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Complex WKB method for difference equations with meromorphic coefficients

We discuss one-dimensional difference Schrödinger equations in the complex plane. To study their solutions in the quasiclassical limit, V. Buslaev, A. Fedotov and E. Shchetka developed an analog of the complex WKB method. We consider the equation with a potential having a simple pole and study the asymptotics of its solutions in a neighborhood of this pole.

Introduction

We consider the difference equation

ψ(z + h)+ψ(z -h)+v(z)ψ(z)=0, ( 1 
)
where z is the complex variable, v is a given analytic or meromorphic function, and h>0i st h e translation parameter. One encounters such equations, for example, in solid state physics when studying, say, an electron in a crystal in a weak magnetic field. The translation parameter h is proportional to the magnetic flux through the periodicity cell. In solid state physics, one has v(z)=w(z) -E, where the function w is called the potential and the parameter E is called the spectral parameter. The equation with w(z) = cos(z) is the famous Harper equation, see, e.g., [START_REF] Wilkinson | Critical properties of electron eigenstates in incommensurate systems[END_REF]; the equation with w(z)=tan(z) is a close relative of the well-known Maryland equation introduced by D. Grempel, S. Fishman and R. Prange in [START_REF] Grempel | Localization in an incommensurate potential: An exactly solvable model[END_REF].

Difference equations with the small translation parameters arise also when studying the scattering of waves by wedge-shaped domains in the framework of the Sommerfeld-Malyuzhinets method. The translation parameters appear to be proportional to the angles of the wedges, see [START_REF] Babich | Diffraction theory: the Sommerfeld-Malyuzhinets Technique[END_REF].

We study the asymptotics of solutions to (1) as h → 0. Since formally exp h d dz Ψ(z)=Ψ(z + h), the parameter h in (1) can be regarded as a small parameter in front of the derivative and, thus, appears to be a standard quasiclassical parameter.

To study the one-dimensional differential equations in the quasiclassical limit, one uses the classical complex WKB method, see [START_REF] Fedoryuk | Asymptotic Analysis. Linear Ordinary Differential Equations[END_REF]. To study onedimensional difference equations with analytic coefficients, in papers [START_REF] Buslaev | The complex WKB method for Harper's equation[END_REF][START_REF] Fedotov | Complex WKB method for the difference Schrödinger equations with the potentials being trigonometric polynomials[END_REF] their authors developed an analog of the complex WKB method.

In this paper, we consider the case of meromorphic v. To be more precise, we assume that B 0 is a neighborhood of z =0( h e r ea n db e l o wa neighborhood of a point is an open disc centered at this point), and that v is analytic in B 0 \{0} and has a simple pole at zero. Let ψ be a solution to [START_REF] Wilkinson | Critical properties of electron eigenstates in incommensurate systems[END_REF] analytic in B 0 \ R + (R + denotes the set of positive real numbers). Equation [START_REF] Wilkinson | Critical properties of electron eigenstates in incommensurate systems[END_REF] implies that ψ(z)=-ψ(z -2h) -v(z -h)ψ(z -h). Therefore, for sufficiently small h, ψ can be meromorphically continued into B 0 . After that, it can have poles at the points z = h, 2h, 3h... When h is small, these points become close one to another. We describe the quasiclassical asymptotics in B 0 of solutions to (1) having poles at z = h, 2h, 3h...

A brief introduction to the complex WKB method

Let us briefly describe the main constructions of the complex WKB method for the difference equation (1) with an analytic coefficient v. We note that formally this equation can be written in the form

(2 cos p + v(z))ψ(z)=0, p = -ih d dz . (2) 
We define the complex momentum p by the formula 2cos p(z)+v(z)=0.

It is an analytic multivalued function. Its branch points satisfy the relations ±2+v(z) = 0. We call a subset D of the domain of analyticity of v regular, if v(z) = ±2i nD.

Let D be a simply connected regular domain, and let p be a branch of the complex momentum analytic in D. All the other branches of p that are analytic in D are of the form ±p(z)+2πm, m ∈ Z.

The complex momentum is the main analytic object of the complex WKB method. In terms of the complex momentum, one defines the canonical domains that are the main geometric objects of the method. The definition of the canonical domains can be found in [START_REF] Buslaev | The complex WKB method for Harper's equation[END_REF][START_REF] Fedotov | Complex WKB method for the difference Schrödinger equations with the potentials being trigonometric polynomials[END_REF]. Here, we note that the canonical domains are regular and simply connected, and that one has the following assertion.

Theorem 1 Any regular point is contained in a canonical domain.

This statement is an analog of Lemma 5.3 from [START_REF] Fedotov | On the absolutely continuous spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit[END_REF]. The principle result of the method is Theorem 2 ([5]) Let K ⊂ C be a canonical domain, let z 0 ∈ K,a n dl e tp be a branch of the complex momentum analytic in K. For sufficiently small h,t h e r ee x i s t sψ, a solution to (1), analytic in K and such that in K as h → 0

ψ(z)= e i h z z0 p(z) dz + o(1) sin(p(z)) . ( 3 
)
The asymptotics is locally uniform in z.

A continuation principle

Let z 0 be a regular point, and let V 0 be its regular neighborhood. Assume that there is ψ,as o l u t i o n to (1) that is analytic in V 0 and admits in V 0 the uniform asymptotic representation (3). There exist general statements (Continuation principles) allowing to describe the asymptotics of ψ outside of V 0 .O n eo ft h e mi s Theorem 3 (The rectangle lemma)

Let z 1 ∈ V 0 . Consider the straight line L = {z ∈ C : Im z =I m z 1 }.L e t z 2 ∈ L, Re z 2 > Re z 1 ,a n d let the segment [z 1 ,z 2 ]={z ∈ L :R e z 1 ≤ Re z ≤ Re z 2 } be regular. If Im p(z) < 0 along [z 1 ,z 2 ], then the asymptotic representation (3) is valid and uniform in an independent of h regular neighborhood of [z 1 ,z 2 ].
This theorem is an analog of Lemma 5.1 from [START_REF] Fedotov | On the absolutely continuous spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit[END_REF]. It roughly says that the asymptotic formula (3) stays 

1: B 0 , V 0 ,t h eδ-neighborhood of R + (the δ-neighborhood is shaded in).
valid along a horizontal line as long as ψ exponentially grows.

Typical quasiclassical formulation of the problem

For the sake of simplicity, we additionally assume that v(z) ∈ R for z ∈ R. In this case, if B 0 is chosen sufficiently small, then: (1) in B 0 , v(z) ∈ R only for z ∈ R; (2) the set B 0 \{0} is regular. We assume that B 0 has these two properties. Let p b eab r a n c ho ft h ec o m p l e xm o m e n t u m analytic in B 0 \ R + .F o rB 0 under consideration, Im p(z)d oe sn o tv a n i s hi nB 0 \ R + . For the sake of definiteness, we assume that it is negative.

In B 0 we pick z 0 < 0, see Fig. 1. In view of Theorem 1, there is a regular neighborhood V 0 ⊂ B 0 of z 0 such that there exists a solution ψ to equation ( 1) that is analytic in V 0 and admits representation (3) there.

Let δ>0 be sufficiently small. Let B δ be the domain B 0 without the δ-neighborhood of R + . As Im p(z) < 0i nB 0 \ R + , then by Theorem 3 asymptotics (3) is valid and uniform in B δ to the right from V 0 . The problem is to describe ψ in the δ-neighborhood of R + .

The main result

Below, instead of saying that a function can be analytically continued into a domain, we say that it is analytic in this domain.

The complex momentum p has a logarithmic branch point at zero. One can check the following assertion.

Lemma 1 In B 0 \ R + we fix analytic branches of ln and p. The function z → p(z) -i ln z is analytic in B 0 . The function z → z sin p(z) is analytic and does not vanish in B 0 .

For z ∈ B 0 \ R + , we set U 0 (z)= h -2πz sin p(z) × exp z h ln 1 h + i h z 0 (p(z) -i ln(-z)) dz .
Here p, √ sin p, z → ln(-z)andz → √ -z are functions analytic in B 0 \ R + .I n V 0 , p and √ sin p coincide with p and √ sin p in (3). The functions z → ln(-z)a n dz → √ -z satisfy the conditions ln(-z)| z=-1 = 0 and √ -z| z=-1 = 1. By Lemma 1, U 0 is analytic in B 0 .

Our main result is Theorem 4 Let δ>0 be sufficiently small. In the δ-neighborhood of R + ,a sh → 0, the solution ψ admits the uniform asymptotic representation

ψ(z)=Γ 1 - z h U 0 (z) e i h 0 z0 pdz + o(1) . (4) 
So, the special function describing the asymptotic behavior of ψ near the poles generated by the pole of the potential at z = 0 is the Euler Γ-function.

Near the point z = 0, the formula (4) can not be simplified. For large values of |z/h|, the Γ-function in (4) can be replaced with its asymptotics. To be more precise, let us pick ǫ>0. By means of the asymptotic formula is analytic in a neighborhood of zero independent of h, say, a disc of radius δ>0. Therefore, to prove (4), due to the maximum principle, it suffices to check that f (z)=1+o(1) for, say, |z| = δ/2. This is done by means of a rather standard asymptotic computation made using the complex WKB method for difference equations.

Γ(1 + ζ)= 2πζ e ζ(ln ζ-1)+o(1) , |ζ|→∞, (5 
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  Figure 1: B 0 , V 0 ,t h eδ-neighborhood of R + (the δ-neighborhood is shaded in).

  ) that is uniform in the sector | arg ζ|≤π -ǫ,o n e checks that if | arg z -π|≤π -ǫ and, say, |z|≥δ/2, representation (4) turns into (3). Now let us discuss the case where |z|≥δ/2a n d | arg z|≤ǫ. In this case, to simplify (4), first we use the relation Γ(1z) dz + o(1) (1 -e -2πiz/h ) sin(p(z)) ,h → 0, where p, z → z 0 p(z) dz and sin(p)a r eo b t a i n e d by analytic continuation in the anticlockwise direction from B 0 \ R + into the sector under consideration. 6 The ideas of the proof Let us note that the function f (z)=ψ(z)/(Γ(1 -z/h)U 0 (z))
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