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We consider the second order difference equation ψ(z + h) + ψ(z -h) + v(z)ψ(z) = 0 where z is a complex variable, h > 0 is a parameter, and v is an analytic function. As h → 0 the analytic solutions to this equation have quasiclassical behavior. In this note we describe their uniform asymptotics in neighborhoods of simple turning points, the neighborhoods being independent of h.

Introduction

We study analytic solutions to the second order difference equation

ψ(z + h) + ψ(z -h) + v(z)ψ(z) = 0 ( 1 
)
where z is a complex variable, h > 0 is a parameter, and v is an analytic function. We describe their asymptotics as h → 0. Note that the parameter h appears to be a standard quasiclassical parameter. Indeed, formally,

ψ(z + h) = ∞ l=0 h l l! d l ψ dz l (z) = e h d
dz ψ(z), and h can be regarded as a small parameter in front of the derivative.

Difference equations in the complex plane in the quasiclassical regime arise in many fields of mathematical physics. For example, they arise when studying an electron in a crystal placed in a constant magnetic field (e.g., [START_REF] Fedotov | Monodromization method in the theory of almost-periodic equations[END_REF][START_REF] Helffer | Analyse semiclassique pour l'equation de Harper (avec application à l'étude de l'équation de Schrödinger avec champ magnétique)[END_REF]), wave scattering by thin wedges (e.g., [START_REF] Babich | Diffraction theory: the Sommerfeld-Malyuzhinets technique[END_REF]), one-dimensional quasiperiodic differential Schrödinger equations with two frequencies, one being small with respect to the other (e.g., [START_REF] Fedotov | Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case[END_REF]). Similar problems arise in the theory of orthogonal polynomials (e.g., [START_REF] Geronimo | WKB and Turning Point Theory for Second-order Difference Equations[END_REF]).

The quasiclassical asymptotics of analytic solutions to ordinary differential equations in the complex plane are well-known (e.g., [START_REF] Fedoryuk | Asymptotic analysis. Linear ordinary differential equations[END_REF][START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF]). The method is often called complex WKB method. Its analog for difference equations was developed in [START_REF] Buslaev | Complex WKB method for Harper equation[END_REF][START_REF] Fedotov | The complex WKB method for difference equations in bounded domains[END_REF][START_REF] Fedotov | Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial[END_REF]. This note is devoted to uniform asymptotic formulas describing analytic solutions to (1) in neighborhoods of simple turning points (see the definition below), the neiborhoods being independent of h.

A very short introduction to the complex WKB method

Below, U denotes the domain of analyticity of v.

Complex momentum

The main analytic object of the method is the complex momentum p defined by the formula

2 cos p + v(z) = 0.
It is a multivalued analytic function. The branch points of p are called turning points. At turning points, one has cos p(z) ∈ {±1} and v(z) ∈ {±2}.

We call a set D ⊂ U regular if v(z) = ±2 in D.

The main theorem of the complex WKB method

As in the case of differential equations, the main geometric notion of the complex WKB method is the one of canonical domain. The reader can find definitions and details in [START_REF] Fedotov | The complex WKB method for difference equations in bounded domains[END_REF][START_REF] Fedotov | Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial[END_REF]. Here, we note only that canonical domains are regular simply connected domains independent of h. The following two theorems hold.

Theorem 1 Any regular point belongs to a canonical domain.

This statement is essentially Lemma 5.2 from [START_REF] Fedotov | On the absolutely continuous spectrum of an onedimensional quasi-periodic Schrödinger operator in adiabatic limit[END_REF].

Theorem 2 ([9, 10]) Let K ⊂ U be a canonical domain, z 0 ∈ K, and p be a branch of the complex momentum analytic in K. Suppose that either K is a bounded canonical domain or v is a trigonometric polynomial. Then, there exist solutions ψ ± to (1) analytic in K and such that as h → 0

ψ ± (z) = exp ± i h z z0 p(z) dz + o(1) sin(p(z)) , z ∈ K. (2)
This asymptotic representation is locally uniform.

We note that, at a branch point, one has cos p(z) ∈ {±1}, and so, sin p(z) = 0. Therefore, formula (2) can not be valid near a branch point.

For the equation -h [START_REF] Fedotov | Monodromization method in the theory of almost-periodic equations[END_REF] , where the complex momentum is defined by the relation p 2 + v(z) = 0, i.e., as for (1), by the symbol of the equation.

2 ψ (z) + v(z)ψ(z) = 0, formula (2) is replaced with ψ ± (z) = 1 √ p(z) e ± i h z z 0 p(z) dz+o

A warm up

Here, we define objects and recall some facts needed to formulate our results.

Complex momentum near a branch point

Below, z 0 ∈ U is a branch point of the complex momentum p.

We note that as cos(p(z 0 )) ∈ {±1}, one has either p(z 0 ) = 0 mod 2π or p(z 0 ) = π mod 2π.

If v (z 0 ) = 0, p is analytic in τ = √ z -z 0 in a neighborhood of zero, and

p(z) = p(z 0 ) + k 1 τ + . . . , τ → 0, k 1 = 0.
In this case, the branch point z 0 is called simple.

In this paper we assume that

• in U , there is a single branch point z 0 of the complex momentum and it is simple; for the sake of simplicity, we assume that U is a disk, and that z 0 is its center;

• p(z 0 ) = 0 mod 2π.

Note that, the case p(z 0 ) = π mod 2π can obtained by a simple algebraic transformation from the case p(z 0 ) = 0 mod 2π.

Function ζ

We cut U from z 0 along, say, the line {z -z 0 ≤ 0} and denote the thus obtained domain by U . In U , we fix p, an analytic branch of the complex momentum and ζ, an analytic branch of the function

z → 3 2i z z0 (p(z) -p(z 0 )) dz 2 3
.

The function ζ is analytic in U . One has ζ(z 0 ) = 0, and ζ (z 0 ) = 0. Possibly reducing U somewhat, we can and do assume that

• ζ is analytic isomorphism of U onto its image.

Basic facts on Airy functions

The equation

w (ζ) = ζw(ζ), ζ ∈ C,
is the Airy equation. Its solutions are called Airy functions.

Let | arg z| < 2π/3. There exists an Airy function Ai that admits the following asymptotic representations as |z| → ∞ (see [START_REF] Olver | Asymptotics and Special Functions[END_REF])

Ai (z) = exp -2 3 z 3 2 + o(1) 2 √ π z 1 4 , Ai (-z) = cos 2 3 z 3 2 -π 4 + o(1) √ π z 1 4 (1 + o(1)),
where we use the analytic branches of z → z Let ω = e 2πi/3 . For j ∈ Z 3 , we define w j (•) = Ai(ω j •). The functions (w j ) j∈{1,2} are two more Airy functions.

4 Analytic solutions in a complex neighborhood of a branch point

Asymptotic solutions

For a function f defined in U and a point z ∈ U s.t. z ± h ∈ U , we set

Hf (z) = f (z + h) + f (z -h) + v(z)f (z). ( 3 
)
We let

g(z) := sinh ζ(z)ζ (z) ζ(z) , z ∈ U,
where the determination of the square roots in the denominator and the numerator are the same. The definition of g is independent of the choice of this determination, and g is analytic and does not vanish in U . We further denote by A 0 a branch of the function z

→ 1 √ g(z)
that is analytic in U . One has Theorem 3 There exist (A l ) l∈N and (B l ) l∈N , analytic functions on U , such that the following holds.

Let w be one of the Airy functions {w j ; j ∈ Z 3 }. Pick L ∈ N ∪ {0} and put

W (z) = h 1 3 w L l=0 h l A l (z) + h 2 3 w L l=1 h l B l (z), w = w ζ(z)/h 2 3 , w = w ζ(z)/h 2 3
.

One has the locally uniform estimates

H(W ) = O h L+2+ 1 3 w + O h L+2+ 2 3 w .
The coefficient A 0 was defined just above Theorem 3. There are simple induction formulas for the other coefficients. We call the formal expression

h 1 3 w ∞ l=0 h l A l (z) + h 2 3 w ∞ l=1 h l B l (z) (5) 
an asymptotic solution to (1).

For the differential equation -ψ (z)+v(z)ψ(z) = 0, in a neighborhood of a simple turning point (a point where v(z) = 0 and v (z) = 0), there are asymptotic solutions of the form (5) (with different coefficients A l , B l and a different function ζ), see, e.g., [START_REF] Fedoryuk | Asymptotic analysis. Linear ordinary differential equations[END_REF][START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF]. To justify the Ansatz (5) in the case of the difference equation requires to develop original techniques. In particular, one has to derive asymptotic formulas of the form

w(h -2 3 ζ(z + h)) = h 1 3 f (z) w(h -2 3 ζ(z)) + h 2 3 g(z) w (h -2 3 ζ(z)) + . . . (6) 
where

f (z) = cosh( ζ(z)ζ (z)
) and the dots denote smaller order terms. Trying to obtain this formula using Taylor expansions for the left hand side leads to a series containing an infinite number of infinite subsequences of terms of same order. So, one has to find an effective way to resum these sequences. To get formulas similar to [START_REF] Fedoryuk | Asymptotic analysis. Linear ordinary differential equations[END_REF], instead of resumming Taylor series, we use tools of the complex analysis.

Exact solutions

Let us turn to exact analytic solutions to [START_REF] Fedotov | Monodromization method in the theory of almost-periodic equations[END_REF]. The main result of this note is Theorem 4 There exists

• U ⊂ U a neighborhood of z 0 independent of h such that the following holds. Pick L ∈ N and w ∈ {w j ; j ∈ Z 3 }. Let W be the function constructed in Theorem 3 for these L and w. For sufficiently small h, there exists a solution ψ to equation (1) that is analytic in 

ψ(z) = W (z) + O(h L+1+ 1 3 w) + O(h L+1+ 2 3 w ),
where w and w are defined in (4).

Let us briefly explain the idea of the proof of this result. First, using the approximate solutions from Theorem 3, we construct a parametrix R, i.e., an operator such that, for suitable functions f , one has HRf = f + Df , where H is defined in (3), and D is a small operator. The operator D appears to be a singular integral operator. To estimate its norm, one has to deal with geometric objects natural for complex WKB method. This allows to prove Theorem 4 for some special subdomains of U . Then, one studies the thus constructed solutions in larger domains. We note that, as equation ( 1) is non-local in z, the ideas underlying the analysis of (1) are quite different from the ideas used to get similar results for differential equations (see, e.g., [START_REF] Fedoryuk | Asymptotic analysis. Linear ordinary differential equations[END_REF][START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF]).

Related results

In [START_REF] Vasilieva | Linear difference systems with small lag[END_REF] and [START_REF] Tsyganov | Asymptotic behavior of solutions of a linear difference system with small difference in the presence of a turning point[END_REF] the authors essentially studied equations of the form

Y k+1 = M (hk)Y k , k ∈ Z, (7) 
with a small positive h and a (n × n)-matrix function M defined on R. If

Y (x + h) = M (x)Y (x), x ∈ R, (8) 
then the sequence Y k = Y (kh), k ∈ Z, satisfies [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF]. Equation (1) restricted to R is equivalent to [START_REF] Buslaev | Complex WKB method for Harper equation[END_REF] with M (x) = -v(x) -1 1 0 , and the points x where the two eigenvalues of this matrix coalesce are branch points of the complex momentum. The short note [START_REF] Vasilieva | Linear difference systems with small lag[END_REF] is mainly devoted to the case when all the eigenvalues of the matrix M in (7) are distinct. In [START_REF] Tsyganov | Asymptotic behavior of solutions of a linear difference system with small difference in the presence of a turning point[END_REF] the author constructed asymptotic solutions to [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF] in a small as h → 0 neighborhood of a point where two eigenvalues of M (x) coincide.
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 1 that are positive for z > 0.
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In [START_REF] Costin | Rigorous WKB for finite-order linear recurrence relations with smooth coefficients[END_REF], the authors considered the equations

We note that this class includes the difference Schrödinger equations

The authors described the asymptotics of solutions to [START_REF] Fedotov | The complex WKB method for difference equations in bounded domains[END_REF] for hk in a small (as h → 0) neighborhood of a point where v(x) ∈ {±1}.

There is a series of papers by J.S. Geronimo and coauthors, see, e.g. [START_REF] Geronimo | WKB and Turning Point Theory for Second-order Difference Equations[END_REF] and references therein, devoted to uniform asymptotic formulas for solutions to the equation

where x is the spectral parameter, the coefficients (a n ) n are positive and (b n ) n are real.

We also mention paper [START_REF] Dobrokhotov | On lagrangian manifolds related to asymptotics of Hermite polynomials[END_REF] where the authors constructed approximate solutions to a difference equation using the Maslov canonical operator.