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The striatum, the main input nucleus of the basal ganglia,

controls goal-directed behavior and procedural learning.

Striatal projection neurons integrate glutamatergic inputs

from cortex and thalamus together with neuromodulatory

systems, and are subjected to plasticity. Striatal projection

neurons exhibit bidirectional plasticity (LTP and LTD) when

exposed to Hebbian paradigms. Importantly, correlative and

even causal links between procedural learning and striatal

plasticity have recently been shown. This short review

summarizes the current view on striatal plasticity (with a

focus on spike-timing-dependent plasticity), recent studies

aiming at bridging in vivo skill acquisition and striatal

plasticity, the temporal credit-assignment problem, and the

gaps that remain to be filled.
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Introduction
The striatum receives topographic glutamatergic affer-

ents from all cortical areas and from some thalamic nuclei

[1] (Figure 1). It is an important site for action selection

and procedural memory formation [2]. Since the demon-

stration by Yin and coll. [3�] of striatal plasticity following

acquisition of a procedural skill, several studies have

extended this pioneering work by assessing striatal plas-

ticity across various learning tasks. This review aims at

giving the current view on ex vivo striatal plasticity in the

light of recent studies evidencing correlative or causal

link between in vivo learning and striatal plasticity, in a

physiological context. Here, ‘ex vivo’ refers to brain slice

recordings from animals subjected to training or treat-

ment, as opposed to studies in which brain slices are

examined in naı̈ve animals to reveal plasticity
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mechanisms. Striatal plasticity has been a controversial

field for at least two decades because of its great variety of

results (reviewed in Refs. [4–8]) and the rise of back-and-

forth investigations between in vivo and ex vivo bring a

unique opportunity for a better understanding of striatal

plasticity, and most importantly for bridging the gap

between learning and striatal plasticity.

Striatal complexity
Three main reasons account for the diversity of results

concerning striatal plasticity: the induction protocols

(rate-coded versus time-coded and Hebbian versus

non-Hebbian), the striatal heterogeneity, and some tech-

nical issues. Some critical technical issues are the age of

the animals, the slice orientation (coronal versus sagittal

versus horizontal), the location of the stimulation elec-

trode (cortex versus corpus callosum versus striatum) and

the rate of the extracellular and intracellular component

washout (LTP being optimally observed under sufficient

rates of superfusion and high resistance whole-cell record-

ings). Intermingled anatomo-functional compartments

and neuronal units constitute the basis of the striatal

heterogeneity: dorsolateral and dorsomedial striatum

(DLS and DMS), and direct and indirect trans-striatal

pathways, just to cite the main ones which can be assessed

during recordings (Figure 1). DMS and DLS receive

inputs from associative and sensorimotor cortices and

encode for goal-directed behavior and skill acquisition,

respectively [3�,9]. In rodents, striatal projection neurons

(SPNs) belong either to the direct (d-SPNs) or indirect (i-

SPNs) trans-striatal pathways and show distinct dopami-

nergic receptor expression, D1-class and D2-class recep-

tors, respectively [10]. Recent studies show that d-SPNs

and i-SPNs are engaged in a complementary and coordi-

nated manner for action initiation and execution [11–13].

DMS/DLS and d-SPNs/i-SPNs are distinguished in the

majority of the plasticity studies. Nevertheless, the third

level of striatal structuration, the striosomes (patch)/

matrix compartments [14], remains to be more documen-

ted for striatal plasticity expression. Another compart-

ment has been recently added, the annular compart-

ments, surrounding the striosomes [15] (Figure 1).

Functionally, substance P increases dopamine release

within the striosomes but decreases it in the annular

compartment, and leaves dopamine unmodified in the

matrix [15,16] suggesting distinct neuromodulation of

striatal plasticity among these compartments.

Here, instead of recapitulating the plasticity observed in

brain slices with the signaling pathways at play (reviewed

in Refs. [4,6–8]), we opt for another angle: we first present

recent in vivo studies establishing correlative and causal
www.sciencedirect.com
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Schematic representation of the striatal heterogeneity and the anatomo-functional compartments of the dorsal striatum.

Schematic representation of the direct and indirect trans-striatal pathways of the basal ganglia. Striosomes are shown with black dots distributed

between the dorsolateral striatum (blue) and the dorsomedial striatum (orange). Grouped black dots represent striosomes surrounded by the

annular compartment (red line, [15]), whereas isolated black dots illustrate the exo-patch [14]. Striosomal SPNs mainly project to SNc whereas

SPNs from the matrix belong to the direct or indirect pathway, identified respectively by the expression of D1 and D2 receptors. The direct and

indirect pathways are represented, respectively, in green and purple. GPe, external segment of the globus pallidus; EP, entopeduncular nucleus;

STN: subthalamic nucleus; SNr, substantia nigra pars reticulata; SNc, substantia nigra pars compacta.
links between learning and striatal plasticity, and then

from these studies we discuss the conditions of emer-

gence of bidirectional striatal plasticity.

From learning to striatal plasticity
Striatal plasticity has been assessed during goal-directed

behavior, and across the early and late phases of proce-

dural learning. The analysis of various parameters, used as

proxies for synaptic plasticity, has been achieved either in
vivo during behavioral tasks (analysis of the firing rate and

activity coherence [9,13,17,18,19��,20]; measurement of

opto-induced LFP [21��]), or ex vivo after behavioral

training (NMDAR/AMPAR ratio [3�,22�,23]; spontane-

ous-EPSCs: [24]; saturation/occlusion plasticity tests

[25�,26]) (Figure 2). The link between the acquisition/

consolidation of procedural learning and striatal plasticity

was first shown by the combined analysis of in vivo firing

rate and ex vivo NMDAR/AMPAR ratio from mice sub-

jected to an accelerating rotarod [3�]. In vivo analysis

shows that DMS, but not DLS, displays increased activity
www.sciencedirect.com 
during the early phases of skill acquisition whereas the

reverse picture is obtained during the consolidation

phases, that is DLS displays increased firing activity while

DMS is back to naı̈ve levels. Interestingly, NMDAR/

AMPAR ratio varies only in DLS for the consolidation

phase [3�], pointing to the non-NMDAR nature of the

corticostriatal plasticity in DMS for the early phases. Ex
vivo saturation/occlusion experiments after extended

training show LTP at i-SPNs but not at d-SPNs, suggest-

ing that LTP is induced at d-SPNs for the consolidation

phase [3�]. Ex vivo AMPAR/NMDAR ratio analysis

revealed that during T-maze task, LTP is engaged

(but not LTD) in DMS in the early phase while LTD

(but not LTP) is involved in the late phase, whereas in

DLS, LTD is involved only in the late phase (but LTP in

DLS was not explored) [25�]. After habit learning using

the lever-pressing task (corresponding to the late phase

described in [3�,25�]), ex vivo spontaneous-EPSC are

specifically decreased in DLS i-SPNs (indicative of a

postsynaptic LTD) [24]. In a serial order task, learning
Current Opinion in Neurobiology 2019, 54:104–112
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Figure 2
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Strategies used for evaluating striatal plasticity during learning.

Illustration of the analytical methods and parameters used to assess synaptic and structural striatal plasticity during procedural learning. In vivo

electrophysiological extracellular recordings, two-photon imaging, GRIN lens imaging and fiber photometry allow collecting data all along the

learning phases of behavioral tasks (continuous recordings schematized by the horizontal pink arrow). At time points of interest during the

behavioral tasks (discontinuous recordings schematized by the blue dots), ex vivo patch-clamp and two-photon imaging on acute brain slices can

be used to test whether various forms of striatal plasticity were induced in vivo. Examples of in vivo and ex vivo recordings for striatal plasticity

assessment during procedural learning can be found in [9,13,17,18,19��,20,21��,68] and [3�,22�,23,24,25�,26], respectively.
of a precise sequence depends on d-SPNs in the DLS and

induces an increase of the AMPAR/NMDAR ratio at their

synapses (but not at i-SPNs) [23]. In a goal-directed task,

ex vivo AMPAR/NMDAR ratio analysis reveals opposing

plasticity in d-SPNs and i-SPNs in DMS, while no

modification is observed in DLS [22�]. During the learn-

ing of a sensory discrimination task, LTP is detected in
vivo and ex vivo in the auditory striatum [21��].

Learning abstract routines, such as neuroprosthetic skills,

requires corticostriatal plasticity as revealed by in vivo
firing coherence between motor cortex and DLS

[9,19��,20]. Firing rate in DLS and coherence in the theta

band between motor (M1) cortex and DLS increases in

the late phase of volitional modulation of M1 activity

[9,19��]; these phenomena are NMDAR-mediated since

no change occurs in NMDAR-knock-out mice [19��]. In

addition, firing activity patterns of neuronal ensembles

that trigger maximal dopamine release along trials of the

neuroprosthetic task are selected and progressively

shaped for optimized reinforcement learning [20].

It remains to get the full picture of the plasticities

successively engaged in d-SPNs and i-SPNs in DLS

and DMS from goal-directed to habit formation.

From striatal plasticity to learning
A reverse strategy consists in triggering LTP or LTD

during a behavioral task to investigate causality between

synaptic plasticity and behavioral modifications. NMDAR-

LTP and endocannabinoid-LTD were induced by presyn-

aptic optogenetic-stimulation associated with optogenetic
Current Opinion in Neurobiology 2019, 54:104–112 
SPN depolarization in DMS in operant alcohol self-admin-

istration [27��]. LTP and LTD induction promote respec-

tively a long-lasting increase and decrease in alcohol-seek-

ing behavior [27��]. This demonstrates a causal link

between the polarity of an induced plasticity and its effect

on behavior. Moreover, this strategy allows to test the

plasticities identified in brain slices in SPNs or interneur-

ons, and to investigate their in vivo impact on synaptic

transmission [21��] or behavior [27��].

Emergence of bidirectional striatal plasticity:
Hebbian mode is the key
The observation that LTP can be induced in vivo using a

Hebbian paradigm changed the view of a LTD domi-

nance in the striatum [28–30]. Since then, numerous

studies have reported LTP (as well as LTD) depending

on the stimulation protocol (for reviews see Refs. [4–8]).

Nevertheless, striatal LTP still appears more capricious

to induce than LTD. Interestingly, following in vivo
learning tasks, LTP is systematically detected

[3�,21��,23,25�,26]. Obviously, the induction phase mat-

ters and LTP appears more likely induced upon Hebbian

protocols. Hebbian plasticity relies on the quasi-coinci-

dent activity on either side of the synapse and spike-

timing dependent-plasticity (STDP) protocols aim at

mimicking such a Hebbian mode by pairing presynaptic

stimulations with postsynaptic back-propagating action

potentials [31,32]. Most of the striatal STDP studies

report bidirectional (LTP and LTD) plasticity [33–

39,40�,41–44] (Figure 3). Note that in rate-coded proto-

cols, the removal of external magnesium or postsynaptic

depolarization for inducing LTP aims at mimicking a
www.sciencedirect.com



Bridging the gap between striatal plasticity and learning Perrin and Venance 107

Figure 3
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Endocannabinoid-mediated and NMDAR-mediated LTP and LTD are induced depending on the number of pairings in a Hebbian paradigm

(STDP).

Changes of the synaptic weight (Wtotal) when the number of pairings and the relative timing between presynaptic and postsynaptic timing (DtSTDP)

were varied. The color-map depicts the synaptic plasticity predicted by a mathematical model (from [36] and confirmed by experiments (illustrated

by the color-coded points) (adapted from [35 and 36]). A small number of post-pre pairings (�10–15) produces endocannabinoid-LTP (eCB-LTP),

whereas a larger number of pairings (>75) induced NMDAR-LTP; for pre-post pairings, endocannabinoid-LTD (eCB-LTD) is induced from

50 pairings. The color bar indicates the color code. In the right panels, the black lines represent the simulation results and the black circles

illustrate experimental results.
back-propagating action potential [4,5]. Similarly, manip-

ulating dopamine levels (or activity of D1/D2Rs) allows

adjusting the cellular excitability, which brings striatal

neurons more prone to display Hebbian plasticity. The

importance of the Hebbian mode for inducing LTP has

been further demonstrated in DMS since Hebbian high-

frequency stimulation (i.e. stimulation coupled with opto-

genetic postsynaptic depolarization) induces NMDAR-

LTP, whereas non-Hebbian high-frequency stimulation

induces endocannabinoid-LTD [3�,9].

Therefore, we focus here on striatal STDP [33–

39,40�,41–46], which is a typical Hebbian paradigm.

Bidirectional plasticity has been observed following

STDP, that is LTD and LTP were observed depending

on the order of pairings [33–36,38,39,41,43,47]. Interest-

ingly, by varying the number and/or frequency of STDP

pairings a complex plasticity landscape is obtained: from

the ‘classical’ bidirectional NMDAR-LTP and endocan-

nabinoid-LTD for �100 pairings [34,36], to endocanna-

binoid-LTP for a lower number (�10–15) of pairings

[39,40�,44,47] (Figure 3). It remains to determine the

role of endocannabinoid-LTP in vivo and how it com-

bines with NMDAR-LTP.

It should be noted that the plasticities observed in vitro
(brain slices) and in vivo relate to distinct phases. Studies
www.sciencedirect.com 
using brain slices investigate plasticity up to one hour

post-protocol, thus referring to the early plasticity,

whereas AMPA/NMDAR ratio and occlusion/saturation

analysis are performed 1–3 days after the learning task,

corresponding to the long-lasting phase of plasticity.

Therefore, conclusions drawn from in vitro and ex vivo
/ in vivo plasticity are not straightforward, and it remains

to determine whether similar signaling pathways are

engaged during early and late plasticity phases.

In Hebbian plasticity, the association of two factors con-

trols the synaptic strength, that is two inputs (and/or

activity patterns) on the presynaptic and postsynaptic

elements, with the addition of a third factor modulating

plasticity [48]. Here, recent studies concerning GABA

and dopamine acting as third factors for striatal STDP

help to clarify the plasticity debate.

The conflicting observations of Hebbian [34,35] or anti-

Hebbian striatal STDP (in brain slices [33,36,39,41,45] or

in vivo [37]) are explained by the use (or lack of use) of

GABA antagonists [38,43]. The appearance of tonic

GABAergic signaling during development gates STDP

polarity, promoting anti-Hebbian STDP in the adult

striatum [43]. It remains to investigate pathological

effects of tonic GABAergic transmission in striatal plas-

ticity and procedural learning.
Current Opinion in Neurobiology 2019, 54:104–112
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Figure 4
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Eligibility traces bridge the gap between learning sequence and

subsequent reward to promote reinforcement learning.

Illustration of reinforcement learning allowed by short-lived eligibility

traces at corticostriatal synapses. Eligibility traces are triggered

following Hebbian sequence, which per se does not induce plasticity

(illustrated here by the flat grey line coding for the synaptic weight).

These eligibility traces (constituted by PKA activity controlled by

phosphodiesterase-10 A in d-SPNs, as reported by [45]) can be

transformed before their extinction into plasticity, if the teaching signal

(dopamine in striatum) is delivered during the maintenance phase (3)

of the eligibility traces; No plasticity is induced if dopamine is released

either before (1), during the build-up (2) or after (4) eligibility traces

(vertical bars illustrate the neuronal firing).
Dopamine is crucial for action selection and supervised

learning [49]. Striatal Hebbian plasticity requires dopa-

mine (brain slices [34,35,50] ; in vivo [37,42]). A dendritic

spine enlargement and an increase of calcium occur when

dopamine is released concomitantly or after (�1 s) gluta-

mate [51��] allowing in vivo STDP [37,42]. There are

conflicting results concerning the involvement of D1R

versus D2R in STDP (post-pre LTD and pre-post LTP

requires D1R-activation but not D2R-activation [35];

LTP in d-SPNs is D1R-mediated and LTD in i-SPNs

is D2R-mediated [34]; reviewed in Refs. [6–8]). In the

absence of dopamine (and with GABA antagonists), D1-

SPNs show LTD instead of LTP with pre-post pairings,

whereas D2-SPNs display LTP for both post-pre and pre-

post pairings [34]. Methodological differences such as the

location of the stimulation electrode (leading to different

dopamine release [52�]) or the number and frequency of

paired stimulations could account for differential activa-

tion of D1R and D2R and specific-regulation of the back-

propagating action potential [5]. This is particularly illus-

trated by the fact that LTP induced by theta burst

optogenetic stimulation is dependent on presynaptic

NMDAR and BDNF [53] but not on dopamine, whereas

LTP induced with electrical high-frequency stimulation

is generally dopamine-dependent (reviewed in Refs. [4–

8]).

In future studies it will be crucial to investigate in

behaving animals the action of third factors [48] in Heb-

bian learning, like for the eligibility traces (see next

chapter).

Solving the temporal credit-assignment
problem with eligibility traces and striatal
plasticity
The temporal credit-assignment problem questions the

temporal link between the reward and the preceding

action to allow reinforcement learning [49]. The exis-

tence of eligibility traces, originally brought by computa-

tional models [54–56], helps to solve the temporal credit-

assignment problem. Eligibility traces are synaptic tags

induced by Hebbian learning and are transformed into

synaptic plasticity by the retroactive effect of neuromo-

dulators. Theoretically, eligibility traces allow to keep a

synaptic trace from the learning sequence, but not to

promote plasticity per se, unless the reward signal occurs

before extinction of eligibility traces (Figure 4). There-

fore, eligibility traces temporally link the learning

sequence with the reward allowing the induction of

reinforcement learning via striatal plasticity. Structural

plasticity, used as a proxy for synaptic plasticity, occurs

exclusively when dopamine release happens 0.3–2 s after

an STDP paradigm [51��] (Figure 4). D1R and dendritic

PKA activation allow to bridge the action (glutamatergic

inputs) and the subsequent reward (dopamine); PKA

activation is short-lived because of the high phosphodi-

esterase-10 A activity in distal dendrites [51��]. Dopamine
Current Opinion in Neurobiology 2019, 54:104–112 
exerts also retroactive effects of on existing plasticity

since dopamine delivered 2 s after cell-conditioning pro-

tocol (and importantly not before or during protocol)

converts LTD in LTP [42,52�].

Therefore, the expression of eligibility traces and the

delivering of a distal reward allow the expression of

plasticity [51��] or even the conversion of a form of

plasticity into another [42,52�].

Future directions
Among the striatal compartments, the striosome and the

matrix remain the less documented in terms of
www.sciencedirect.com
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physiological role in striatal function. Thanks to new

markers [14], in vivo two-photon monitoring during task

performance showed overlapping responses of neurons

belonging to the striosome and the matrix, with differen-

tial firing activity for reward coding [57]. Because of

striosome/matrix differential inputs and outputs [14],

dopaminergic [15,16] and endocannabinoid [58] regula-

tion, specific-plasticities with differential modulation are

expected to occur.

Although differential polarity of STDP in GABAergic and

cholinergic interneurons has been shown [59], the full

picture of the interplay of plasticities at striatal circuits is

just beginning to be understood. It remains to further

investigate the underlying mechanisms of the plasticities

occurring at the lateral connections [60,61] such as

interneuron–interneuron, interneurons–SPNs and SPN–

SPNs. For example, a study showing an LTD at inhibi-

tory synapses between SPN–SPNs and fast-spiking

interneuron–SPNs demonstrates that distinct endocanna-

binoid signaling pathways are engaged depending on

membrane potentials (up versus down states) [62]. Addi-

tionally, with the discovery of long-range projecting cor-

ticostriatal GABAergic neurons modulating motor activity

via differential action on d-SPNs and i-SPNs [63], it will

be important to take into account the fact that cortical

activation leads to the direct release not only of glutamate

but also of GABA into the striatum. This changes our

view on the striatal excitation-inhibition balance, and

begs the question of whether plasticity, if any, occurs

between these long-range GABAergic neurons and the d-

SPNs and i-SPNs.

Determining the conditions of emergence of plasticity

helps to better understand the striatal capability for

storage and recall of information. Noisy STDP pairings

shows that plasticity robustness depends on the signaling

pathways: NMDAR-LTP is more fragile than endocan-

nabinoid-plasticity [44]. Interestingly, resistance of

NMDAR-tLTP to noisy patterns is increased with higher

frequency or number of pairings. In vivo Hebbian plas-

ticity appears as a multivariate function of the number

and frequency of pairings, but also the variability of the

spike timing. In-vivo-like conditions for striatal plasticity,

using naturalistic firing patterns of cortical/thalamic/stria-

tal neurons recorded in learning tasks still need to be

explored. Although STDP aims at mimicking Hebbian

learning, reservations were expressed about its physiolog-

ical validity [64]. Input-timing-dependent plasticity con-

stitutes a Hebbian upgrade of STDP. It consists in paired

activation of presynaptic inputs (distinct cortical areas

and/or thalamic nuclei, for example), leading to sub-

threshold or suprathreshold activity in the postsynaptic

neuron, as performed recently in avian basal ganglia [65].

Calcium imaging of i-SPNs and d-SPNs recorded ex vivo
just after different phases of an operant lever-pressing
www.sciencedirect.com 
task revealed that i-SPNs fired before d-SPNs in the goal-

directed phase, whereas the reverse picture is observed

during the habitual phase [13]. GABAergic fast-spiking

interneurons become more excitable in habitual behavior

[66,67] and could account for the reverse temporal order

of firing between d-SPNs and i-SPNs. It remains to

examine plasticity in DLS across goal-directed to habitual

behavior at d-SPNs and i-SPNs, and also in GABAergic

interneurons. Also, most of the studies focused on the

involvement of NMDAR-LTP in learning. Based on the

diversity of plasticities revealed by studies in brain slices

(Figure 3), one needs to evaluate the role of the endo-

cannabinoid-LTD and -LTP [39,40�,47] across learning.

Supporting this view, a recent study showed that endo-

cannabinoids set the transition between goal-directed and

habit formation via the control of cortico(orbital frontal

cortex)-striatal synaptic weight [68]; the nature of the

endocannabinoid plasticity at play at these synapses

allowing the shift between goal-directed behavior to

habits remains to be determined.

Attempts are made to link the complexity of striatal

STDP and goal-directed behavior by elaborating compu-

tational models (for recent examples see [42,69]). In

future studies, it will be necessary to upgrade the models

with recent experimental findings, such as, to name a few,

the lateral connections [60,61], the new faces of striatal

STDP [39,40�,44,47], the key role of striatal GABAergic

interneurons in procedural learning [66,67] as well as the

eligibility traces features [42,51��,52�].

A way to approach in vivo striatal plasticity during learning

is to analyze the cortico-striatal synchronous oscillations.

However, because of the absence of a laminar organiza-

tion of the striatum, these oscillations can be contami-

nated by volume-conducted signals [70] leading to inac-

curate interpretation. To overcome this, an elegant

strategy consists in the specific-expression of channel-

rhodopsin in corticostriatal pyramidal cells and thus the

unique possibility to estimate striatal opto-LFP changes

in vivo during skill learning [21��]. Another strategy is the

use of fiber photometry to monitor upstream activity in

cortical inputs arising from distinct cortices [71] (Fig-

ure 2). In vivo patch-clamp recordings in awake and

behaving (head-fixed) rodents allows a single-cell resolu-

tion and the data collection of subthreshold and supra-

threshold events [72]. This approach has been used for

the analysis of the membrane potential dynamics during

goal-directed behavior in d-SPNs and i-SPNs [73].

Although cortico-striatal and thalamo-striatal afferents

equally contact SPNs [1,74], the thalamo-striatal plastic-

ity has been the focus of a limited number of studies

[1,75–78], despite the existence of a brain slice prepara-

tion preserving both cortico-striatal and thalamo-striatal

connections [79]. Cortical and thalamic (parafascicular

nucleus) inputs target evenly d-SPNs and i-SPNs
Current Opinion in Neurobiology 2019, 54:104–112
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[80,81], and thalamo-striatal NMDAR-LTD was

observed in d-SPNs and i-SPNs [75–77]. Major differ-

ences between cortico-striatal and thalamo-striatal plas-

ticity are expected because of different organizations of

glutamatergic and dopaminergic synapses on cortico-

striatal and thalamo-striatal pathways [74]. Thus, charac-

terizing the thalamo-striatal plasticity repertoire and its

putative interactions with cortico-striatal plasticity is of

crucial importance to fully understand the role of the

striatum in goal-directed and procedural learning.

The field of striatal plasticity has come to a new age in

which the investigation of intrinsic, synaptic and struc-

tural plasticity at play across procedural learning (from

goal-directed behavior to habits) and across the striatal

anatomo-functional complexity has become possible in

behaving rodents. A new period of (constructive) debates

is expected since various forms of plasticity should arise

depending not only on the striatal complexity but also on

the behavioral task and the related learning phase (early

versus late).
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