”) and cardboard (“CB”). Error bars
represent the standard error of the mean. Histograms with the same letter are not significantly different
at p ≥ 0.05 (n = 5).
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Figure 4. Average diameter of foraging holes (in mm). Treatments are: control (“CTRL”), elephant
dung (“ED”), acacia leaves (“AL”), elephant grass (“EG”) and cardboard (“CB”). Error bars represent
the standard error of the mean. Histograms with the same letter are not significantly different at p ≥
0.05 (n = 5).

These findings are clearly in line with those from studies carried out in Africa [25,43–45] that
showed that fungus-growing termites bring soil from different soil layers to build the sheetings that
they use to cover themselves and the food they consume. Although the specific chemical, physical
and biological properties of termite sheetings have been previously described [23], demonstration of
the relationship between termite feeding preferences and the production of sheetings above-ground
or the construction of galleries below-ground remains limited to studies that have been carried out
in Africa [25,46,47]. In our study, no significant difference in soil turnover activity was measured
between treatments (Table 1), suggesting that the returns on investment (i.e., the amount of energy
spent on building the sheeting per the amount of energy received from the organic resources) were
similar despite the difference in food quality and preference. However, the production of sheeting was
positively related to the consumption rate and the diameter of foraging holes (Figure 5).
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Despite the fact that these results have to be interpreted with caution because variables reached
important values only for the ED treatment but remained very low for the other treatments, the
findings of our study suggest that the amount of sheeting can be used as an indicator of O. obesus
feeding preference. These findings also suggest that the more O. obesus termites prefer a substrate,
the more they circulate within galleries and, as a consequence, increase the diameters of the gallery
openings. This hypothesis explains the significant reduction in soil bulk density in the ED treatment
compared with the other treatments (p < 0.05 in all cases, Figure 6), as well as the negative relationship
of soil bulk density with the diameter of foraging holes and the quantity of soil sheeting (Figure 5).
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Figure 6. Soil bulk density (g cm−3) below the treatments (control (“CTRL”), elephant dung (“ED”),
acacia leaves (“AL”), elephant grass (“EG”) and cardboard (“CB”)). Error bars represent the standard
error of the mean. Histograms with the same letter are not significantly different at p ≥ 0.05 (n = 5).

Odontotermes spp. mainly build superficial and horizontal galleries localized in the first centimetre
of the soil [31,47]. Our study shows that the production of these foraging galleries was associated
with a reduction in soil bulk density in the ED treatment as well as an increase in Ksat of 4 and
2.6-fold in the ED and CB treatments compared with the CTRL treatment, respectively (ANOVA test,
F4,10 = 8.36, p = 0.003, Figure 7). Conversely, no significant differences were measured in the AL, EG
and CTRL treatments (p > 0.05). These results are in line with those found in Cheik et al. [31] (3-fold)
and Kaiser et al. [26] (1.5 to 9.28-fold), although termite foraging is usually increased by only 1.5- to
3-fold [27,47,48].
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Figure 7. Soil hydraulic conductivity (Ksat, in mm s−1) for the different treatments (control (“CTRL”),
elephant dung (“ED”), acacia leaves (“AL”), elephant grass (“EG”) and cardboard (“CB”)). Error bars
represent the standard error of the mean. Histograms with the same letter are not significantly different
at p ≥ 0.05 (n = 5).

The diameter and number of holes were identified as the most important factors associated with
Ksat (PLSR model, Q2 = 0.52, Root Mean Square Error of Prediction (RMSEP) = 0.042, Table 2), which
is in line with the general assumption that a higher soil macroporosity increases the soil hydraulic
conductivity [49].

Consequently, the findings of this study confirmed the general assumption that the stimulation of
termites can accelerate the infiltration of water in soil, mainly through the production galleries that are
open on the soil surface [26–28,47,50].

Table 2. Variable important in the projection (VIP) scores from the most relevant variables used for the
PLSR describing the evolution of soil hydraulic conductivity at saturation (Ksat).

Variables VIP Scores

Amount of sheetings 6.97
Decomposition rate 0.99

Hole diameter 0.02
Hole number 0.01

4. Conclusions

Although a large number of studies have reported a link between termite feeding preferences
and soil bioturbation in Africa, this relationship remains poorly understood in Asia where services
provided by termites can differ, for instance due to different soil, climate and termite assemblage. This
study is the first to stress that (i) the more termites prefer a substrate, the more they impact soil dynamic
and water infiltration in the soil; (ii) elephant dung is an efficient amendment for stimulating termite
activity in southern India; and (iii) its consumption by termites is associated with an increase in soil
dynamic and water infiltration in the soil. In conclusion, we argue that an economic and agronomical
study is now needed to determine whether this substrate can be used in cultivated agro-systems to
attract termites and promote soil translocation, aeration and water infiltration.
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