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ARTICLE

X-ray nanotomography of coccolithophores reveals
that coccolith mass and segment number correlate
with grid size
T. Beuvier 1,2, I. Probert3, L. Beaufort4, B. Suchéras-Marx4, Y. Chushkin2, F. Zontone2 & A. Gibaud1

Coccolithophores of the Noëlaerhabdaceae family are covered by imbricated coccoliths,

each composed of multiple calcite crystals radially distributed around the periphery of a grid.

The factors that determine coccolith size remain obscure. Here, we used synchrotron-based

three-dimensional Coherent X-ray Diffraction Imaging to study coccoliths of 7 species of

Gephyrocapsa, Emiliania and Reticulofenestra with a resolution close to 30 nm. Segmentation of

45 coccoliths revealed remarkable size, mass and segment number variations, even within

single coccospheres. In particular, we observed that coccolith mass correlates with grid

perimeter which scales linearly with crystal number. Our results indirectly support the idea

that coccolith mass is determined in the coccolith vesicle by the size of the organic base plate

scale (OBPS) around which R-unit nucleation occurs every 110–120 nm. The curvation of

coccoliths allows inference of a positive correlation between cell nucleus, OBPS and coccolith

sizes.
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Coccolithophores are unicellular marine planktonic algae
that have significantly impacted global biogeochemical
cycles since their appearance around 220 million years

ago, both via their ability to produce organic carbon (photo-
synthesis) and inorganic carbon (calcification). Coccolithophores
produce calcareous scales (coccoliths) inside the cell that are
subsequently extruded to form an exoskeleton, termed a cocco-
sphere. Despite their minute (micrometer-scale) size, coccoliths
are biogeochemically relevant because coccolithophores are one
of the most abundant phytoplankton groups in the marine
environment, to such an extent that these unicellular algae are
considered being the main extant calcifying organisms with a
coccolith production of ~1026 year−1 1–5.

Therefore understanding how environmental factors influence
the degree of calcification of coccoliths is of significant interest. In
particular the main current focus concerns the potential impact of
ocean acidification. At present, the ocean absorbs about one-third
of atmospheric CO2 emissions, resulting in a shift in seawater
carbonate chemistry: while dissolved CO2 and HCO3

− con-
centrations increase, pH, CO3

2− concentration and calcium car-
bonate saturation states (Ω) decrease6,7. This global ocean change
affects a variety of marine life forms. In particular, ocean acid-
ification has been reported to decrease the degree of biogenic
calcification of corals8,9, echinoderms10, and foraminifera11,12.
However, despite their crucial role in ocean, the response of
coccolithophore calcification to ocean acidification is far from
being well understood13–17. One of the reasons for this is the
technical difficulty of measuring the mass of individual coccoliths
which weighs <400 pg18, with coccoliths produced by members of
the most widespread extant coccolithophore family, the Noë-
laerhabdaceae (including the genera Gephyrocapsa, Emiliania,
and Reticulofenestra), being particularly light (i.e., mass ranging
from 1 to 30 pg).

Average coccolith and coccosphere mass can be obtained in
bulk samples from measurements of total calcite mass and total
cell concentration18–24, but measuring the mass of individual
coccoliths is more challenging. Mass can be estimated from in-
plane and out-of-plane 2D images18 or from resonance frequency
difference as demonstrated for a quite large (~12 µm) coccolith of
Coccolithus pelagicus25. However, the only technique to date able
to determine the mass of large quantities of individual coccoliths
is polarized light microscopy (PLM) which deduces the in-plane
thickness of individual coccoliths from the brightness observed in
circular or cross polarization17,26–29.

Three-dimensional X-ray coherent diffraction imaging (3D-
CXDI) is a novel synchrotron technique based on Fourier
transformation of a numerically-phased coherent scattering pat-
tern oversampled in the far-field which provides the 3D electron
density distribution of isolated objects. The spatial resolution of
3D-CXDI is currently < 100 nm30,31, i.e., intermediate between
optical and electron microscopy, hence the technique is well
suited to image coccospheres of 1–7 μm size and to determine the
mass of individual coccoliths. Moreover, 3D-CXDI has the key
advantage compared to PLM of being independent of the c-axis
orientation of calcite crystals. In addition, 3D-CXDI can access
not only the thickness of coccoliths but all morphological features
of these calcareous plates even within a single coccosphere.

The mass of coccoliths varies considerably between and within
species13,27. Amongst the main environmental variables, carbo-
nate chemistry13, alkalinity17, and salinity32, as well as phosphate
level33–35 and trace metal concentration36 of seawater may affect
the calcification of coccoliths. However, during their formation
coccoliths are not in direct contact with seawater but are rather
formed inside the cell, generally one at a time, in a distinct
compartment called the coccolith vesicle (CV)37,38. The proximal
side of the CV is closely apposed to the nuclear membrane and

the distal side is intimately associated with a reticular body (RB)
in E. huxleyi and G. oceanica39–41 and probably also in R. parvula.
Coccolithogenesis within the CV begins with the formation of a
protococcolith ring at the periphery of an underlying organic
base-plate scale (OBPS)38,40,42,43. In other words, the perimeter of
the OBPS may be similar to that of the peripheral grid, which is
constructed by the intersection between the tube and the grid
(called also “central area”). By assuming that the peripheral grid
perimeter is an ellipse, the measurement of the major axis ag and
the minor axis bg of the grid allows determination of p from

p ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðag2 þ bg
2Þ=2� ðag � bgÞ2=8

q

. By using X-ray tomo-
graphy to image coccolithophores in three dimensions, our work
highlights that the mass m and the segment number n of noë-
laerhabdacean coccoliths correlate with grid perimeter p accord-
ing to m ~ p3.125 and n ~ p. In particular, the proportionality
between n and p means that the width of the segments is a
constant close to 110–120 nm, whatever the coccolithophore
species. As the grid size of mature coccoliths is related to the
OBPS size around which nucleation and growth of the coccoliths
took place, we propose that the outer perimeter of the OBPS fixes
the CaCO3 nucleation site number (with one site every 110–120
nm) and as a consequence the segment number. We therefore
speculate that the large variability in mass and segment number
of coccoliths in a single coccosphere may originate from the
variability in size of the OBPS during the cell growth/division
cycle.

Results
X-ray nanotomography of coccolithophores. Details about the
principle of CXDI, the real resolution and the analysis methods
are given in Supplementary Note 1 and Supplementary Figs. 1–5.
Comparisons between SEM and 3D-CXDI images validated the
accuracy of 3D-CXDI reconstructions as shown for G. oceanica in
Fig. 1a, b. Additional 3D-CXDI reconstructions for other noë-
laerhabdaceaen species are displayed in Fig. 1c. The coccospheres
had external diameters ranging from ΦCS= 4.1 µm for G. eric-
sonii to ΦCS= 7.3 µm for G. oceanica and contained between CN

= 10 and 24 coccoliths per coccosphere. As reported for other
coccolithophore species44,45, the larger the coccosphere, the
longer the coccolith major axis (Supplementary Fig. 6). E. huxleyi
RCC1212 was the only culture strain that had a coccosphere with
two layers of coccoliths (Supplementary Fig. 7).

From coccospheres to coccoliths. Individual coccoliths were
extracted from 3D matrices of the coccospheres using manual
segmentation of the 3D array via the ImageJ software (Supple-
mentary Fig. 3). Top distal views show the elliptical shape of
coccoliths with shield excentricities ranging from 0.48 to 0.65,
whereas central area eccentricities range from 0.66 to 0.81
(Fig. 2a, Supplementary Fig. 8, Supplementary Table 1). These
eccentricities may originate from the elliptical shape of the OBPS
on/around which the nucleation of the coccolith took place. In
addition, cross-sections show that both shields of the coccoliths
are out-of-plane inclined by about α ~ 30 ± 5° along the major
axis and α ~ 25 ± 5° along the minor axis (Fig. 2b, c). These
inclinations likely correspond to the curvature of the nuclear
membrane to which the coccolith vesicle is apposed during
intracellular formation of the coccolith40,41. Whereas the major
axis of the coccolith varies from 2 to 6 µm between species, the
constant value of the inclination of the shield α suggests a positive
correlation between the size of the cell nucleus and coccolith size.
When coccospheres are mechanically deformed on contact with
the Si3N4 support, some coccoliths may exhibit an increase or a
decrease of the out-of-plane inclination which in this case is an

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08635-x

2 NATURE COMMUNICATIONS |          (2019) 10:751 | https://doi.org/10.1038/s41467-019-08635-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


experimental artifact (Supplementary Fig. 9). The top view
thicknesses of the coccoliths are shown in Fig. 2d. They are cal-
culated by multiplying the cubic root of one voxel (i.e., 28.8 or
32.5 nm) by the number of voxels along the direction normal to
the plane of the coccolith having an intensity greater than the
isovalue. The isovalue is the voxel intensity below which a voxel is
considered as empty and above which it is considered as filled by
calcium carbonate. For comparison, the top view images of
individual coccoliths obtained by PLM are shown in Fig. 2e. Both
the X-ray and optical images clearly show that thickness is
maximal in the tube region of coccoliths. As the tube region is in
direct contact with the central area, this observation highlights in
a qualitative way the link between the size of the central area and
the mass of the coccoliths.

Mass of coccoliths on single coccospheres. For a quantitative
approach, the volume of individual extracted coccoliths was
determined from 3D-CXDI and converted to mass by assuming
that the density of calcite is 2.71 g/cm3. The uncertainties in
volume measurements are detailed in the supplementary

information (Supplementary Note 1 and Supplementary Figs. 4
and 5) and the results are summarized in Fig. 3 (black dots). The
mass of coccoliths significantly varied in single coccospheres. For
instance, the coccosphere of G. oceanica analyzed by 3D-CXDI
was composed of 10 coccoliths, the mass of which varied more
than threefold (m= 7.2–23.1 pg). A similar variability was
observed for E. huxleyi RCC1212 (m= 1.5–5.1 pg). 3D-CXDI data
were compared to mass estimates obtained by PLM on a coccolith
population originating from a large number of coccospheres
obtained from the same cultures (colored dots in Fig. 3). The
coccolith mass variability obtained by PLM was only slightly
greater than that obtained by 3D-CXDI. This shows that the
distribution of coccolith masses within a coccosphere is indicative
of the distribution of masses within a species.

Role of organic base plate scale (OBPS) size. To investigate the
origin of the high coccolith mass variability, a first positive cor-
relation was found between m and p obeying the formula

m ¼ kp ´ p
β ð1Þ

a b

c

SEM
G. oceanica

3D-CXDI
G. oceanica
RCC1314

G. ericsonii RCC4032

E. huxleyi RCC1212

R. parvula RCC4036

E. huxleyi P41

E. huxleyi RCC1216

G. muellerae RCC3370

Fig. 1 3D-CXDI of coccospheres. a SEM image of G. oceanica RCC1314. b 3D-CXDI view of G. oceanica RCC1314. c 3D-CXDI views of six other coccospheres.
Scale bar= 1 µm
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with m the mass of a coccolith in pg, p the peripheral grid peri-
meter of a coccolith in μm. The coefficients are kp= 4.92 × 10−2 ±
2.17 × 10−2 and β = 3.175 ± 0.251 (with 95% confidence bounds)
(Fig. 4a). kp may be called the coccolith mass index. Remarkably,
all studied species have the same index. Indeed, relation (1)
means that the mass of a coccolith m is directly linked to the
perimeter p of the grid, i.e., when p is known the mass of the
coccolith can be estimated from Eq. (1). As observed in Fig. 2d,
this reflects the fact that an important part of the mass of a
coccolith is located in the tube region. By looking in more detail,
we observed also that the length of the proximal rim L scales
linearly with p within species, but with a different constant of
proportionality for different species (Fig. 4b). The highest L over
p ratio is obtained for E. huxleyi RCC1212 followed by E. huxleyi
RCC1216, whereas G. oceanica is characterized by a low L over p
ratio. Thus, CaCO3 biomineralization takes place by favoring the
growth of either the distal part with calcification between seg-
ments (case of G. oceanica) or the proximal part with longer
proximal rims (case of E. huxleyi RCC1212). This latter correla-
tion is undoubtedly relevant in evolutionary terms, even if the
selective pressures acting on cocccolith geometry are not cur-
rently well understood. We highlight also the fact that the
thickness of the tube t evolves almost linearly with p (Fig. 4c).
Thus, the exponent β in relation (1) is close to 3 as both the
length of the rim L and the thickness of the tube t scale more or
less linearly with p. For the sake of clarity, the parameters a, b, ag,
bg, α, p, L, t, and w are schematized in Supplementary Fig. 10. Our
findings show also that L and t are positively correlated as
reported by O’Dea et al.46. It is worth noting that by assuming β
= 3, the parameter kp= 6.67 × 10−2 (±0.4 × 10−2 with 95% con-
fidence bounds) is obtained. In addition, the peripheral grid

perimeter p of the coccoliths scales linearly with the number n of
calcite segments in all measured coccoliths (Fig. 4d) as

p ¼ w ´ n ð2Þ

with w= 110–120 nm corresponding to the tube average tan-
gential width of the calcite segments at the periphery of the grid.
For instance, the smallest (Fig. 2, R. parvula) and biggest (Fig. 2,
G. oceanica) coccoliths display n= 29 and n= 61 segments with
peripheral grid perimeters of p= 3.32 ± 0.18 µm and p= 6.92 ±
0.19 µm leading to a w= 115 ± 6 nm and w= 113 ± 3 nm,
respectively. Each segment of the coccoliths is composed of two
types of calcite crystals, one with the c-axis orientation parallel to
the coccolith plane and denoted R-unit (“R” for radial) and the
other with the c-axis perpendicular to the coccolith plane (V-unit;
“V” for vertical)43,47–50. During coccolithogenesis, the proto-
coccolith ring at the periphery of the OBPS is composed of
alternating V-units and R-units43,51. However, in Emiliania,
Gephyrocapsa, and Reticulofenestra, mature coccoliths are mainly
composed of R-units because V-units do not develop43. Thus, our
findings lead us to propose that the periphery of the OBPS
controls the mineralization site number n, with a R-unit
nucleation site every w and also a V-unit nucleation site every
w. As V-units are not developed, the average width w of the R-
unit segments appears to be a constant close to 110–120 nm
whatever the species. The extraction of individual segments for R.
parvula is shown in Supplementary Fig. 11. Combining relations
(1) and (2) with w= 112 nm and β= 3.175, it appears that

m ¼ kn ´ n
β ð3Þ

with m in pg and kn= 4.73 × 10–5 (±0.28 × 10−5 with 95%

R. parvula
RCC4036

1 µm

a

b

c � �

d

e

1.22 µm

0 µm

G. ericsonii
RCC4032

E. huxleyi
RCC1212

E. huxleyi
RCC1216

E. huxleyi
P41

G. muellerae
RCC3370

G. oceanica RCC1314

Fig. 2 3D-CXDI of coccoliths. a–c 3D-CXDI of coccoliths extracted from coccospheres and observed in: a distal view; b side view along the major axis;
c side view along the major axis after sectioning half of the coccoliths. The angle α refers to the inclination of the shields. d In-plane thickness of the
coccoliths resulting from the in-plane projection. e Images obtained by polarized light microscopy (PLM) displaying the distal view of coccoliths. Scale bar
= 1 µm
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confidence bounds) (Fig. 4e). By fixing β= 3.0, the fit to the data
with relation (3) yields kn= 9.39 × 10−5 (±0.66 × 10−5 with 95%
confidence bounds). This shows that the exponent β and the
prefactor kn are highly correlated in the fit. As the exponent β > 1,
relation (3) means that the nucleation site number n and the
average mass of each segment m/n are positively correlated.
Among the seven explored species, E. huxleyi P41 is the only one
for which the correlation between the number of segments and
the mass of the coccolith is poor (see the circle in Fig. 4e). This
can be explained by the large amount of CaCO3 of the central
area of the E. huxleyi P41 coccoliths. In this case, the mass of the
grid is not small compared to the masses in the tube and shield
regions. Even though strong variations in the 3D geometry of the
segments are visible within species, the mass of a coccolith is thus
determined at the early stage of nucleation by the number of
segments and as a consequence by the size of the OBPS as illu-
strated in Fig. 5.

Discussion
Our study clearly shows that the number of R-unit segments
scales linearly with the perimeter length p of the grid (see the

sketch in Supplementary Fig. 10 for more details), leading to an
average width of the segments of 110–120 nm, whatever the
species. According to the literature38,40,43,52, nucleation of CaCO3

segments occurs on the outer perimeter of the OBPS within the
coccolith vesicle. We thus conclude that the CaCO3 nucleation
sites are at a constant spacing of 110–120 nm on the outer peri-
meter of the OBPS, independent of the actual size of the OBPS.
An increasing or decreasing size or perimeter length of the OBPS
is accomodated by the production of more or fewer segments,
respectively. This in turn explains the important coccolith mass
variability (with a coccolith mass ratio up to 3 between the lighter
and the heavier coccoliths within a single coccosphere) by the
high OBPS size variability. Our work shows also that the out-of-
plane inclination of the shields of coccoliths is constant (inclined
by about α ~ 30 ± 5° along the major axis and α ~ 25 ± 5° along
the minor axis (Fig. 2b, c) compared to the coccolith plane)
whatever the coccolith size. We therefore speculate that OBPS
size could be determined by the cell nucleus size, which varies
significantly through the cell growth/division cycle. Muller and
coworkers have shown that calcification in E. huxleyi is largely
confined to the G1 (gap 1, assimilation) cell cycle phase21 char-
acterized together with the S and G2 phases by a long growth
period resulting from high photosynthetic activity. As the nuclear
size is determined by the cytoplasmic volume rather than DNA
content53, growth of the cell during interphase may be accom-
panied by growth of the cell nucleus. Hence, the smallest coc-
coliths may be formed at the onset of the G1 phase after cell
division, when the cell, the cell nucleus and the OBPS are small,
whereas the largest coccoliths appear at the end of the G1 phase
when the cell, the cell nucleus and the OBPS are larger. This
assumption is also corroborated by 3D-CXDI results, which show
clearly the correlation between the size of coccoliths and the
diameter of the cell after artificially removing the mineralized part
to take into account only the organic part (Supplementary
Fig. 6B). Even though the positive correlation between cell size
and coccolith size was already reported within and between
species44,45, further analysis using coherent X-ray diffraction
imaging at cryogenic temperature on frozen-hydrated cells54,55 or
confocal microscopy on stained cells would be needed to check
whether the cell nucleus size, which varies significantly through
the cell growth/division cycle, could indeed regulate the size of
the OBPS and therefore coccolith mass.

Methods
Culture. The coccolithophore cultures were obtained from the Roscoff Culture
Collection (RCC: http://www.roscoff-culture-collection.org/).

Polarized light microscopy. In order to measure the mass and size of detached
coccoliths from cultures, we used a Leica DRM6000 light microscope with high
resolution lens (Leica, HCX PL APO 100/1.47) and condenser (Leica P 1.40 Oel)
and Chroma circular polarizers. The images were grabbed by high resolution
cameras: a Spot Flex camera from Diagnostic Instrument (14-bit depth, 7.4-µm
pixel size) for automatic coccolith selection and an ORCA Flash 4 from Hama-
matsu (16-bit depth, 6.8-µm pixel size) for manual coccolith selection. Samples
were prepared by settling dried coccolithophore cultures following the protocol
described in ref. 28. Detached coccoliths from G. oceanica, G. muellerae, and E.
huxleyi were selected automatically by a deep-learning software (SYRACO)56. The
small coccoliths of G. ericsonii and R. parvula had very dim edges that were easily
merged in the background of the images and the size (length and width) of coc-
coliths were therefore often underestimated with the above protocol. For these
species we therefore used a camera performing well in low light intensity (ORCA
Flash 4) to grab coccoliths individually and manually. The size and mass mea-
surements of the coccoliths were then performed using the protocol described in
ref. 28.

Scanning electron microscopy. Scanning electron microscopy (SEM, LEO 1530)
was performed on the same coccolithophore cells as those studied by 3D-CXDI by
locating the position of each specimen. The images were obtained using the sec-
ondary electron mode of detection and with an accelerating tension of 20 kV.
Specimens were previously metalized with a ~5 nm thick coat of gold. Note that
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3D-CXDI analysis was performed before SEM observations so that the cocco-
spheres analyzed by 3D-CXDI were not metalized.

CXDI measurements and reconstructions. CXDI is an X-ray imaging technique
well suited for visualizing at few nanometers resolution the 3D nanostructure of
isolated micrometer-sized objects, e.g., biological specimens55,57 and material sci-
ence samples30,31,58,59. We performed the CXDI measurements at the ESRF
beamline ID1030. The X-ray beam produced by an undulator source was mono-
chromatized by a Si(111) pseudo-channel cut monochromator. Beryllium com-
pound refractive lenses were employed to focus the beam at the sample position.
The coherent fraction of the beam was finally selected by roller-blade slits opened
to 10 × 10 μm and placed 0.55 m upstream of the sample, giving essentially a plane-
wave-like illumination60. A sketch of the experimental setup is shown in Supple-
mentary Fig. 1A. The sample was mounted on a horizontal ultra-precision rotation
stage equipped with x, y, z translations and an on-axis optical microscope. The
microscopic samples were deposited on 100-nm-thick Si3N4 membranes and kept
fixed by electrostatic forces. 2D diffraction patterns were recorded by a Maxipix
detector having 516 × 516 pixels of 55 μm in size. The detector was placed 5.2 m
downstream of the sample and a vacuum flight tube was used to reduce air
absorption and scattering. A beamstop was inserted in front of the detector inside
the vacuum flight tube to block the intense direct beam and protect the detector
from radiation damage. A series of 2D diffraction patterns were recorded at sample
tilt angles from −80°(±5°) to +80°(±5°) with 0.2°–0.5° step. The average mea-
surement time per sample was 1–8 h with 4.5–25 s per frame. The 2D patterns were
assembled into the 3D diffraction volume using linear interpolation. The real space
image reconstruction was achieved by the iterative phase retrieval algorithm
applied to the 3D diffraction volume (Supplementary Fig. 1B). Details of the phase

retrieval procedure are provided in ref. 30. The final real space images were
obtained by averaging 20 reconstructions. We used 7.0 and 8.1 keV X-rays so the
real space images have the voxel size of 32.5 × 32.5 × 32.5 nm3 for G. oceanica
(RCC1314), G. muellerae (RCC3370), E. huxleyi (RCC1212), G. ericsonii (RCC4032),
and 28.8 × 28.8 × 28.8 nm3 for E. huxleyi (P41), E. huxleyi (RCC1216), and R.
parvula (RCC4036), respectively. The reconstructed real space images suffer from
smooth density variations due to missing data, strongly resembling the “uncon-
strained modes” reported by Thibault et al.61. To remedy these density variations, a
simple spatial flattening of the electron density was applied to the reconstructions
by subtracting in real space a 3D Gaussian function centered at the mass center31.
After subtracting the 3D Gaussian function, voxels with negative density values
were set to zero. Examples of the flattening corrections are shown in Supple-
mentary Fig. 1C. Chimera software was used for the visualization of the surface of
the 3D volume obtained by CXDI. For each species, the tomographic slice images
before the Gaussian subtraction are available in figShare (https://figshare.com/).

PRTF and real resolution of CXDI measurements. The real resolution of the
average images was estimated using the phase retrieval transfer function (PRTF)62.
The intersection at 0.5 threshold was used to estimate the real resolution (see for
instance ref. 31). The PRTFs were calculated for R. parvula, E. huxleyi RCC1216,
and G. oceanica (Supplementary Fig. 2). We found that the PRTFs for R. parvula
and E. huxleyi RCC1216 are always higher than 0.5. From these results, we can
conclude that the real resolution is close to the voxel size (voxel size= 28.8 ×
28.8 × 28.8 nm3). For G. oceanica, the real resolution appears to be equal to
35.0 nm. This value is also close to the voxel size (voxel size= 32.5 × 32.5 × 32.5
nm3 for the experiment done on G. oceanica). It is worth noting that the number of
scattered photons depends on the optical contrast (the same for all samples), the
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size of the specimen (scattering volume) and the exposure time. The exposure time
was chosen in order that the measured 2D diffraction patterns were fully covered
by speckles up to the edge of the detector. As a result, the resolution in this study
was mainly limited by the detector size.

Segmentation of coccoliths from coccospheres. The methodology is composed
of several steps illustrated in Supplementary Fig. 3 in the case of E. huxleyi P41, a
coccosphere having CN= 14 coccoliths. In the first step, a coccolith is extracted
from the whole coccosphere. The extracted coccolith is then subtracted from the
coccosphere leading to a new coccosphere matrix containing CN−1 coccoliths. The
methodology is repeated several times (14 times in the case of E. huxleyi P41) to
extract all coccoliths. Coccoliths which are broken or not correctly extracted due to
their close contact with neighbors were not taken into account in mass
determinations.

Data availability
Raw data generated by 3D-CXDI (i.e. reconstructed real space images before the
substraction by the 3D Gaussian functions) that support the findings of this study have
been deposited in https://figShare.com/account/home with the identifiers: https://doi.org/
10.6084/m9.figshare.7467143.v1 for Emiliania huxleyi RCC1212 in
Supplementary Fig.7A, https://doi.org/10.6084/m9.figshare.7454078.v1 for Emiliania
huxleyi RCC1212 in Fig. 1c and Supplementary Fig.7B, https://doi.org/10.6084/m9.
figshare.7454072.v1 for Emiliania huxleyi P41 in Fig. 1c, https://doi.org/10.6084/m9.
figshare.7413500.v1 for Gephyrocapsa ericsonii RCC4032 in Fig. 1c, https://doi.org/
10.6084/m9.figshare.7413494.v1 for Gephyrocapsa muellerae RCC3370 in Fig. 1c, https://
doi.org/10.6084/m9.figshare.7413491.v1 for Gephyrocapsa oceanica RCC1314 in Fig. 1a,
https://doi.org/10.6084/m9.figshare.7413377.v1 for Reticulofenestra parvula RCC4036 in
Fig. 1c. In addition, the data with the dimensions of the coccoliths are collected in
Supplementary Table 1.
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