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Abstract 

 

In this work, we study thermal conduction and convection combined effects on frequency  

response to pressure oscillations of a spray of repetitively injected drops in a combustion 

chamber. The theoretical model is based on Heidmann analogy of the so called “mean droplet” 

which is a single spherical vaporizing droplet with constant average radius, given that this 

droplet is continually fed at a stationary flow rate. The feeding comes from a source point placed 

at the mean spherical droplet center in such a way that the injection process can be assumed to 

be isothermal (isothermal feeding regime) or adiabatic (adiabatic feeding regime). Drawing 

upon the linear decomposition of the energy conservation equation, approximate analytical 

solutions for the perturbed temperature field inside the droplet are obtained from some derived 

double confluent Heun equations. Frequency response factor of the evaporating mass is then 

evaluated on the basis of the Rayleigh criterion by means of the linearized equations of the gas 

phase. Compared to the results obtained for the previous pure conduction model of the same 

“mean droplet”, frequency response factor curves seem to be similar with reference to each 

feeding regime. Moreover, due to the radial thermal convection effect introduced in the present 

work, a frequency response factor curve with the same characteristic times ratio may exhibit a 

relatively larger frequency range for the instability domain. Data are found to be correlated in 
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terms of period of pressure oscillations, vaporization characteristics times and of fuel 

thermodynamic coefficients. In the isothermal feeding regime in particular, due to some 

possible values that can be taken by a certain thermodynamic coefficient, high and non-linear 

frequency responses may appear in the system. 

 

Keywords: mean spherical droplet; frequency response factor; adiabatic or isothermal feeding 

regime; double confluent Heun equation; approximate analytical solution 

 

1 Introduction 
 

Combustion instabilities are still being extensively studied nowadays though a great amount 

of theoretical, numerical, experimental works were devoted to their modelling and control 

during the past decades. Indeed, flow oscillations induced by external forcing or self-excited 

combustion instabilities occur in all types of combustion system (power generation engines, 

aeronautic engines and aerospace engines). A stable combustion process can be generally 

characterized by small amplitude pressure fluctuations as for example, less than about 5% of 

the mean chamber pressure for certain combustors [1]. But, interactions between the fuel 

vaporization, heat release and oscillatory flow field in combustion systems can cause departure 

from stable operating conditions. Further, fuel and operational flexibility requirements of new 

type of combustor architectures involve more complex and less predictable vaporization and 

acoustic couplings. In particular, the mechanism of spray combustion instabilities is hardly 

understood. In one hand, coupling between small acoustic oscillations in pressure and mass 

release at certain frequency levels may eventually lead to engine failure and other catastrophic 

consequences. In the other hand, particularly newer blends of liquid fuels can be engineered to 

undergo preferential instabilities leading to homogeneous combustion with higher efficiency 

[2]. In most diffusion flame models, many processes were pointed out as being responsible for 

triggering or for controlling high and nonlinear pressure oscillations in stable combustion 

chamber: combustor geometry [1], fuel type and composition [3], injection and atomization 

mechanisms [4], droplets vaporization characteristic times and other boundary conditions [3, 5-

7], fuel/air mixing [8], ...Those studies are usually validated by experiments on particular 

practical fuels. 

It appears from the above discussions that theoretical models are needed, which provide 

more details on the sequence of some mechanisms leading to high and nonlinear pressure 

oscillations occurrence in a stable combustion chamber. Considering two different fuel 

injection regimes, the present subcritical diffusion flame model includes both effects of process 

characteristics times and of fuel thermodynamic coefficients on the frequency response of a 

vaporizing spray. The evaluation of the frequency response of the vaporization process to 

pressure oscillations is mostly based on single vaporizing droplet models [3, 5, 9]. 

In other theoretical studies, as generally practiced in most numerical simulations, the 

dynamic behavior of spray vaporization is taken as a statistical consequence of the vaporization 

characteristics of each individual droplet in the array. Examples of these spray models are those 

of Harrje and Reardon [6] and of Delplanque and Sirignano [4]. Tong and Sirignano [10] also 

have examined the response of vaporizing droplets to oscillating ambient pressure and velocity 

conditions. The oscillatory rate of vaporization of an array of repetitively injected droplets in 

the combustion chamber is obtained from summation of individual droplet histories. In the same 

context, let us cite DiCicco and Buckmaster [11], Dubois et al. [12] and Sirignano et al. [7]. In 

all the above-mentioned studies, the actual changing volume due to the vaporization of the 

injected droplets has been taken into account.  

During the 1960s, in order to study the instabilities generated or amplified by evaporation, 

Heidmann and Wieber the first replaced in their models, the spray of repetitively injected drops 
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in the combustion chamber by a mean evaporating motionless spherical droplet [13, 14]. This 

mean droplet which has a constant average radius is continuously supplied with a stationary 

flow rate of the same fluid. The mean diameter of this average drop is considered to be invariant, 

as the supplied liquid compensates the evaporation. This evaporating droplet represents a mean 

spherical droplet with constant volume, at a specific location in the combustion chamber, and 

is supposed to summarize the frequency response of individual drops in the spray. The acoustic 

oscillations really affect the vaporizing droplet acceleration as well as its heat and mass transfer 

processes by giving the droplet three-dimensional velocity components and also causing 

perturbations within the droplet temperature and evaporation rate. But, Heidmann and Wieber’s 

numerical evaluation of the frequency response showed that the velocity difference 

contributions to the vaporization rate at high and low values of the ambient oscillating pressure 

were nearly equal and thus cancelled effects with regard to response factor evaluation. 

Therefore, for an approximation the velocity difference effects on vaporization rate were 

ignored. In the present paper, adopting this hypothesis, we consider, the case of a velocity-

stabilized mean spherical droplet representing a spray of repetitively injected droplets in the 

combustion chamber. This evaporating droplet with constant average radius is continuously fed 

by a steady flow.  

The main simplified assumption of Heidmann and Wieber in their model described above is 

that an infinite thermal diffusivity of the liquid phase is supposed; therefore, the mean spherical 

droplet has a uniform temperature whatever the feeding process adopted. This classical model 

was reviewed and substantially refined in 2009 by Prud’homme et al. [15]. 

Their analysis, which takes into account a finite thermal diffusivity of the liquid, was equally 

based on certain other simplifying assumptions. Neely, it was assumed that the supplied 

spherical droplet center remains adiabatic (zero temperature gradient) and that the radial 

convection effect in the energy equation due to the feeding process at the center of the droplet 

is neglected. Explicit analytical expression was then derived for the droplet mass transfer 

function in that pure conduction case and the results were discussed. With an aim of extending 

the analytical expressions of the perturbed evaporating rate and to the temperature field in a 

spherical symmetry configuration, Anani and Prud’homme (2016) have recently studied the 

pure thermal conduction effect on the perturbed mean spherical droplet and have pointed out 

the specificity of the isothermal injection regime [16]. The results derived from this case were 

then compared to that of the adiabatic feeding case. It was shown that, high and non-linear 

frequency responses may appear in the process when taking a particular thermodynamic 

coefficient value inferior but closer to that of a specific characteristic times ratio. Nevertheless, 

this recent study remains all the same based on the simplifying assumption of a negligible radial 

thermal convection effect inside the liquid-phase. Apart from the pure thermal conduction 

model cases, no analytical solution has been found and any asymptotical study has been 

performed for the mean spherical droplet model with a finite thermal diffusivity. 

The present paper aims at contributing to that sequence of linear analysis of harmonic 

instability mechanisms in combustion chambers by analytical approaches. This new model 

takes into account thermal conduction and convection combined effects on the dynamic 

response of the mean spherical droplet with a finite thermal diffusivity. In the analysis, double 

confluent Heun equations [17] will be derived from the linearized energy conservation equation 

of the liquid phase and approximate analytical solutions of the perturbed temperature field 

inside the mean spherical droplet will be obtained for both feeding regimes. 

Based on Rayleigh criterion [18], a frequency response of the vaporization process to small 

harmonic oscillations in pressure will be evaluated for both feeding regimes. Variations in the 

frequency response factor curves with the vaporization characteristic times ratio will also be 

presented. Results comparisons will then be made between the two different feeding regimes 

as they represent each other a specific boundary condition controlling the whole injection 
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process. The mass response factor of the mean droplet model with thermal convection effect 

will be equally compared to that of the pure conduction model and results will be analyzed. 

 

2 Description of the unperturbed state 
 

Today’s most theoretical studies of combustion instability in liquid-fuelled engines are based 

on numerical models and simulations of single vaporizing droplet dynamic response to ambient 

pressure and/or velocity perturbations (e.g., [3, 5]). But, even while assuming certain 

simplifying assumptions, analytical approaches that include more complex aspects of the 

problem are needed to get a better understanding of the mechanism. Those approaches may 

then serve to improve the development of numerical codes as for instance Computational Fluid 

Dynamic (CFD) codes (see [19]). One of those analytical approaches can stem from Heidmann 

analogy of a spherical vaporizing droplet of constant volume. 

 

2.1 General assumptions 
As mentioned in the introduction, the computation of the dynamic response of the 

vaporization process to pressure oscillations is mostly based on classical spray vaporization 

models. Existing evaporation models which are applicable to modern many-droplet calculations 

as usually performed in CFD codes were reviewed by Miller et al. (1998) in [20]. 

Therein, eight sub-models were compared, and efforts were made to subject theoretical 

predictions of each model to experimental scrutiny. Results show that the model based on non-

equilibrium Langmuir-Knudsen evaporation law formulation with an infinite liquid 

conductivity should be used for general gas-liquid flow calculations. Thereby, this model is 

shown to require less computational effort than the remaining models and to provide more 

accurate predictions. The Abramzon and Sirignano model [21] is also shown to provide 

improved agreement with experimental results, compared especially to the classical rapid 

mixing model. But their model may be costly for many-droplet simulations. However, in the 

present study, the vaporizing spray is modelled by a single mean spherical droplet. As a 

consequence, the gas-phase sub-model equations used in the present paper are those derived by 

Prud’homme et al. [15] from the Abramzon and Sirignano model. These equations are briefly 

recalled in subsection 2.3 for a free vaporizing droplet at its unperturbed or stabilized state. For 

such a free vaporizing droplet, that is a single injected droplet during its course of evaporation, 

this state corresponds to a state of rest in an infinite atmosphere and is characterized by [15, 

16]: constant average evaporation rate, uniform temperature of saturated vapor at the transient 

droplet surface, and equal velocities of the ambient gas flow and of the droplet. Below, these 

assumptions will be discussed in connection to the stabilized mean spherical droplet. 

Concerning the liquid phase sub-models usually used in CFD codes, five different groups 

classed in ascending complexity order were reported by Sazhin et al. (2006) in their 

comparative analysis review [22]. Among the classes, the present description of the supplied 

droplet at the stabilized state may be relevant to class four, as both finite liquid thermal 

conductivity and liquid re-circulation (restrained here to the radial convection) are considered 

for the droplet. Indeed, contrary to the classical model of Heidmann, our present model does 

not assume that the mean droplet reaches a steady and uniform temperature in the interior even 

when that droplet is in its stabilized state. From now on, all primed quantities will denote 

perturbed quantities (i.e. ( ) xxxx −=' ) whereas all barred quantities will indicate mean values 

corresponding to the stabilized state. 

In the physical model, the feeding is supposed to be done at the centre of the mean droplet 

and the liquid circulation within the droplet is distributed throughout in order to maintain its 
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spherical symmetry configuration. During the injection, the center of the droplet is assumed to 

be adiabatic (zero temperature gradient) or isothermal (imposed constant temperature). 

These two thermal regimes here considered represent two different boundary conditions 

controlling the whole injection process of a spray of repetitively injected droplets into the 

combustion chamber. As an unheated spray injection process is here modelled by the adiabatic 

feeding regime at the mean droplet center, the isothermal feeding regime at the same droplet 

center can be viewed as an idealized modelling of a specifically preheated spray injection 

process. Some studies have shown that the reduction in kinematic viscosity resulting from fuel 

preheating improves the combustion and emissions performance of the engine [23, 24]. Now, 

this isothermal feeding regime is here taken into account by supposing the injected fuel at the 

constant mean temperature ST , ST being the spatially uniform although time varying 

temperature of saturated vapor at the stabilized mean droplet surface. Indeed, in this stabilized 

state, actual change in ST value can be considered insignificant and ST is almost equal to ST

since the mean droplet is maintained at a fixed size. The estimation of the injected fuel 

temperature ST for the isothermal regime will be based on the liquid wet bulb temperature TWB 

( ST =TWB ), given that, TWB is essentially the steady state surface temperature achieved during 

evaporation of free droplets. The wet bulb temperature should be replaced by the boiling 

temperature TB only when its estimate is unavailable [20].  

Contrary to the classical adiabatic condition which states that the heat flux is null at the 

spherical droplet center, the isothermal condition doesn’t assure the regularity of the heat flux 

at the droplet center. Therefore, the spherical shape of the mean droplet is no more guaranteed 

in this feeding regime. Nevertheless, we assume for both feeding regimes that the mean droplet 

remains spherical during the feeding process. Thus, using simplifying assumptions, the present 

study aims to compare the effect of the two extreme cases bounding the possible range of real 

liquid fuel inlet temperatures on a subcritical combustion instability phenomenon. 

The stabilized mean droplet diameter is supposed sufficiently smaller (about 100 μm) than 

the wave length, so that the acoustic pressures can be assumed to be temporally undulating but 

spatially invariant [25]. The present mean droplet configuration is different from that of the 

global equivalence ratio in the spray region by the Sauter Mean Diameter (SMD) used for 

example in [26] and can be rather linked to the Arithmetic Mean Diameter configuration. 

This choice is motivated by the analytical approach of the problem since it leads for the mean 

droplet to an energy conservation equation with fixed boundary conditions. In effect, we 

consider a stabilized mean spherical droplet, with a constant average radius Sr  within a hot 

gaseous environment of infinite extent. In these conditions, the actual instantaneous evaporation 

rate M  can be assumed nearly equal to its constant mean rate value M  at which the feeding 

process is realized at the center. During this process, the density L , the specific heat lc  and 

the thermal conductivity Lk of the droplet will be treated as constants as assumed in most 

subcritical evaporation models [21, 27]. For the stabilized state, these fuel properties can be 

evaluated at some average temperature TLref = 0.5(T0 +TWB) or TLref = 0.5(T0 +TB) as in [21] 

with T0 denoting the injected liquid initial temperature at the chamber ambient pressure. The 

feeding is realized by the same fluid, using a point source located at the center of the droplet, 

in such a way that thermal dilatation of the liquid phase is negligible. We will assume that the 

local feeding rate M is distributed throughout the droplet as shown in Fig.1a. Out of the radial 

thermal convection effect inside the continuously fed droplet from its center to its evaporation 

surface, any other convective transport or liquid recirculation phenomenon within the droplet 

will not be taken into account in the analysis. Only vaporization dynamics will be considered 
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for the gas-phase near the droplet. The influence of combustion will be limited to imposing a 

stationary composition and temperature at infinity. 

The combined effects of vaporization dynamics and combustion kinetics, and their eventual 

retro-action on ambient pressure will not be taken into account here. The mean spherical droplet 

is assumed to be vaporizing in combustion gases, composed of stoichiometric reaction products. 

As already mentioned in the introduction, the gas-phase near the droplet surface is supposed to 

evolve in the quasi steady regime and equilibrium conditions at the droplet/gas interface are 

assumed for the stabilized state. Far from the mean evaporating droplet, the gaseous 

environment is at constant temperature CT  and pressure CP . Neither critical nor supercritical 

phenomena are considered since the system pressure CP is much less than the critical pressure 

of the liquid. Radiation and second-order effects such as Soret and Dufour effects are also 

neglected. The boundary conditions for the supplied droplet are shown in Fig. 1b. Subscripts L 
and l refer to liquid-phase whereas subscript S refers to the condition at the droplet surface.  
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Fig. 1. a The mean vaporizing droplet, continuously fed by a point source placed at its center. 

b Boundary conditions for the supplied droplet: parameters  , D and k denote respectively the 

density, the mass diffusion coefficient and the thermal conductivity of the gas-phase. The 

subscripts S and C refer respectively to the conditions at the droplet surface and at infinity 

(i.e. the combustion chamber) and iY  designates the mass fraction of jth species. 

 

2.2 Characteristic times 
The total mass balance of the supplied droplet is: 

 

 MM
dt

dM  −=   (1) 

 

where M is the stationary flow of injection and M the instantaneous flow of evaporation of the 

droplet. In a stabilized regime, one has: MM  = , dM/dt=0 and MM = . The residence time of 
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the mean spherical droplet can then be defined as the mean lifetime of an individual vaporizing 

droplet in the array of repetitively injected droplets. Thus, the residence time of the mean droplet 

corresponds to the residence time of the injected liquid for the droplet as this time replaces the 

notion of the free droplet lifetime in the present situation of constant volume. The parameter M 

being the total mass of the supplied droplet and M its mean value, the mean residence time is 

defined as the ratio MMv
= of the mass M  and the stationary feeding rate M . The transfer 

time by thermal diffusion process is LST r 
2

= , where LLLL ck  = designates the thermal 

diffusivity of the liquid. We can thus define the thermal exchange coefficient of the vaporization 

process as the timescale ratio TvTv  ~9 ==  (the coefficient 9 permits to obtain later a 

simple expression of the transfer function). We will also consider the vaporization dynamic of 

the mean droplet in a pressure fluctuating flow field. Such a problem is very relevant to the 

analysis of combustion instability in liquid propellant rockets or liquid-fueled ramjets where 

the pressure, velocity and gas flow temperature may oscillate in the frequency range of 100-

15000 Hz [6]. In order to provide in our present study a parameter that may be used to 

characterize the instability domain for any fuel, we will consider the reduced frequency defined 

as vu 3= where ω is the pulsation of ambient pressure harmonic perturbations. 

 

2.3 Stabilized state equations 
Since the radial thermal convection effect is taken into account, the temperature Tl of the 

liquid is a function of radial coordinate r and time t i.e. ( )trTT ll ,= and verifies: 
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where Srr 0  with the central injection velocity expressed as 24 rMv Lr = .  

Equation (2) is subject to boundary conditions 0
,0

=




t

l

r

T
and ( ) ( )tTtrT SSl =,  for the adiabatic 

injection at the droplet center or to ( ) Sl TtT =,0 and ( ) ( )tTtrT SSl =, for the isothermal injection 

at the droplet center. The heat LQ  transferred into the droplet is given by: 
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where Q and   are respectively the external gas heat flux and the latent heat of vaporization 

per unit mass of the liquid. This condition couples the gas and the liquid-phase solutions at the 

spherical droplet surface. 

The gas-phase includes a stabilized mean droplet surface in local evaporation equilibrium 

with an ideal gas mixture evolving in a quasi-steady regime. The instantaneous mass 

vaporization rate from the droplet surface can be calculated using the following equations: 
 

 ( ) ( )TS

p

MS Br
c

k
BShrDM +=+= 1ln41ln*2    (4) 

with the Spalding parameter for mass exchange ( ) ( )FSFCFSM YYYB −−= 1  and for heat exchange

( ) ( )MQTTcB LSCpT
 +−= . The gas-phase properties are the density 𝜌, the mass diffusion 
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coefficient D, the thermal conductivity k and the specific heat at constant pressure pc . The 

Sherwood Sh* and Nusselt Nu were introduced by Abramzon and Sirignano in their extended 

film model [21]. The mass fraction of species j is denoted jY and CT is the ambient temperature. 

The subscripts F, S, and C represent respectively the fuel, the droplet surface and the conditions 

far from the droplet. The saturated vapor pressure ( ) ( )( )cTbaTp SSsat −−= exp , (with related 

coefficients a , b and c ), is connected to the mole fraction of the droplet vapor at the droplet 

surface by the relation ( )SsatFS TpXp = , where p is the ambient pressure, jX the mole fraction 

of species j for the ideal gas mixture. 

Then, we can relate the mass fraction YFS of the droplet vapor at the droplet surface to the 

mole fraction FSX : 
 

 FS

AASFSF

F
FS X

MXXM

M
Y

+
=   (5) 

 

where jM  is the molecular weight of species j (the gaseous mixture is made up of fuel species 

F and diluted species A while the liquid is of only fuel species F). Given that temperature and 

concentrations are not constant in the environment of the droplet, the averaged properties can 

be evaluated at some reference temperature ( )SCrS TTATT −+=  and composition 

( )FSFCrFSF YYAYY −+= , where 31=rA will be chosen. The calculations for linear analyses 

were performed [15] with both Sherwood and Nusselt numbers taken equal to 2 and Lewis 

number taken equal to unity. 

 

3 Linear Analyses for Small Perturbations 
 

Our objective is to build an approximate analytical model of reference for the harmonic 

perturbations in pressure. To this end, we will supplement the previous developments of the 

models of the continuously fed spherical droplet [13-16] by taking into account the not yet 

studied radial thermal convection effect on the process, for both adiabatic and isothermal 

feeding cases. 

 

3.1 Linear analysis of the liquid-phase equations 
The velocity perturbation is assumed equal to zero. The wave pulsation ω accounts for the 

acoustic influence on the evaporation rate and the internal temperature perturbations since all 

the derived solutions are functions of the reduced frequency vu 3= . Introducing then small 

harmonic perturbations of pulsation ω of the form ( ) ( ) ( )tirfffff expˆ' =−= , the ambient 

constant pressure Cpp =  will take the perturbed form ( )tipp C expˆ'= . We set

( ) ( ) ( )tirTtrT ll expˆ,' =  and ( ) ( )tirQQ LL expˆ=  . Equation (2) can then be transformed to: 
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




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d
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d
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Ti ll

lT  (6) 

where, instead of the radial variable r ( Srr 0 ), lT̂ is rather taken as a function of the 

reduced radius variable ( )10 =  Srr . In connection with ξ, the boundary conditions in 

the adiabatic feeding regime are: 
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and become in the isothermal feeding regime: 
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We now consider the two conjugate complex numbers ( )( )2

1

0 21 Lis += and

( )( )2

1

0 21 Lis −= , 0s and 0s being the two complex roots of the characteristic equation

02 =− si L  obtained from Eq. (6) when neglecting the convective term
 d

Td l
ˆ

3

1
. In the 

adiabatic center case, a solution of Eq. (6) can be sought in the form of

( ) ( ) ( )( ) Sl rsGT 0cos1ˆ −=  while in the isothermal feeding case a solution will be sought in 

the form of ( ) ( ) ( )( ) Sl rsHT 0cos1ˆ −= , with G and H referring to functions to be 

determined. Therefore, using in the neighborhood of 0= , the second-order truncated 

expansions of sine and cosine functions that are ( )  SS rsrs 00sin   and 

( ) ( ) 21cos
2

00  SS rsrs − , we deduce that the functions G and H must respectively verify 

the following second order equations: 
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and 
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Equations (10) and (9) are respectively a double confluent Heun equation and its degenerate 

case. By using the boundary conditions Eq. (7) in the adiabatic center regime, an approximate 

analytical solution of Eq. (6) can be expressed: 
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Adopting now the notation of the Maple manual, a particular solution of Eq. (10) over the 

open range 10    (isothermal feeding case) can be expressed as: 

( ) ( ) ( ) ( )( ) 2

3

22

11112 11,,,,HeunD3exp  +−−= xxxxCH where C2 is an arbitrary constant 
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and ( ) ( )( )11,,,,HeunD 22

1111 +− xxxx  is the double confluent Heun function with the 

corresponding four parameters:  

( ) ( ) ( ) 22

4

2

3

22

21 4249,2383,4249,0  iuxiuxiuxx ++=−=−−−== . We 

recall that the parameter vu 3=  is the reduced frequency previously defined in subsection 

2.2. Finally, by using the boundary conditions in the isothermal feeding regime i.e. Eq. (8), an 

approximate analytical solution of Eq. (6) can be expressed in the form: 

 

( ) ( )

( )













−










+

−
−


















−

=

=

10,

cos1

1

1
,,,,cos1

1
1

2

3
expˆ

0,0

ˆ

2

5

0

2

2

11110
















S

SS
l

rs

xxxxHeunDrsTT  (12) 

 

Since it oscillates indefinitely as it approaches 0=  by the positive direction, the 

approximate analytical solution of the isothermal center case presents an essential discontinuity 

at 0= contrary to that of the adiabatic center case Eq. (11) which is rather regular at 0= . 

In fact, neither the continuity nor the regularity of the function lT̂  at this center point do 

intervene in the calculation of the mass response factor which is of our concern, but only the 

regularity conditions at the droplet surface 1= are needed. These regularity conditions are 

well verified by both approximate solutions Eq. (11) and Eq. (12). 

Thus, for both feeding regimes, the flow condition at the droplet surface Eq. (3) which now 

reads L
l

SLS Q
d

Td
Tkr ˆ

ˆ
4

1

=

=


  can apply to the derived approximate solutions. That leads to: 

 ( ) SSLSL TuETkrQ ˆ,4ˆ −=   (13) 

 

where E is a function of u and . Hence, we found for the adiabatic feeding case: 

 

  ( )
( ) ( ) ( )

( )( )S

SSSS

rs

rsrsrsrs
uE

0

0000

cos1

32cos3cos2sin
,

−

+−−+
=




  (14) 

 

whereas for the isothermal feeding case, calculations yield: 

 

  ( )
( ) ( ) ( )

( )( )S

SSSS

rs

rsrsrsrs
uE

0

0000

cos1

35cos3cos5sin2

2

1
,

−

+−−+
−=




  (15) 

 

with ( )( ) ( )( ) TvvSS uuirsuirs  ~ and3,231,231 2
1

2
1

00 ==−=+= . 

 

3.2 Linear analysis of the gas-phase equations 
We will now recall the linearized equations for the liquid/gas interface used in [15, 16]. At 

the stabilized state, any thermodynamic variable f of the gas-phase has a uniform distribution

f . Introducing small harmonic perturbations ( ) ( )tirff expˆ'= , we look for the relation 

between the imposed chamber perturbation ( )tipp C expˆ'= and the resulting mass flow rate 
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perturbation ( )tiMM exp
ˆ

'  = . From the equations of the gas-phase (see subsection 2.3), it was 

deduced that [15]: 

  ( )CS pTb
iu

iu
M ˆˆ

1

ˆ
−

+
=  (16) 

with ( )tiMMMMu v  exp
ˆ

',3  ===  and: 

 ( )LCL TpaMQ ˆˆˆ −=   (17) 

where: ( )tQiQQQQ LLLLL =−= expˆ  as 0=LQ . The coefficients involved in Eq. (16) and 

Eq. (17) are expressed as follows:  

 

( )

( ) ( ) ( )














+−++
=

+
−

−
−

=

−
=+

−

−
=

ASAFSF

F

FCFSAS

FSAC

MM

M

SSC

S

S

S

SC

C

XMXM

M

YYY

YY

BB

B

b
cT

c

TT

T

b
cT

T
b

TT

T
a

1ln1

,
2

,,
1

2










 

 

In these expressions,  stands for the isentropic coefficient (assumed to be constant), the 

function   equals the quantity ( )( )ASAFSFFCFSASFFSAC XMXMYYYMYY +−=  and the latent 

heat is given in the form: ( )22
cTMbRT SFS −= with R denoting the universal gas constant. 

 

3.3 Mass response factor 
The response factor N is expressed as the ratio of the magnitude of heat or mass perturbation 

to the magnitude of the pressure perturbation and thus, includes phase relations. The reduced 

pressure perturbation is defined as ( ) pppp −=' , and the resulting reduced heat or mass 

perturbation is ( ) qqqq −=' . The response factor N is thus defined as: 

 

 
( ) ( )

( )( )


=

tV

tV

dVdttVp

dVdttVptVq
N

,

2

,

,'

,','
 (18) 

 

where the double integral value is calculated over a given period of time t in a finite volume V. 

For sinusoidal oscillations which are uniform over a finite volume, the response factor can be 

reduced to ( ) cosp̂qN = , where q̂  and p̂ are the moduli and  the phase difference between 

q ' and p ' . We now consider the complex transfer function CpMZ ˆˆ
=  whose expression here 

is brought about using Eq. (13), Eq. (16) and Eq. (17): 

 

  ( )
( )
( )uEB

uEA

iu

iu
uZ

,

,

1
,






−

+

+
=  (19) 

The parameters ( ) −= abA 3  and 3=B  are thermodynamic coefficients related to 

the fuel physical properties with SL Tc= . The mass response factor N can equally be 

deduced as the real part of the transfer function Z. From now down this paper, we will 
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consider and call “response factor”, the reduced response factor, which is the real part of the 

transfer function Z: 

 ( )Z
N

=


  (20) 

The response factor is assumed positive when the vaporization rate and the chamber pressure 

are either above or below their mean values. But when the vaporization rate and the chamber 

pressure are on the opposite sides of their means it is then assumed negative [18]. Hence, the 

phase difference between the vaporization rate and the chamber pressure, defined as )arg(Z=

, appears to be a key parameter in pressure-related-oscillations analyses. This phase angle was 

shown to remain insens itive to the chamber mean pressure magnitude [3]. 

We now briefly recall, concerning the pure conduction model of the spherical mean droplet 

[15, 16], that the complex transfer function Z has the same expression as laid in Eq. (19). In that 

model, the expression of the function E for the adiabatic injection case was

( ) ( )SS rsrsuE 00 coth1, −=  whereas for the isothermal injection case calculations yielded 

( ) ( )SS rsrsuE 00 coth1, += with the same parameters as in the present model: 

( )( ) ( )( ) vSS uuirsuirs  3,231,231 2

1

0
2

1

0 =−=+= , and Tv  ~= . 

 
 

4 Results and discussion 
 

As for the pure conduction models [15, 16], calculations and curves are performed in the 

present analysis with the thermodynamic coefficients A=10 and B=100. These values of A and 

B correspond approximately to orders of magnitude of values encountered in the classical fuels 

[28]. With respect to the two feeding regimes, the treatment of the data will consist to relate the 

mass response factor to the effects respectively of the radial thermal convection and of the 

process characteristic times and again of the thermodynamic coefficients A and B. Figure 2 

shows, for both adiabatic and isothermal feeding regimes, response factor curves as functions 

of the reduced frequency vu 3=  for arbitrary values of the exchange coefficient Tv  ~= . 

For comparison purposes, corresponding response factor curves in the pure conduction model 

are reproduced in Fig. 3. 

 

4.1 General remarks 
In the adiabatic center regime (Fig. 2), the response factor curve shows always a positive 

response region corresponding to instability domain. As in the pure conduction model (Fig.3), 

a typical response factor curve arises from zero at the lowest frequency, exhibits a peak value 

around a fixed reduced frequency 3pu  and then decreases and later takes negative values at 

higher frequencies. The cut-off reduced frequency uC, corresponding to a zero-response factor, 

is to be considered as a critical frequency since it divides the frequency response into regions 

of destabilizing and stabilizing influences. When  increases from 1 on, the critical frequency 

uC tends to decrease quickly first, then reaches a minimum value for about 30 and then again 

begins to increase very slowly to finally attain a limit frequency value slightly greater than 55 

(Figs. 2c and 2e). In fact, in this feeding regime, and even for the pure conduction model, once
150 , all the response factor curves tend to collapse into a single line (Figs. 2e and 3e).  
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Fig. 2 Influence of reduced exchange coefficient   on the response factor ( )ZN =/  for 

the mean spherical droplet model with thermal convection effect; A=10 and B=100.  

a Adiabatic center. b Isothermal center. c Adiabatic center. d Isothermal center. e Adiabatic 

center. f Isothermal center. 
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Fig. 3 Influence of reduced exchange coefficient   on the response factor ( )ZN =/  for 

the mean spherical droplet model without thermal convection effect (pure conduction model); 

A=10 and B=100. a Adiabatic center. b Isothermal center. c Adiabatic center. d Isothermal 

center. e Adiabatic center. f Isothermal center. 
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Concerning the isothermal center regime, as in the pure conduction model, existence of 

cutoff frequency uC depends closely on values of  . When   increases from 1 to a value about 

200, the critical frequency uC varies quite quickly between 20 and a value about 65, then 

completely vanishes on the layout for higher values of  ( )225 . Compared with the pure 

conduction model, the critical frequency values are greater whereas the positive peak value 

stand always at about the same frequency 3=pu . Also, for the model with consideration to 

thermal convection effect, the peak value grows very quickly and seems to tend to infinity for 

a value of   about 200. In fact, larger peak values growing beyond the unity value appear for

200100  . Especially, for  about 200 the frequency response curve for isothermal feeding 

regime asymptotically diverges from unity to infinity, along the vertical line passing at pu . But 

curves for higher values of ( )225  show negative response factors for all frequencies. This 

behavior is globally similar to that observed in the pure conduction model (Figs. 2f and 3f) 

except that more large values of critical frequencies Cu and greater relative exchange coefficient

   appear in the present model. 

In both adiabatic and isothermal feeding regimes, the frequency response curves are quite 

similar for relatively small values of the exchange coefficient 10  as shown in Figs. 2a and 

2b, except that the isothermal feeding regime presents more large cut-off frequency values and 

consequently more large instability domains. For both regimes, the peak responses seem to be 

at a same specific frequency pu , which is relatively unaffected by the variation of  . The main 

differences in the frequency response for the isothermal injection regime compared with the 

adiabatic one are the larger peak values of the response factor at the particular frequency pu

and the absence of a positive response region when 225 . 

 

4.2 Effects of the radial thermal convection 
First, in the adiabatic feeding regime, when 10  , response factor curves of the mean 

spherical droplet model with thermal convection effect show, against all expectations, lower 

cut-off frequencies than that of the pure conduction model (Figs. 2a and 3a). This fact can be 

readily related to the nature of the adiabatic feeding regime since, in this regime, the thermal 

wave propagation from the droplet surface to its center is counterbalanced by the radial thermal 

convection effect from the droplet center to the surface. When the exchange coefficient is low, 

that is Tv   , the thermal convection effect can be considered more important than that of the 

thermal conduction, and being in the adiabatic feeding regime, the temperature gradient  lT̂  

is null at the droplet center. To the contrary, given that  lT̂ is well above 0 at the droplet 

center in the isothermal feeding regime, the thermal convection will rather help the mean 

spherical droplet to quickly hold its thermal equilibrium, favoring therefore the thermal wave 

penetration inside the droplet and the vaporization rate response. 

Considering again the adiabatic feeding regime, a response factor curve shows necessary a 

cut-off frequency cu  depending on the value of the exchange coefficient . In this feeding 

regime, calculations show that  

 

 
( )

( ) 4222

42

4243742436

3610144

uuBBBB

uuBAABN

++++++

−−−+
→


  (21) 

when → , that is vT    (the thermal convection effect is no more dominant). 
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Therefore, the critical frequency tends to a constant value 3610144 −−+→ BAABuc   (

55.7 for A=10 and B=100). These values can be compared with the limit values obtained in the 

same feeding regime for the pure conduction models, which are [29]: 

 

  
( )

( ) 4222

42

1 uuBB

uuABBAN

+++

−++
→


  (22) 

 

and BABAuc ++→  ( 33.3 for A=10 and B=100) when → . In fact, once 1 , the 

radial thermal convection effect strongly affects the process by extending considerably the 

positive response domain even if this convection effect remains unimportant in the system. 

Considering now the isothermal feeding regime, the response factor curve may show 

negative response for all frequencies provided that is sufficiently large ( 225 ). This fact is 

confirmed by theoretical consideration since, in this feeding regime, calculations give: 

 

  
2

2

1 u

uN

+

−
→


  (23)  

when → . Indeed, in this feeding regime, the limit function (23) is identical to that of the 

pure conduction model of the mean spherical droplet and even to that of the pastille-shaped 

droplet model with or without respect for the thermal convection effect [29]. In short, in both 

adiabatic and isothermal regimes, the taking into account of the thermal convection effect once

1 , strongly affects the mass response factor by enlarging notably, whenever it exists, the 

scope of the instability domain.  

 

4.3 Effects of process characteristic times 
It has been shown (1994) that, in the frequency range of interest in ramjet combustion 

instabilities (100-8000 Hz), the droplet lifetime and the period of pressure oscillation can be of 

the same order of magnitude [7]. Indeed, in accordance with previous studies of the mean 

spherical droplet in the adiabatic feeding regime and even through the analysis of the pastille 

shaped droplet subjected to the same regime [13-16, 29], the response factor peak value always 

occurs at the same reduced frequency of about u= 3, that is 33 = vpu   or 1v . Now, in 

isothermal center cases (Figs. 2b, 2d, 2f and 3b, 3d, 3f), a positive peak value of the response 

factor, when it exists, appears around the same frequency pu . According to Rayleigh criterion, 

this reduced frequency 33 = vpu  , at which the droplet lifetime (injected liquid residence 

time v ) matches the period of pressure oscillations 1 , induces a positive peak response factor 

because it favors mass transfer in phase with pressure oscillation. Thus, regardless of the type 

of the feeding regime, whenever positive responses appear in the system, the vaporization rate 

can fully respond to the acoustic oscillations only when the droplet lifetime equals the period 

of ambient pressure oscillations. 

Following Rayleigh criterion, the combined effect of the three process characteristic times 

(thermal diffusion time LST r 
2

= , droplet residence time v and period of pressure oscillations

1 ) can be envisaged in the light of the well-known time-lag model [4, 6, 7]. 

Figure 4 shows, for both adiabatic and isothermal feeding regimes, phase-angle curves as 

functions of the reduced frequency vu 3=  for arbitrary values of the exchange coefficient. It 

appears that, all the above-mentioned trends concerning Fig. 2 are readily confirmed by the 

curve profiles obtained in Fig. 4. In the adiabatic feeding regime (Fig. 4a) phase-angle curves 
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collapse in a single line once 1 , accounting therefore for response factor curves profiles 

obtained in Figs. 2a, 2c, 2e. More importantly, the phase-angle curves unique cut-off frequency 

can be precisely approximated to the peak frequency 33 = vpu   at which the vaporization 

rate oscillates perfectly in phase with the acoustic pressure ( 0= ). 

The curve profiles observed for the isothermal feeding regime (Fig. 4b) are also highly 

suggestive, in comparison with the profiles obtained in Figs. 2b, 2d, 2f. Indeed, considering

200 , the phase lag  decreases from π/2 to a slightly inferior value when the frequency u 

increases from 0 to about the peak frequency up. And then,  increases slowly till the maximum 

value of π, expressing therefore a progressive damp of instability in the system. 

Now, for 250= , the phase-lag curve exhibits, about the frequency up, an instantaneous 

change from the extreme value - π to the other extreme value π, accounting therefore for the  

intriguing changes noted in the related response factor curves profiles (Fig. 2f). In practice, the 

residence time depends on the mean droplet diameter size, the thermal diffusion time depends 

on the propellant diffusivity, and the period of the oscillation can be related to the shape of the 

combustion chamber. The judicious choice of these parameter values in agreement with the 

above results may permit to obtain more stability in propellant combustion systems. 

 

 a b 

     
  

Fig. 4 Influence of reduced exchange coefficient θ on phase lags ϕ of vaporization rate with 

regard to acoustic pressure for the mean spherical droplet model with thermal convection 

effect; A=10 and B=100. a Adiabatic center. b Isothermal center. 

 

4.4 Effects of the thermodynamic coefficients A and B 
Unlike the adiabatic feeding case, curves in the isothermal feeding regime (Fig. 2f) show 

intriguing changes in their profiles, once θ gets superior to a certain value θd. An explanation 

given above indicates a rapid realization of the thermal equilibrium inside the mean droplet in 

the isothermal feeding regime, and then suggests possible influences of fuel physical properties 

effects in the system. From this point of view and in order to determine the specific value θd, 

the ratio 3/ Tux  ==  may be particularly useful in this analysis in as much as the residence 

time v  does not intervene in it. But, the thermal diffusion time and the pulsation of the 

oscillating wave ω intervene. Therefore, taking this ratio negligible at the fixed peak frequency 
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33 == p

vppu  comes to taking the thermal transfer time by diffusion T  negligible compared 

to either the oscillation period pp 1=  or the residence time p

v . 

Thence, as in [16], an estimation of the complex transfer function Z (Eq. (19)) can be 

obtained in the neighborhood of x=0 by a limited expansion according to the ratio ux =  while 

assuming u closer to 3=pu . As this ratio can be supposed negligible in the expression of the 

complex transfer function Z provided that θ is taken sufficiently large, the second order 

truncated expansion in the neighborhood of x= 0 in the isothermal center regime implies: 
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But, in the adiabatic center regime, the approximation gives: 
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In the isothermal feeding regime, the specific value of θ, around which intriguing changes 

of response factor curve profiles are observed, can be deduced from expression (24) by 

cancelling the denominator, that is, by taking θd =2B+3 (= 203 for B=100). These results 

confirm the important role played by the thermodynamic coefficient B=3µ/λ by making, in 

correlation with θ, high and nonlinear triggering of instability a possibility. A similar case of 

correlation was sufficiently highlighted in the analysis of the mean droplet pure conduction 

model [16] where θd has also been evaluated (θd =B for B=100). Moreover, depending on the 

feeding regime, expressions of the complex transfer function Z in Eq. (24) and (25) may serve 

to furnish estimations of peak values of response factor curves by means of their real parts. 

Recent studies as that of Hsiao et al. (2011), of Lafon et al. (2014) and of Sirignano (2015) [3, 

5, 30] show that the rapid variations of fluid thermodynamic properties near the critical mixing 

point are the major factor contributing to an abrupt change observed in droplets response. In 

fact, effects of fluid thermodynamic properties are rather connected to critical and supercritical 

vaporization processes through recent publications on this subject. 

But, the present study of the mean spherical droplet shows that, an abrupt variation in the 

evaporating mass frequency response can occur even in a subcritical vaporization of a 

specifically preheated fuel. These results may be particularly beneficial for instability control 

in preheated and/or premixed fuel combustion systems. 

 

5. Conclusions 
 

Combined effects of thermal conduction and convection on frequency response of a 

vaporizing spray to pressure oscillations were studied. As in the classical Heidmann 

configuration, the mean spherical droplet allowed us to evaluate the mass transfer response to 

pressure oscillations. Two thermal forcing types were considered: constant temperature 

(isothermal injection regime) or zero temperature gradient (adiabatic injection regime). 

Approximate analytical solutions were derived for mass response factor whereby differences 

and similarities between the two forcing regimes were determined. Considering both types of 

the injection regime, comparisons were also made with the pure conduction model of the mean 

spherical droplet. 
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Important differences as well as similarities were observed between the cases analyzed. We 

have found that whenever the response factor has positive values pointing to instability, the 

maximum value is always reached at a particular reduced frequency. This particular frequency 

matches the period of the ambient pressure harmonic disturbances with the residence time of 

the mean spherical droplet. In the adiabatic feeding regime, assumed with or without thermal 

convection effect, the response factor peak values are shown to be almost constant relatively to 

the variation of the exchange coefficient. But, in the isothermal feeding case, response factor 

peak values vary abruptly by tending first to positive infinity when the exchange coefficient 

approaches a specific value while remaining lower than it, and then, to negative infinity once 

the exchange coefficient gets superior to this value. The latter is shown to be closely correlated 

with a certain thermodynamic coefficient that relates to fuel physical properties. These trends 

can be readily shown by using a phase-angle representation as mainly practiced in most time-

lag models. Apart from these main differences, we saw that, for the exchange coefficient 

tending to zero, response factor curves are quite similar in both adiabatic and isothermal feeding 

regimes depending on the taking into account or not of the thermal convection effect. 

This study has shown that, with or without taking into account the radial thermal convection 

effect in isothermal injection cases, particular correlations of the exchange coefficient with 

parameters depending on fuel physical properties may be a plausible cause for high frequency 

response occurrence in combustion chambers. Theoretical and experimental studies are still 

needed to clarify these issues, since the adiabatic and isothermal feeding regimes here 

considered are the extreme cases of a more generalized injection regime that combines the two 

thermal forcing types. However, the present linear analysis has the advantage to provide 

dimensionless parameters that may be used to characterize and examine the dynamic behavior 

of the vaporization process for any fuel. The physical results obtained may also help to interpret 

or predict the occurrence of strong perturbations in vaporization and combustion processes. 
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