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Abstract 

We present a single-phase double-sided pillared metamaterial with effective mass density and elastic 

modulus simultaneously negative. The negative effective mass density is achieved owing to the 

combination of the symmetric bending resonance and the antisymmetric compressional resonance of both 

pillars, whereas the negative effective elastic modulus results from their symmetric compressional 

resonance. Comparisons with the single-sided pillared structure are made. The dependence of the width of 

the double-negative band against the geometric parameters of the unit cell is also investigated. In addition, 

the negative refraction and the zero-index refraction of the symmetric Lamb wave in the deep-

subwavelength scale are observed, while at the same frequency, the propagation of the antisymmetric 

Lamb wave is forbidden. 

 

I.  INTRODUCTION 

Elastic metamaterials are artificial composites featuring frequency dependent constitutive properties that 

are not present in nature. Owing to their locally resonant substructures, their effective parameters, 

including the mass density, the bulk, and the shear modulus, can be dynamically set to a positive, zero or 

negative value [1–4], enabling thus to manipulate the propagation of elastic waves in the subwavelength 

scale. In analogy to their electromagnetic counterparts, elastic metamaterials with simultaneously negative 

effective mass density (NMD) and elastic modulus (NEM) have attracted considerable attention notably 

because of their great potential for the negative refraction of elastic waves or the over-the-diffraction-limit 

imaging [5–10]. The double negativity can be realized either by combining two different substructures, 

each supporting a different resonant mode or by constructing a single structure where two resonances 

occur at a single frequency[11,12]. In the wake of the seminal work by Liu et al. [13], a three-constituents 

chiral metamaterial made of soft-coated heavy cylinders embedded into a polyethylene matrix that 
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exhibits the double negativity thanks to the combination of the translational and the rotational resonances 

of the heavy core has been proposed [14]. Using the same two resonances but this time in a single-phase 

metamaterial, Zhu et al.[8] observed experimentally the subwavelength negative refraction of longitudinal 

elastic waves and demonstrated in this way the occurrence of simultaneous NMD and NEM in this system. 

A single-phase solid metamaterial which unit cell comprises two independent resonators, each of them 

supporting a distinct resonant mode, was proposed by Oh et al.[15] to independently tune the effective 

mass density and stiffness. However, in most of these aforementioned systems, the double negativity only 

occurs in a narrow frequency band which may constitute a drawback for many applications. To overcome 

this difficulty, Dong et al.[9] developed a topology optimization scheme to design a two-dimensional (2D) 

single-phase anisotropic elastic metamaterial with broadband doubly negative effective property. They 

further demonstrated numerically the superlensing effect in the deep-subwavelength regime as well as the 

cloaking effect for both the longitudinal and transverse waves. 

Beside these designs that mainly aim at manipulating bulk waves, doubly negative elastic metamaterials 

involving other types of elastic waves, such as Lamb waves, have attracted since a few years more and 

more interest. Actually, a decade ago a new type of phononic crystal consisting of an array of pillars on a 

plate was simultaneously proposed by Pennec et al.[16] and Wu et al.[1]. These structures have the ability 

of exhibiting both Bragg gaps and hybridization gaps associated to local resonances of the pillars, where 

the latter can be pushed into low frequency (subwavelength) range. These structures can therefore serve 

both as phononic crystals or metamaterials and provide a useful and practical platform for several physical 

properties such as waveguiding, filtering, acoustic lensing or liquid sensing. A few years ago, Gusev et 

al.[17] introduced a doubly negative metamaterial for flexural waves based on resonant elements attached 

to a plate. In this system, negative density is achieved by normal-force interactions, whereas negative 

modulus is obtained thanks to the introduction of rotationally resonant mechanical elements. More 

recently, a class of 2D single-phase metamaterials have shown noteworthy dispersion properties including 

a Dirac-like cone at the center of the Brillouin zone (BZ), zero-group velocity in the fundamental Lamb 

modes [18], and anomalous refraction on transmitted antisymmetric Lamb mode involving mode 

conversion of a symmetric mode [19]. Among the most promising dynamic systems for applications 

requiring the full control over the phase are the zero-index elastic/acoustic metamaterials [20]. Actually, 

the wave transmitted through a medium exhibiting this dynamic property remains unaffected since it is not 

subjected to any phase change. As a consequence of this remarkable property, these structures could serve 

as a basis to shape an “inaudibility cloak”. Let us also mention a few other relevant works using the 

platform of phononic plates. For instance, Assouar et al.[21] reported in a theoretical work the 

enlargement of the locally resonant band gap in 2D sonic crystals based on a double-sided stubbed plate. 

The relative bandwidth was significantly increased by a factor of two compared to the classical one-sided 
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stubbed plate. The elastic energy carried by SAW can also be localized and confined within micropillars, 

as it has been demonstrated lately by Benchabane et al.[22]. Bilal et al.[23] proposed a metamaterial in 

which the pillars stand in between the holes regularly patterned in a plate. This structure, sometimes 

referred as a trampoline, allows to broaden the subwavelength band gap by a factor of four. Furthermore, 

it has been shown that such pillared metamaterials exhibit NMD at low frequencies where homogenization 

theories apply [24,25]. It is noteworthy that, owing to the coupling between the Lamb waves and the 

resonant modes, a strong anisotropy of the effective mass density may be observed around the resonant 

frequencies. This makes the pillared structures suitable for the manipulation and the subwavelength 

focusing of elastic wave as well as  excellent candidates for numerous applications ranging from 

biomedical imaging to energy harvesting [26,27]. 

In this work, we have investigated a single-phase double-sided pillared metamaterial. We show that this 

structure exhibits both NMD and NEM allowing for the propagation of the zero-order symmetric Lamb 

wave in a frequency interval where the propagation of the antisymmetric Lamb wave keeps forbidden. For 

comparison, we firstly have investigated a single-sided pillared metamaterial featuring NMD. The 

mechanism responsible for this single negativity, and in turn for the formation of the low frequency band 

gap, is described as being the combination of a bending mode and a compressional mode of the pillar. We 

then have investigated a double-sided pillared metamaterial that displays the double negativity. On the 

basis of the preceding analysis, it is shown that NMD is achieved within a frequency range where occur 

both the symmetric bending resonance and the antisymmetric compressional resonance of the pillars, 

whereas NEM only involves the symmetric compressional resonance. We develop a simplified mass-

spring model to theoretically describe this behavior. Additionally, the double negativity of the 

metamaterial is further established through both numerical simulations of the negative refraction of 

symmetric Lamb mode and the zero-index refraction in the deep-subwavelength regime. Finally, the width 

of frequency range where the metamaterial is doubly negative against the geometric parameters of the unit 

cell is presented. 

 

II.  SINGLE-SIDED PILLARED METAMATERIAL 

A. Lamb waves in a periodic structure 

Before analyzing the band structure and the dynamical properties of a pillared metamaterial, we briefly 

recall in this section the main features of Lamb waves in periodically structured plates [28]. 

Lamb waves are the solutions of the equations of motion for a harmonic wave propagating in a medium 

with a finite thickness along one direction of space and infinite along the other two, with the boundary 

conditions that the components of the stress in the direction normal to the free surfaces are zero. Owing to 

the symmetry with respect to the mid-plane of the plate, these modes can be distinguished as symmetric (S) 
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and antisymmetric (A) modes. In a homogeneous isotropic medium, the three lowest branches are 

respectively the antisymmetric flexural branch and the symmetric shear horizontal and longitudinal 

branches. The higher branches have a cut-off frequency as the wave vector k approaches 0. All these 

modes are highly dispersive [28]. The phononic plate is created by inserting periodic inclusions (such as 

holes) in the plate or by depositing pillars on it. The dispersion curves of this periodic inhomogeneous 

medium are now described in the corresponding 2D BZ with their dynamical properties having specific 

characteristics including band gaps, the folding of the dispersion curves and the mode conversion. In 

particular, the strong resonances associated with pillars can be very efficient in opening band gaps. 

Although the branches have more complex character and coupling between the displacement components 

than in a homogeneous plate, some branches still keep a significant flexural, longitudinal or shear 

horizontal character. In the case of one-sided pillars, the symmetry with respect to the mid-plane of the 

plane is strictly speaking broken, while this symmetry property can be restored in the case of double-sided 

pillars. This allows to study separately the symmetric and antisymmetric modes and in particular the 

design of their corresponding band gaps. We shall see that this property will be very helpful in the design 

of the double negative material which is the objective of this paper. 

 

B. Band structure and localized modes 

We analyze in this section the dynamical properties of a metamaterial made of a square lattice with pillars 

erected on one face of a thin homogeneous plate. The elementary unit cell is displayed in Fig. 1(a) where a 

denotes the lattice constant, h and d stand for the height and the diameter of the pillar respectively, and e is 

the thickness of the matrix plate. The periodicity is in the plane (x, y) and z-axis is chosen perpendicular to 

the plate. In order to obtain dynamic properties in the MHz range, we assumed these values (in µm) a = 

200, h = 325, d = 120, and e = 100. The complete structure was made of isotropic steel whose physical 

parameters are the elastic modulus E = 200GPa, the Poisson’s ratio v = 0.3, and the mass density ρ = 

7850kg/m3. Both the plate and the pillars being made from the same material, a strong coupling between 

the Lamb waves propagating in the plate and the vibrations of the pillars may be expected close to the 

resonant frequencies [12]. This configuration much differs from composite heterostructures where a soft 

rubber provides the bonding between the resonators and the stiff plate [29–31] generally giving rise to 

sharp resonances. 

The band structure shown in Fig. 1(b) was obtained by applying periodic conditions in both x- and y- 

directions and solving the eigenfrequencies equation with the help of a finite element method (FEM). The 

color scale in this figure represents the relative amplitude of the out-of-plane component 
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. A complete band gap opens up in between 3.17MHz to 3.48MHz. In this 

frequency range, the wavelengths of the lowest order antisymmetric (A0) and symmetric (S0) Lamb modes 

in the matrix plate are about 500 μm and 1800 μm respectively i.e. more than twice and nine times the 

lattice constant a. Therefore, this gap cannot result from Bragg interferences. This rather suggests that this 

complete band gap should be ascribed to local resonances of the pillars. To support this assertion, we have 

computed the displacement field distribution and the deformation of the unit cell at point M of the BZ for 

the three branches converging to f~3.1MHz (see inset in Fig. 1(b)). The result is displayed in Fig. 1(c). 

Clearly, the deformation concentrates in the pillar whereas it is almost zero in the plate. This is further 

supported by the flat branches in the low frequency edge of the gap that correspond to zero group 

velocities and are evidences of local resonances as widely documented in literature [21,32–34]. 

Furthermore, the deformations shown in Fig. 1(c) allow to identify two second-order bending modes, 

labelled as A and B in Fig. 1(c), and one compressional mode, labelled as C. Given the square symmetry 

of the unit cell, modes A and B are polarized along orthogonal directions and occur at the same frequency. 
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(a)  (b)  

(c)  

Figure 1: (a) Unit cell of the single-sided pillared metamaterial and first irreducible BZ of the square lattice. (b) 
Band structure in the low frequency range along the high symmetry axes of the BZ; the color scale corresponds to 
the relative amplitude of the out-of-plane component, integrated over its volume (see text). For comparison, the band 
structure of the simplified coupled system described by Eq. (1) is shown as black solid lines. Inset: enlargement of 
the band gap around 3.1MHz. (c) Normalized total displacement field amplitude and deformation in the unit cell for 
modes denoted as A, B, and C in the band structure. 
 

C. Formation of the low frequency complete band gap 

We investigate here the formation of the low frequency band gap using FEM with frequency response 

analysis. The method, which is only valid within the long wavelengths limit, consists of applying an 

external displacement field U on the four lateral boundaries of the unit cell while leaving free both the 

face supporting the pillar and the rear face of the plate [4,24,35]. The induced force F exerted on these 

boundaries is then derived from the stress average over the four boundaries of the unit cell considered as a 

homogeneous media. In the harmonic regime at frequency 2
ω

π  , F and U are related through 

[ ]2
effVω ρ= −F U , where V is the volume of the unit cell and [ ]effρ  the 3×3 dynamic effective mass density 

matrix to be determined. This can be done by successively applying the harmonic displacement 
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( )0 exp iU i tω=U x  (i = 1,2,3) along one of the axes in the principal coordinate system while the other two 

components are set to zero. In addition, symmetry arguments allow to reduce the number of independent 

matrix elements. For the structure we consider here, z-axis being a four-fold symmetry axis the matrix 

elements are invariant through the exchange of indices 1 and 2 and therefore 11 22ρ ρ= , 12 21ρ ρ= , 

13 23ρ ρ=  and 31 32ρ ρ= . Moreover, it has been shown in Ref. [21] that in a pillared metamaterial the off-

diagonal terms in [ ]effρ  are null except for values very close to the resonant frequencies where a 

singularity occurs; therefore the only elements to consider are 11ρ , 22 11ρ ρ=  and 33ρ . Their variations 

around the lower edge of the band gap are displayed in Fig. 2. The component 11ρ  that mainly relates to 

in-plane motions (modes A and B in Fig. 1(c)), is negative from 3.21MHz to 3.50MHz, whereas 33ρ  that 

should be ascribed to out-of-plane displacements (mode C in Fig. 1(c)), becomes negative from 3.26MHz 

to 4.63MHz. A complete band gap opens when all the components of the effective mass density matrix 

turn negative, i.e. in between 3.26MHz and 3.50MHz in the present case. 

 

Figure 2: Components 11ρ  and 33ρ  of the effective mass density normalized to the mass density of 
steel, as a function of the frequency. 

This is in good agreement with the band gap shown in Fig. 1(b) that goes from 3.17MHz to 3.48MHz. The 

small discrepancy of about 2.8% on the frequency at the lower edge of the gap may be readily ascribed to 

the phase change across the unit cell, not accounted for in the calculations since the preceding theory is 

only valid within the long wavelengths limit. 

Beside this comprehensive approach where the structure is considered as an effective medium, one can 

also explain the formation of the low frequency band gap owing to a local analysis of the motions of the 
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pillars. In this framework, the resonator is regarded as a mass-spring system coupled to the plate where a 

wave at frequency 2
ω

π  and wave vector k propagates. Let us first consider the first-order compressional 

resonance shown in Fig. 1(c) for which the pillar vibrates along the z-direction and exerts a vertical 

traction force on the matrix plate. This can be modeled as a mass-spring subsystem with mass m and 

spring stiffness kC depicted by the right panel in Fig. 3(a). Gusev et al. [17] already set the equations of 

motion of this corresponding mechanical system and obtained an analytical expression for the effective 

mass density component 33ρ . The governing equations of this simplified model in the frequency domain 

can be written as: 

 ( )

( )

4
2

4

2

C

C

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

z z z

z

D u e u nk u u
x

m u k u u

ρ ω

ω

∂ − = −
∂

= −

⎧
⎪
⎨
⎪
⎩

.  (1) 

In Eq. (1), Fourier transformations of both the vertical displacement of the matrix plate zu and mass u 

allow to eliminate the time dependence and lead to the variables ˆ zu  and û  written in the frequency 

domain; ( )
3

212 1
e ED

ν
=

−
 is the flexural rigidity of the matrix plate that depends on both the elastic 

modulus E and the Poisson’s ratio ν ; n is the number of mass-springs per unit area; C Ck mω =  is the 

resonant frequency of the mass-spring subsystem. Remembering that ˆ zu  reads ( )0ˆ expzu u ikx= , we can 

derive the wave number k by solving Eq. (1), namely: 

 

1
2

1
2

2

2
2
C

1

ek m

eD
nω ρ
ω

ω

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥= ⎜ ⎟ ⎢ ⎥⎝ ⎠ −⎢ ⎥⎣

+
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. (2) 

Equation (2) shows that k2 turns imaginary if ω takes a value in between Cω  and ( )1
2

C1nm
e ωρ + , hence 

preventing the propagation of the elastic waves in the plate. Moreover, Eq. (2) allows to define the 

effective mass density as: 

 ( )
2

2
C

1
eff

nm

e
ρ

ω

ρ
ω

ω
−

= +
⎛ ⎞
⎜ ⎟
⎝ ⎠

, (3) 

which is negative when the excitation frequency is in the same interval. This explains the occurrence of 

the negative value of component 33ρ . This simplified model can be further extended to the case of a 2D 

phononic crystal by setting periodic conditions and implementing a plane wave expansion method to 

derive the dispersion curves [36]. The solution is represented as black solid lines in Fig. 1(b). 
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It is less intuitive to establish the governing equations that accurately describe the complex motions of 

both the pillar and the matrix plate for the second-order bending resonance. However, the problem can be 

simplified by equating the single-sided pillared unit cell to the classical cantilevered beam in which the 

rigid body is replaced by a deformable medium and where the oscillation of the pillar is excited by the 

elastic wave that propagates in the plate. In this simplified model depicted in Fig. 3(b), the overall motion 

is broken down into two motions that can be studied independently, namely the motion of the pillar 

modeled by an internal moment and the motion in the plate driven by a traction force parallel to the 

surface. This decoupling allows for a comprehensive analyze of the effective mass density and a better 

understanding of the occurrence of NMD in this type of structures. 

Let us first consider the motion of the pillar in the sagittal plane depicted by the mid panel in Fig. 3(b). 

Since no traction force is considered, the motion reduces to a pendulum motion and can be well modeled 

by a mass-torsional spring with mass m, rotational inertia J and torsional stiffness kB rigidly attached to 

the plate. Then, the governing equations for waves propagation along x-direction in the plate-resonator 

coupled system can be written as [37]: 

 

4 2
2

B4 2

2
B

ˆˆ ˆˆ

ˆˆ ˆ

z z
z

z

u uD e u nk
xx x

uJ k
x

θρ ω

ω θ θ

⎧ ⎛ ⎞∂ ∂∂− = −⎪ ⎜ ⎟⎜ ⎟∂∂ ∂⎪ ⎝ ⎠⎨
∂⎪ ⎛ ⎞= −⎜ ⎟⎪ ∂⎝ ⎠⎩

, (4) 

where ˆ zu  and θ̂  are normal displacement of the matrix plate and rotation angle of torsional spring in 

frequency domain; kB and J determine the resonant frequency of the mass-torsional spring subsystem 

through 
1

2

B
Bk

Jω ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. By solving Eq. (4), we can derive the wave number k, namely: 

 

1
2 2

2 2
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ρ
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. (5) 

Equation (5) allows to define the effective mass density at frequency 2
ω

π  as being: 

 ( )

2

2 2 2

2
2
B

1
4 1
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n J

De
ωρ ω ρ

ω
ω

⎛ ⎞
⎜ ⎟
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−⎜ ⎟

⎝ ⎠
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Equation (6) shows that effρ  is always positive whatever the frequency. Therefore, the resonance of the 

torsional spring cannot explain on its own that 11ρ  becomes negative in a specific frequency range, and in 
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turn the occurrence of NMD. Therefore, it is essential to consider the traction force acting on the foot of 

the pillar to understand the occurrence of NMD evidenced by the simulations above. 

This force excites the plate into an oscillation and the pillar can be regarded as an additional mass M 

attached to the unit cell by compression springs with stiffness kH. For waves propagating along x-direction, 

the problem reduces to the classic 1D mass-spring metamaterial depicted in the right panel in Fig. 3(b). 

One can show that the effective mass density can be written as [2]: 

 0 2 2
H1 ( )eff

Mmρ
ω ω

= +
−

,  (7) 

where m0 stands for the mass of the matrix in the unit cell and ( )( )1
2

H H 0k M mω = +  is the angular 

frequency of the assembly “unit cell+additional mass”. Clearly, the effective mass density turns negative 

between Hω  and H 01 M mω + . This simple model well explains the occurrence of negative values of 11ρ  , 

as well it shows that the existence of a traction force is essential to understand the occurrence of NMD in 

the single-sided pillared metamaterials. We show in the next section that it is also essential to explain the 

negative properties of the double-sided pillared metamaterials as well. 

 

(a)  

(b)  

Figure 3: (a) Vertical traction force (left panel) and simplified mass-spring subsystem (right panel) 
for the compressional resonance C. (b) Scheme of the traction force and moment (left panel), 
simplified mass-torsional spring subsystem (mid panel) and mass-spring subsystem modelling the 
bending resonances denoted as A and B in Fig. 1. 
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III.  DOUBLE-SIDED PILLARED METAMATERIAL 

As discussed in the previous section, the single-sided pillared metamaterial can achieve NMD but not 

NEM. In order to simultaneously realize both negative properties, we have considered a double-sided 

pillared metamaterial that, under certain conditions [21,29,31,38], enables enlargement of the width of the 

low frequency band gap. We show in this section that the double negativity can be obtained through an 

appropriate choice of the dimensions of the pillar and matrix plate, both of which being made of steel. The 

unit cell is shown in Fig. 4(a). Two identical pillars are symmetrically arranged on both sides of the matrix 

plate. The geometric parameters of the unit cell are the same as those of the above single-sided pillared 

metamaterial. The corresponding band structure is shown in Fig. 4(b). In contrast to the band structure of 

the single-sided pillared metamaterial, an isolated propagative negative-slope branch arises inside the 

complete band gap that opens between 3.25MHz and 3.76MHz. This is almost twice the width of the band 

gap obtained with the single-sided pillared metamaterial. This enlargement is due to the strong coupling 

between resonances of the double-sided pillars and Lamb modes in the matrix plate [21]. 

The isolated branch that ranges from 3.53MHz to 3.57MHz divides the band gap into two narrower ones 

ranging from (in MHz) 3.25 to 3.53, and from 3.57 to 3.76 respectively. A zoom in on this propagative 

branch is displayed in the inset in Fig. 4(b). 

(a)  (b)  
xk

yk
M

XΓ
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(c)  

Figure 4: (a) Unit cell of the double-sided pillared metamaterial and first irreducible BZ of the square 
lattice. (b) Band structure in the low frequency range. Inset: enlargement of the isolated branch. (c) 
Normalized total displacement field amplitude and deformation in the unit cell at the points denoted as 
D and E in the inset. 

 

The negative slope of this branch throughout the reduced BZ cannot be afforded to a band folding effect 

and rather suggests simultaneous NMD and NEM resulting from local resonances of the pillars. In support 

of this argument, we show in Fig. 4(c) the displacement field at two characteristic points on this branch. 

At point Γ in the BZ (point D in the inset in Fig. 4(b)) the displacement field clearly corresponds to a 

symmetric compressional mode of the pillars whereas the motion of the pillars at midpoint between Γ and 

X is that of a symmetric bending mode (point E in Fig. 4(c)). We show in the next subsection that the 

former is responsible for NEM whereas the latter, similar to the single-pillared metamaterial, leads to 

NMD. 

 

A.  Formation of the isolated negative-slope branch 

Before analyzing the formation of the isolated branch, it is necessary to identify the resonances in the 

frequency range of interest. This can be done by computing the displacement field in the unit cell upon the 

global harmonic excitation ( ),0,0i tAeω . On the whole, there are four resonances involving a motion in the 

plane (x, z), namely: BA (3.17MHz) is the second-order antisymmetric bending resonance; BS (3.26MHz) 

is the second-order symmetric bending resonance; CA (3.04MHz) is the first-order antisymmetric 

compressional resonance, and CS (3.57MHz) is the first-order symmetric compressional resonance. The 

corresponding displacement fields are displayed in Fig. 5(a). Because of the squared symmetry of the unit 

cell one should also add to this list two bending resonances equivalent to modes BS and BA respectively, 

but involving motions along y-axis. 

As it is the case in the single-sided pillared metamaterial, the formation of the low frequency band gap 

should be the signature of NMD that results in turn from the combination of the bending and 

compressional resonances of the two pillars. For verifying this hypothesis, the same formalism as the one 
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applied in Sec. II-B was implemented to calculate the effective mass density matrix against the frequency. 

The normalized components 11ρ  and 33ρ  displayed in Fig. 5(b), highlight the role played by each 

resonance. Actually, at the frequencies of modes BA and CS the changes in 11ρ  and 33ρ are very sharp and 

cannot cause NMD. On the contrary, both 11ρ  and 33ρ  turn negative at the frequencies of BS and CA 

which thus directly relate to NMD. The simplified traction forces and moments modeling the pillars at 

resonances provide a comprehensive understanding of these divergent behaviors. Both are schematically 

described in Fig. 5(a) by black and red arrows respectively. At BA resonance, the moments induced by the 

two identical pillars are the same whereas the traction forces are pointing in opposite directions and hence 

the resultant force is zero. Although the resultant moment is not equal to zero, it does not couple with the 

motion in the plate and this bending resonance cannot induce NMD: 11ρ  and 22ρ  do not turn negative 

around the antisymmetric bending resonance, except at the exact resonance frequency. The reverse 

phenomenon occurs at the frequency of BS. Actually at this frequency the resultant moment is equal to 

zero, but not the resultant traction force that consequently contributes to the negative value of 11ρ  in 

between 3.26MHz and 3.77MHz. By symmetry, 22ρ  gets also negative in the same interval. 

The same argument applies for both compressional modes. Indeed, the resultant force at the frequency of 

CS mode (i.e. 3.57MHz) is null and this mode does not trigger negative values of the component 33ρ . 

Conversely, the situation at the frequency of CA is similar to the one observed at the compressional 

resonance in the single-sided pillared metamaterial: the axial forces in the pillars combine and 33ρ  takes 

negative values in the range 3.04MHz to 5.29MHz. 
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(a)  

(b)  

Figure 5: (a) Normalized total displacement field amplitude and deformation of the unit cell at four 
representative resonance frequencies upon excitation ( ), 0,0i tAe ω . (b) Components of the effective 

mass density 11ρ  (red line) and 33ρ  (black line) against the excitation frequency. 

 

Overall, NMD is achieved at any frequency in the interval stretching from 3.26MHz to 3.77MHz, 

including the vibrational modes on the isolated branch therein, where 11ρ , 22ρ , and 33ρ  are all negative as 

shown in Fig. 5(b). Both these values exactly match the limits of the low frequency band gap displayed in 

Fig. 4(b) and further highlighted with red lines in Fig. 4(b). 

Although the isolated branch is relatively flat, especially along XM in the BZ, the group velocity is non-

null and the propagation of elastic energy at the corresponding frequencies is allowed. Therefore, the 

dynamic elastic modulus is necessarily negative for any vibrational mode on this branch. Figure 5(b) 

clearly shows that the narrow interval around 3.57MHz where propagation is allowed corresponds to the 

first-order symmetric compressional resonance CS which is thus causing NEM and in turn the doubly 

negative property. It should be noticed however that this resonance involves a purely out-of-plane motion 
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only at points Γ, X and M of the BZ. In between these main points in the BZ, in-plane motions contribute 

also to the deformation of the pillars, as it can be observed in Fig. 4(c), point E. 

 

B. Occurrence of the negative elastic modulus 

Similar to the analytical study developed above to explain NMD achieved by the single-sided pillared 

metamaterial, one can model the symmetric compressional vibration of the double-sided pillared system 

as two mass-spring subsystems, each featuring a mass m and a stiffness kC, vibrating in phase as shown in 

Fig. 6(a). In this figure, e is the thickness of the matrix plate; Ax = e×a and Az = a2 are the areas of 

boundaries parallel to the planes (y, z) and (x, y) respectively. To calculate the traction forces exerted on 

the plate when the pillars are on a vertical motion, let us consider two harmonic tension forces Fx with the 

same amplitude, both applied along x-axis on the lateral boundaries parallel to the plane (y, z) and pointing 

in opposite directions (Fig. 6(a)). Displacements ±x1 of the lateral boundaries, ±z1 of the free surfaces and 

±z2 of mass m result from the forces Fx (Fig. 6(b)). It is expected that the harmonic deformation induced 

by Fx allows to excite the resonances of the mass-spring subsystems if the frequency is properly tuned. 

(a)  (b)  

Figure 6: (a) Model of the unit cell with two mass-spring subsystems. (b) Side view of the unit cell 
and notations of displacements induced by the forces applied along x-axis. 

To simplify the derivation of the effective elastic modulus Eeff of the unit cell, we assume that the reactive 

forces Fz caused by the vibration of the mass-spring subsystems are uniformly distributed on the matrix 

plate. Under this hypothesis, the dynamic stresses tensor σ and strains tensor ε in the matrix plate 

submitted to a harmonic excitation are given by Hooke’s law and can be expressed as: 
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As previously, E is the elastic modulus and v the Poisson’s ratio. On the other hand, the equation of 

motion of the mass-spring subsystems is: 

 ( )
2

2
z 2 12 C

zm F k z z
t

∂ = − = − −
∂

. (8) 

By combining Eqs. (7) and (8) one easily obtains: 
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where 
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 is the natural frequency of the mass-spring subsystem, z
M

2EAk e= is the effective 

stiffness of the plate. 

Equation (9) is nothing else but the Hook’s law applied to an effective medium which effective elastic 

modulus 

1

2

2 2
0

2

1
11

effE E ν
ω ω

η ω

−
⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟−+⎜ ⎟
⎝ ⎠

 depends on the frequency 2
ω

π  and takes into account the internal 

motions of the unit cell through the parameters C
M

k
kη = and ω0. 

The effective elastic modulus effE  can also be written evidently as: 
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The effective elastic modulus diverges if ( )

1
2
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1
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ν η

⎛ ⎞
⎜ ⎟=
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, which thus must be regarded as the 

resonant frequency of the effective material. It is interesting to notice here that the resonant frequency of 

the effective material is not that of the mass-spring subsystem. Furthermore, 0effE =  when 

( ) 1
2

0
1

1ω ω η= + and effE  is negative if: 

 ( )
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. (11) 

This interval is all the more broad that the Poisson’s ratio ν is large. Although this simplified model hardly 

allows predicting the position and width of the isolated double-negative branch, it provides an intuitive 

comprehension of the occurrence of NEM and in turn of the double negativity of the double-sided pillared 

metamaterials. 

 

C.  Evolution of the two band gaps and isolated branch vs the geometric parameters of the unit cell 

Being the consequence of a resonant phenomenon, the double-negative branch of the proposed structure is 

relatively narrow which may be a drawback for some applications. However, the width of the frequency 

band where double negativity occurs can be increased through a proper choice of the geometrical 

parameters of the unit cell [12]. We investigate in this section the influence of the height and diameter of 

the pillar as well as the thickness of the matrix plate, on both the width of the forbidden band gap and the 

negative-slope branch. 

Both Figs. 7(a) and 7(b) show the effect of the dimensions of the pillars on both the low frequency band 

gap and the negative-slope branch. Increasing the height of the pillar leads to the decrease of the central 

frequency of the band gap, as well as to the decrease of the range where the double negativity occurs. This 

should be related to the decrease of the compressional resonance frequency for increasing height of the 

pillars [26]. Moreover, the lower part of the band gap broadens as the height of the pillar increases. In 

contrast, the propagative branch moves closer to the upper limit of the band gap as the height of the pillar 

increases leading to the closure of the upper part when the height of each pillar is more than about 350µm. 

Remembering that the effective mass density tends towards zero while keeping negative values when the 

frequency approaches the upper limit of the band gap (see Fig. 5(b)), it is expected that this structure may 

behave as a zero-index elastic metamaterial. Actually, in that case the phase velocity in the metamaterial 

tends to infinity and therefore the refractive index (i.e. ratio of the velocity in the background to the 

velocity in the metamaterial) goes to zero. This point is further developed below. 
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On the other hand, the bending resonance is very sensitive to the diameter d of the pillars [26] and 

consequently this parameter has a large impact on the width of the band gap that broadens as the diameter 

increases (Fig. 7(b)). However, the width of the double-negative band is very little affected by this 

parameter and remains equal to about 8.5% of the width of the forbidden band whatever the diameter of 

the pillars is. 

 

(a)  

(b)  

Figure 7: Edges of the band gap (lower panel) and relative width of the double-negative band (upper 
panel) against (a) the height and (b) the diameter of the pillars. The black (resp. red) solid lines stand 
for the upper (resp. lower) part of the band gap. In both panels the blue curve is the relative width of 
the band where the double negativity occurs. 
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However, the parameter that most efficiently affects the width of both the band gap and the propagative 

branch is the thickness of the plate (Fig. 8). Actually, both parts of the band gap slightly decrease as the 

thickness increases while at the same time the width Δω of the double negativity band linearly increases 

with increasing thickness of the plate. The relative width of the band exhibiting NEM reaches the 

maximum value of ~20% of the total band gap when e = 180µm.  

 

 

Figure 8: Edges of the band gap (lower panel) and relative width of the double-negative band (upper 
panel) against the thickness of the plate. The black (resp. red) solid lines stand for the upper (resp. 
lower) part of the band gap. The blue curve is the relative width of the band where double negativity 
occurs. 

A simple model allows to summarize these results. Actually, at CS resonance there is almost no 

displacement at the foot of the pillars (see Fig. 5(a)) that can be modelled as a mass-spring system with a 

steady attachment point and for which the displacement on top of the pillar is proportional to the axial 

force. With these assumptions, Hook’s law leads to 2
C 4

d Ek h
π=  and the ratio C

M

k
kη =  can be written as 

2
28

d e
ha

πη = . With the typical dimensions of the unit cell, η is always much less than unity and Eq. (11) 

can be expanded as: 
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where we have used 
11 22

C
0 2

k E
m h

ω
ρ

⎛ ⎞⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. Equation (12) gives full account of the behaviors 

displayed in Fig. 7 and Fig. 8. 
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Although relatively narrow even when it is maximum, the width of the doubly negative band remains 

sufficient for an experimental validation based onto conventional techniques as for instance the excitation 

of Lamb waves with interdigitated transducers (IDT) on a piezoelectric film. Actually, in the frequency 

range that we have considered, elastic waves featuring a spectral purity δf better than the width of the 

NEM band [39] can be easily obtained with an IDT comprising only a few tens pairs of electrodes [40,41], 

allowing in turn to tailor the transition from single negativity to double negativity. It is worth noting, 

however, that our results are not specific to the MHz range and may be transposed either to the GHz or the 

kHz range by rescaling both the thickness of the plate and the lattice constant while keeping the ratio 

λ/a = const (λ is the wavelength at the operating frequency) and adapting the dimensions of the pillars 

accordingly. The high frequency domain fits with nanostructures whose typical dimensions (thickness of 

the plate, high and diameter of the pillars, and lattice constant) are of a few micrometers or less, with 

possible applications such as the vibration isolation of sensitive components, the super-focusing, the high-

resolution imaging, or the cloaking of elastic waves (see below). At the other end of the scale, double-

sided pillared metamaterials with typical dimensions in the millimeter range are excellent candidates for 

applications for noise reduction and filtering in the audio range. However, a narrow band is not 

necessarily a drawback and, even it becomes an advantage for all applications and devices where a high 

selectivity in frequency is a requirement. 

 

D.  Negative refraction of Lamb waves and cloaking 

The negative refraction (NR) of elastic waves through the interface between a phononic crystal and the 

adjacent medium, basically relates to the bands folding resulting from the periodicity, and to the negative 

slope of some dispersion branches [42–44]. As a result NR in these heterostructures only occurs when the 

wavelength is of the same order of magnitude as the period and double-negative elastic properties are not 

relevant to explain this behavior. In contrast, in an elastic metamaterial the negative refraction is the direct 

consequence of simultaneous NMD and NEM and as such, occurs in the long wavelength limit [24]. The 

occurrence of NR would provide therefore further evidence of the double negativity in the double-sided 

pillared metamaterial. For this purpose, we have considered the FEM model shown in Fig. 9(a). This 

figure displays a 2D prism shaped metamaterial constituted by 120 unit cells arranged in a 45° isosceles 

triangle within a circular steel plate. The plate was surrounded by a perfectly matched layer (PML) layer 

to eliminate reflections from the boundaries. The two perpendicular sides of the prism were set parallel to 

the lattice directions ΓX and XM. A line source 1600µm long was placed 100µm away from the inlet 

interface perpendicularly to ΓX direction. Lamb waves either symmetric or antisymmetric, were normally 

incident from the left and were propagating along ΓX direction. The frequency of the exciting waves was 

set to the mid value of the peak in the isolated branch, namely 3.55MHz. At this frequency, the 
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wavelength of the symmetric (resp. antisymmetric) Lamb mode is about eight (resp. three) times the 

lattice constant. 

The in-plane velocity field for the symmetric excitation is plotted in Fig. 9(b). It is clear from this plot that 

the symmetric Lamb mode propagates in the metamaterial and gets negatively refracted at the outlet 

interface. This result demonstrates that both resonances BS (related to NMD) and CS (related to NEM) are 

simultaneously excited by the Lamb mode, allowing in turn the propagation in the metamaterial. One 

should also notice that, as a resonant process, even the small out-of-plane component of the Lamb mode is 

able to excite the symmetric compressional mode CS. When NR results from the band folding at 

frequencies larger than the Bragg gap, it is generally accompanied with a high level of reflection at each 

interface between the phononic crystal and the background, which may constitutes a severe drawback in 

many applications. It is worth mentioning that this is not the case here. To show this, we have computed 

the transmission coefficient of a symmetric Lamb wave impinging at normal incidence a structure made of 

eleven unit cells along x-axis and infinite along the y-direction. The result displayed in Fig. 9(c) shows 

that the transmission is equal to unity in the whole band where double negativity occurs. 

The result is totally different with the antisymmetric mode, as can be seen from Fig. 9(d). Actually, for 

this polarization the wave cannot propagate into the metamaterial and is totally reflected at the inlet 

interface. This comes from the symmetry of this mode that cannot couple neither to the symmetric 

compressional mode CS nor to the symmetric bending mode BS of the double-sided pillars and therefore 

prevents the occurrence of the necessary double negativity for the propagation to be allowed. 
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(a)                           (b)  

 (c)  (d)  

Figure 9: (a) Finite element model used to demonstrate the negative refraction of Lamb waves; (b) In-
plane velocity plot under symmetric excitation at 3.55MHz; (c) Transmission coefficient of a 
symmetric Lamb wave impinging the phononic crystal at normal incidence; (d) In-plane velocity for 
an antisymmetric excitation at 3.55MHz. 

 

Another current topic is the implementation of acoustic cloaking based on a zero-index metamaterial and 

much work has been devoted to this research since a few years [9,45–48]. This exciting phenomenon can 

be ascribed to the effective phase velocity that tends towards infinity if the effective mass density is close 

to zero [45]. Therefore, an alternative method to obtain a refractive index with a null value consists in 

combining an infinite effective elastic modulus to a finite effective mass density. As discussed above, the 

symmetric compressional resonance CS in the double-sided pillared metamaterial causes NEM with an 

infinite value when the excitation frequency is equal or quite close to 3.57MHz, while the effective 

density keeps a negative but still finite value at this frequency; zero-index behavior should therefore be 

observed at this frequency. To check this assumption, we have computed the displacement field in the 

numerical sample displayed in the top panel in Fig. 10. The metasurface is made of 21×11 unit cells and 

features a 7a×3a void in its center. A zero-order symmetric Lamb wave is excited at a distance of 1 mm 

from the left edge of the metamaterial and PML’s are implemented on each side of the sample to eliminate 

any reflection from the boundaries. Periodic boundary conditions are applied on the other two edges. The 

displacement field when the frequency is tuned to 3.57MHz is shown in the mid panel of Fig. 10. At this 
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frequency, the wave front keeps plane upon transmission through the sample, except around the void 

where scattering effects are observable. This is a clear confirmation that, as a result of the nearly infinite 

phase velocity in the metamaterial, the phase of the symmetric Lamb wave keeps a constant value during 

propagation, allowing for a cloaking effect in this system. In contrast, when the working frequency is 

tuned to 4MHz, i.e. a frequency where the elastic modulus is positive, the Lamb wave undergoes strong 

scattering on the void, giving rise to the distorted wave front observable in the bottom panel of Fig. 10. 

This simple analysis of the transmission through the metasurface unambiguously shows that the shielding 

of substructures at specific frequencies may be achieved with this geometry. 

 

Figure 10: Finite element model (top panel) used to bear out the cloaking effect and total 
displacement field upon symmetric excitation at 3.57MHz (middle panel) and 4MHz (bottom panel) 

 

IV. CONCLUSION 

In this work, we have numerically investigated the negative properties of a single-phase double-sided 

pillared metamaterial. In contrast to the single-sided pillared structure where NEM never occurs, an 

isolated propagative branch with negative slope appears in the band structure of the proposed system. 

Symmetric Lamb wave at a frequency in this branch can propagate within the metamaterial whereas the 

propagation of the antisymmetric Lamb mode is forbidden. Comparisons with the case of the single-sided 

pillared system well explains the formation of the low frequency band gap and the occurrence of the 

double negativity. Actually, in the single-sided pillared structure the negative effective mass density 

results from the combination of both the bending and the compressional resonances of the pillar which 

together allow for the formation of the band gap. At resonance, the bending motion may be broken down 

into a rotational and a translational motion. The latter causes the effective mass density to be negative, 

whereas the moment applied to the plate by the rotational motion is ineffective. Afterwards, the double-

sided pillared metamaterial is investigated. The mechanism responsible for the occurrence of the effective 
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mass density and elastic modulus simultaneously negative is discussed in details. It is shown that the 

negative effective mass density is achieved owing to the combination of the symmetric bending resonance 

and the antisymmetric compressional resonance of the pillars. It is further shown that the negative 

effective elastic modulus relates to their symmetric compressional resonance. In other words, the double-

sided pillared structure has the advantage to allow to separate the symmetric and antisymmetric modes 

which is not achievable with the single-sided pillared structure. The symmetric band is created by the 

close vicinity of a bending resonance and a compressional resonance that together allow for the opening of 

a narrow pass band. 

Furthermore, the influence of the geometrical parameters of the unit cell on the width of both the band gap 

and the double-negative band is studied. The band gap shifts downwards when increasing the height of the 

pillar or decreasing the diameter of the pillar, while the thickness of the plate weakly affects the position 

of the band gap. More importantly, both the height of the pillars and the thickness of the matrix plate have 

a strong impact on the width of the double-negative band. By carefully designing the unit cell, the width 

can be significantly enlarged. In particular, equation (11) demonstrates that materials with large Poisson’s 

ratio allow for larger width. Finally, two properties which both directly ensue from the double negativity 

of the structure, namely the negative refraction and zero-index refraction of Lamb waves in the long 

wavelength regime, are shown to take place when the frequency lies in the double-negative band. While 

the central focus of this study was the demonstration of the simultaneous negativity of both the effective 

mass density and elastic modulus in the pillared metamaterials, the occurrence of a refractive index with a 

zero value, even in the absence of a Dirac-like cone at the center of the BZ [20], constitutes a significant 

fallout of this work. 
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