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We consider the second order difference equation
ψ(z+ h) +ψ(z− h) + v(z)ψ(z) = 0 where z is a complex
variable, h > 0 is a parameter, and v is an analytic
function. As h → 0 the analytic solutions to this
equation have quasiclassical behavior. In this note
we describe their uniform asymptotics in neighbor-
hoods of simple turning points, the neighborhoods
being independent of h.

1 Introduction

We study analytic solutions to the second order dif-
ference equation

ψ(z + h) + ψ(z − h) + v(z)ψ(z) = 0 (1)

where z is a complex variable, h > 0 is a parameter,
and v is an analytic function. We describe their
asymptotics as h→ 0.

Note that the parameter h appears to be a stan-
dard quasiclassical parameter. Indeed, formally,

ψ(z + h) =
∑∞
l=0

hl

l!
dlψ
dzl

(z) = eh
d
dzψ(z), and h can

be regarded as a small parameter in front of the
derivative.

Difference equations in the complex plane in the
quasiclassical regime arise in many fields of math-
ematical physics. For example, they arise when
studying an electron in a crystal placed in a con-
stant magnetic field (e.g., [1, 2]), wave scattering
by thin wedges (e.g., [3]), one-dimensional quasi-
periodic differential Schrödinger equations with two
frequencies, one being small with respect to the
other (e.g., [4]). Similar problems arise in the the-
ory of orthogonal polynomials (e.g., [5]).

The quasiclassical asymptotics of analytic solu-
tions to ordinary differential equations in the com-
plex plane are well-known (e.g., [6, 7]). The method
is often called complex WKB method. Its analog
for difference equations was developed in [8, 9, 10].

This note is devoted to uniform asymptotic formu-
las describing analytic solutions to (1) in neighbor-
hoods of simple turning points (see the definition
below), the neiborhoods being independent of h.

2 A very short introduction to the com-
plex WKB method

Below, U denotes the domain of analyticity of v.

2.1 Complex momentum

The main analytic object of the method is the com-
plex momentum p defined by the formula

2 cos p+ v(z) = 0.

It is a multivalued analytic function. The branch
points of p are called turning points. At turning
points, one has cos p(z) ∈ {±1} and v(z) ∈ {±2}.

We call a set D ⊂ U regular if v(z) 6= ±2 in D.

2.2 The main theorem of the complex WKB
method

As in the case of differential equations, the main
geometric notion of the complex WKB method is
the one of canonical domain. The reader can find
definitions and details in [9, 10]. Here, we note
only that canonical domains are regular simply con-
nected domains independent of h. The following
two theorems hold.

Theorem 1 Any regular point belongs to a canon-
ical domain.

This statement is essentially Lemma 5.2 from [11].

Theorem 2 ([9, 10]) Let K ⊂ U be a canonical
domain, z0 ∈ K, and p be a branch of the complex
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momentum analytic in K. Suppose that either K is
a bounded canonical domain or v is a trigonometric
polynomial. Then, there exist solutions ψ± to (1)
analytic in K and such that as h→ 0

ψ±(z) =
exp

(
± i
h

∫ z
z0
p(z) dz + o(1)

)
√

sin(p(z))
, z ∈ K. (2)

This asymptotic representation is locally uniform.

We note that, at a branch point, one has cos p(z) ∈
{±1}, and so, sin p(z) = 0. Therefore, formula (2)
can not be valid near a branch point.

For the equation −h2ψ′′(z) + v(z)ψ(z) =
0, formula (2) is replaced with ψ±(z) =

1√
p(z)

e
± i

h

∫ z
z0
p(z) dz+o(1)

, where the complex mo-

mentum is defined by the relation p2 + v(z) = 0,
i.e., as for (1), by the symbol of the equation.

3 A warm up

Here, we define objects and recall some facts needed
to formulate our results.

3.1 Complex momentum near a branch point

Below, z0 ∈ U is a branch point of the complex
momentum p.

We note that as cos(p(z0)) ∈ {±1}, one has either
p(z0) = 0 mod 2π or p(z0) = π mod 2π.

If v′(z0) 6= 0, p is analytic in τ =
√
z − z0 in a

neighborhood of zero, and

p(z) = p(z0) + k1τ + . . . , τ → 0, k1 6= 0.

In this case, the branch point z0 is called simple.
In this paper we assume that

• in U , there is a single branch point z0 of the
complex momentum and it is simple; for the
sake of simplicity, we assume that U is a disk,
and that z0 is its center;

• p(z0) = 0 mod 2π.

Note that, the case p(z0) = π mod 2π can ob-
tained by a simple algebraic transformation from
the case p(z0) = 0 mod 2π.

3.2 Function ζ

We cut U from z0 along, say, the line {z − z0 ≤ 0}
and denote the thus obtained domain by U ′. In U ′,

we fix p, an analytic branch of the complex momen-
tum and ζ, an analytic branch of the function

z 7→
(

3

2i

∫ z

z0

(p(z)− p(z0)) dz

) 2
3

.

The function ζ is analytic in U . One has ζ(z0) = 0,
and ζ ′(z0) 6= 0. Possibly reducing U somewhat, we
can and do assume that

• ζ is analytic isomorphism of U onto its image.

3.3 Basic facts on Airy functions

The equation

w′′(ζ) = ζw(ζ), ζ ∈ C,

is the Airy equation. Its solutions are called Airy
functions.

Let | arg z| < 2π/3. There exists an Airy function
Ai that admits the following asymptotic represen-
tations as |z| → ∞ (see [12])

Ai (z) =
exp

(
− 2

3z
3
2 + o(1)

)
2
√
π z

1
4

,

Ai (−z) =
cos
(

2
3z

3
2 − π

4 + o(1)
)

√
π z

1
4

(1 + o(1)),

where we use the analytic branches of z → z
3
2 and

z → z
1
4 that are positive for z > 0.

Let ω = e2πi/3. For j ∈ Z3, we define wj(·) =
Ai(ωj ·). The functions (wj)j∈{1,2} are two more
Airy functions.

4 Analytic solutions in a complex neigh-
borhood of a branch point

4.1 Asymptotic solutions

For a function f defined in U and a point z ∈ U
s.t. z ± h ∈ U , we set

Hf(z) = f(z + h) + f(z − h) + v(z)f(z). (3)

We let

g(z) :=
sinh

(√
ζ(z)ζ ′(z)

)
√
ζ(z)

, z ∈ U,

where the determination of the square roots in the
denominator and the numerator are the same. The
definition of g is independent of the choice of this
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determination, and g is analytic and does not van-
ish in U . We further denote by A0 a branch of the
function z → 1√

g(z)
that is analytic in U . One has

Theorem 3 There exist (Al)l∈N and (Bl)l∈N, ana-
lytic functions on U , such that the following holds.
Let w be one of the Airy functions {wj ; j ∈ Z3}.
Pick L ∈ N ∪ {0} and put

W (z) = h
1
3w

L∑
l=0

hlAl(z) + h
2
3w′

L∑
l=1

hlBl(z),

w = w
(
ζ(z)/h

2
3

)
, w′ = w′

(
ζ(z)/h

2
3

)
. (4)

One has the locally uniform estimates

H(W ) = O
(
hL+2+ 1

3w
)

+O
(
hL+2+ 2

3w′
)
.

The coefficient A0 was defined just above Theo-
rem 3. There are simple induction formulas for the
other coefficients.

We call the formal expression

h
1
3w

∞∑
l=0

hlAl(z) + h
2
3w′

∞∑
l=1

hlBl(z) (5)

an asymptotic solution to (1).
For the differential equation −ψ′′(z)+v(z)ψ(z) =

0, in a neighborhood of a simple turning point (a
point where v(z) = 0 and v′(z) 6= 0), there are
asymptotic solutions of the form (5) (with differ-
ent coefficients Al, Bl and a different function ζ),
see, e.g., [6, 7]. To justify the Ansatz (5) in the
case of the difference equation requires to develop
original techniques. In particular, one has to derive
asymptotic formulas of the form

w(h−
2
3 ζ(z + h)) = h

1
3 f(z)w(h−

2
3 ζ(z))

+ h
2
3 g(z)w′(h−

2
3 ζ(z)) + . . .

(6)

where f(z) = cosh(
√
ζ(z)ζ ′(z)) and the dots de-

note smaller order terms. Trying to obtain this for-
mula using Taylor expansions for the left hand side
leads to a series containing an infinite number of
infinite subsequences of terms of same order. So,
one has to find an effective way to resum these se-
quences. To get formulas similar to (6), instead of
resumming Taylor series, we use tools of the com-
plex analysis.

4.1.1 Exact solutions

Let us turn to exact analytic solutions to (1). The
main result of this note is

Theorem 4 There exists
◦
U ⊂ U a neighborhood of

z0 independent of h such that the following holds.
Pick L ∈ N and w ∈ {wj ; j ∈ Z3}. Let W be the
function constructed in Theorem 3 for these L and
w. For sufficiently small h, there exists a solution

ψ to equation (1) that is analytic in
◦
U and, in

◦
U ,

admits the uniform asymptotic representation

ψ(z) = W (z) +O(hL+1+ 1
3w) +O(hL+1+ 2

3w′),

where w and w′ are defined in (4).

Let us briefly explain the idea of the proof of this
result. First, using the approximate solutions from
Theorem 3, we construct a parametrix R, i.e., an
operator such that, for suitable functions f , one has
HRf = f + Df , where H is defined in (3), and D
is a small operator. The operator D appears to be
a singular integral operator. To estimate its norm,
one has to deal with geometric objects natural for
complex WKB method. This allows to prove The-
orem 4 for some special subdomains of U . Then,
one studies the thus constructed solutions in larger
domains.

We note that, as equation (1) is non-local in z,
the ideas underlying the analysis of (1) are quite
different from the ideas used to get similar results
for differential equations (see, e.g., [6, 7]).

4.2 Related results

In [13] and [14] the authors essentially studied equa-
tions of the form

Yk+1 = M(hk)Yk, k ∈ Z, (7)

with a small positive h and a (n× n)-matrix func-
tion M defined on R. If

Y (x+ h) = M(x)Y (x), x ∈ R, (8)

then the sequence Yk = Y (kh), k ∈ Z, satisfies (7).
Equation (1) restricted to R is equivalent to (8)

with M(x) =

(
−v(x) −1

1 0

)
, and the points x

where the two eigenvalues of this matrix coalesce
are branch points of the complex momentum.

The short note [13] is mainly devoted to the case
when all the eigenvalues of the matrix M in (7) are
distinct. In [14] the author constructed asymptotic
solutions to (7) in a small as h → 0 neighborhood
of a point where two eigenvalues of M(x) coincide.
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In [15], the authors considered the equations

J∑
j=0

aj(hk, h) yk+j = 0, k ∈ Z. (9)

We note that this class includes the difference
Schrödinger equations

yk+1 + yk−1 + v(hk)yk = 0, k ∈ Z.

The authors described the asymptotics of solutions
to (9) for hk in a small (as h→ 0) neighborhood of
a point where v(x) ∈ {±1}.

There is a series of papers by J.S. Geronimo and
coauthors, see, e.g. [5] and references therein, de-
voted to uniform asymptotic formulas for solutions
to the equation ak+1ψk+1 + bkψk + akψk−1 = xψk,
k ∈ Z, where x is the spectral parameter, the coef-
ficients (an)n are positive and (bn)n are real.

We also mention paper [16] where the authors
constructed approximate solutions to a difference
equation using the Maslov canonical operator.
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