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ABSTRACT
This paper presents SAM, amodular and extensible JavaScript
framework for self-adapting menus on webpages. SAM al-
lows control of two elementary aspects for adapting web
menus: (1) the target policy, which assigns scores to menu
items for adaptation, and (2) the adaptation style, which spec-
ifies how they are adapted on display. By decoupling them,
SAM enables the exploration of different combinations inde-
pendently. Several policies from literature are readily imple-
mented, and paired with adaptation styles such as reordering
and highlighting. The process—including user data logging—
is local, offering privacy benefits and eliminating the need
for server-side modifications. Researchers can use SAM to
experiment adaptation policies and styles, and benchmark
techniques in an ecological setting with real webpages. Prac-
titioners can make websites self-adapting, and end-users can
dynamically personalise typically static web menus.

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI); User interface design;

1 INTRODUCTION
Several decades of work on adaptive menus has shown empir-
ical evidence that they can improve the usability of complex
interfaces [1, 4, 5, 16, 20]. However, most of these techniques
have not been deployed or even released [1]. Technical and
practical reasons can be identified. First, to improve adaptive
interfaces, it is crucial to isolate and understand the different
aspects of the adaptation process [7]. Second, implement-
ing adaptive menus that work outside prototype systems
remains a challenging task. Most graphical toolkits (e.g. Java
Swing, Qt) only provide limited support for customisation
[1]. Our goal is to support effective (re)use of theoretical
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and technical knowledge in adaptive menus to facilitate the
transfer of this technology [17].
UI toolkits and frameworks have facilitated the imple-

mentation of software interfaces [13]. Similarly, we aim to
support implementation and adoption of adaptive menus
and interfaces. To this end, we present SAM, an open-source,
modular and extendable JavaScript framework for the re-
search and deployment of self-adapting menus on regular
web pages and applications. SAM offers logging capability
for modern browsers and permits full control of two elemen-
tary aspects of an adaptive menu: (1) a target policy, which
determines relative importance of items and groups found
within a menu, based on a user’s interaction history, and
(2) an adaptation style, which specifies the visual changes
made while adapting menu items (i.e. look and feel). By de-
coupling the two, it is possible to independently explore
different combinations. To facilitate this, SAM includes sev-
eral readily implemented adapted menus from the literature
(e.g. [4, 6, 12, 20]). Finally, a key aspect of SAM’s design is to
ensure privacy: the adaptation process—including user data
logging and computation—is entirely local, and requires no
server-side storage or modifications.

SAM targets researchers, practitioners, and end-users. Re-
searchers can use SAM to experiment adaptation policies and
styles, and compare with previously published ones, in eco-
logical settings (with real webpages). Practitioners can make
their websites self-adapting with minor modifications. Fi-
nally, end-users can dynamically personalise both the policy
and the style of web menus which normally are static.
Our main contribution is the design and implementation

of SAM, an open-source framework promoting ecological
validity, replicability, and transfer of research on adaptive
menus. To demonstrate the capabilities and usage of the
framework, we implemented six policies and four styles is-
sued from literature, leading to 24 different adaptive menus.
We describe the code required to create a new design and
integrate it in an existing web page.

2 RELATEDWORK
This work is situated within two specific areas: (1) menu
adaptation techniques and (2) automatic adaptation of web-
pages. We provide a brief overview of each as a precursor
and motivation to SAM’s design.
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Menu Adaptation
Several menu adaptation styles have been proposed [1, 3, 22].
For instance, frequency-ordered or folded menus move the
most frequent items to the top of the menu [1, 9]. However
this approach does not maintain any visual consistency. To
avoid this problem, split menus [16] duplicate the 2–5 most
frequent items on the top of the menu so that the bottom
part of the menu remains unchanged. This solution has been
transposed from a single menu to the whole menu system
[11]. Other approaches increase the saliency of some items
by manipulating the size [4], the transparency [1], the back-
ground colour [20], or the delay of apparition [5, 9] of the
items. Except [7], which studied three different menu adap-
tation styles and two policies, previous works generally rely
on one “simple” target policy (i.e. item frequency) and do
not study the combination of one or several styles. More-
over, these implementations and studies are restricted to
specifically-developed software applications. This reduces
the potential for adoption and replicability.

Adaptation of Webpages
AI techniques have been used to mine user logs for webpage
adaptation [14]. PageGather [15] uses this to automatically
create index pages by identifying candidate link sets on web-
sites. However, all data logging and computation is done
on the server-side, and the adaptation is constricted to cre-
ating new index pages. PageTailor [2] supports client-side
customisation of webpages by the user, and saves the results
for revisits. Similarly, [21] supports end-user link adapta-
tion on webpages for better information discovery in long
menus. These works lack policies for automatic adaptation.
[8] automatically adapts pages based on styling issues related
to accessibility, but does not continually adapt them based
on usage and policies. [18] discusses automatic client-side
web page layout adaptation to make them familiar to users
based on usage histories. The adaptation is however limited
to changes in positions. [10] develops an adaptive engine
that took user’s touch input to adapt element style based on
usage. Similarly to our work, this client-side engine applies
a usage-based policy to adapt styles using web technolo-
gies. However, the system does not decouple the different
aspects of the adaptation, and thus hinders the exploration
of different combinations of policies and styles, or further
expandability—which are the key goals of our framework.

3 SAM: THE FRAMEWORK
SAM is a client-side framework (Figure 1). By separating out
the underlying modules, we enable flexibility and control
over the adaptation process. In this section, we provide an
overview of each module. The implementation is described
in the following section.

SAM

User logging Menu abstraction

Adaptation style

Web
page

Web
page

Target policy
Menus

Events

DOM
modifications

Metrics

Scores

DOM

Figure 1: Overview of the interactions between the coremod-
ules of the SAM framework.

Menu Abstraction
Webpage menus are defined as sets of elements, whose types
and hierarchy tend to differ from one website to another.
To address this diversity, SAM builds a single common ab-
straction of the structure of a menu. This representation
is necessary to consistently capture menu usage and adapt
them across very different websites.

User Logging and Metrics
SAM captures a user’s interaction history with menus, and
stores this locally in a database. Currently, SAM records
mouse clicks and time spent on each page. To extend logging
capabilities, any event that can be captured on a webpage (e.g.
cursor movements, eye tracking), can be logged by SAM, and
used for further computations. SAM then computes usage
metrics (e.g. click frequency or page visits) from user’s inter-
action history to update the selected target policy. While this
history may include erroneous events (such as clicking the
wrong item), they eventually become neglected as the sys-
tem captures more legitimate events and self-corrects itself.
Figure 2a shows some logged data for an example scenario.

Target Policies
Scores are assigned to all menu items (and/or groups) based
on a target policy. While new policies can be easily inte-
grated into SAM, we include a readily-available set of poli-
cies, adapted from literature:
(1) Itemclicks frequency: Items are assigned normalised

scores based on the number of clicks [12, 16].
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(2) Page visits duration: Items are assigned normalised
scores based on the total time spent on the page they
link to.

(3) Page visits frequency: Items linking to pages visited
more frequently are assigned higher scores [18].

(4) Page visits recency: Items linking to pages visited
more recently are assigned higher scores [18].

(5) Serial-position curve: Items are assigned normalised
scores combining frequency, recency, and primacy [18].

(6) AccessRank: Items are scored according to the Ac-
cessRank algorithm [6], which includes recency, fre-
quency, temporal clustering, and time of day as factors
as well as a component for stability.

Adaptation Styles
SAM uses the score of each item (target policy) to apply the
corresponding adaptation style to items. The number (N ) of
items to be adapted can either be specified as a fixed number,
or as a function of the menu size. Currently, SAM includes
the following styles:
(1) Highlighting: N items are highlighted using a con-

trasting background colour1 [19].
(2) Item reordering: Selected N items are moved to the

top of the (sub-)menu [12].
(3) Group reordering: SelectedN entire groups aremoved

to the top of the menu.
(4) Folding: Items with low scores are truncated from the

menu [1].
SAM can include additional styles (e.g. transparency, size,
font, borders, positions, etc.) and can combine them to form
composite styles.

4 IMPLEMENTATION
SAM is implemented in Typescript2, a typed scripting lan-
guage which is compiled to plain JavaScript. The only ex-
ternal dependency is jQuery3, which is used to facilitate
Document Object Model4 (DOM) manipulations. To make
SAM extendible, it has been split into multiples modules
with different responsibilities (Figure 1).

Menu abstraction. Each element of adaptive menus (e.g. item,
group) is associated with a node in the DOM. For a menu to
adapt, a set of jQuery selectors must be provided to SAM,
in order to fetch the nodes which form the structure of the
menu in the webpage. Each element is then given a unique
identifier, used to track them across pages and sessions. The
identifier is determined by the node tag, id attribute, position
among its siblings, and those of its ancestors.
1 Or any other effect which can be applied with CSS.
2 https://www.typescriptlang.org
3https://jquery.com; the slim version suffices for SAM.
4https://www.w3.org/DO/

Interaction Logging. The logging of all user interactions has
been split between three modules to keep the code easily
understandable and simple to extend: The data logger logs
any event they catch in the database. It currently logs all
click events fired on menu items, and all page visits (using
beforeunload events). The database serialises its content
into the Local Storage of the browser, and un-serializes it
on each page load. This choice allows to easily switch to
another form of persistent storage (e.g. IndexedDB), or to
send data to a remote server (e.g. for an online study). The
data analyser improves performances, by only recomputing
metrics if the database content has been updated since the
last computation, and using a cached version otherwise.

Target Policy. The target policy uses the output of the data
analyser and abstract menus content (Figure 1) to compute
the scores for each item or/and group and sort them.

Adaptation Style. The adaptation style takes the output of
the aforementioned policy and a list of abstracted menus to
modify the DOM and apply the desired effect to the target
items or/and groups. To be compatible with SAM, each style
must implement two methods: one to apply the effect of the
style, and one to cancel it.

Privacy. User data, target policy, and adaptation styles are
stored, computed, and applied locally, on the user’s browser.

Scalability. SAM can adapt web menus (desktop or mobile)
of all sizes, with or without groups, with hundreds of items.
The main threshold is the complexity of the target policy
and the adaptation style—which can run arbitrarily costly
computations. However, modern web browsers heavily op-
timise JavaScript code they run, and any combination of
currently implemented policy and styles can smoothly adapt
menus with dozens of groups and hundreds of items in a
few milliseconds5. Furthermore, although the typical Local
Storage of a browser has limited capacity (∼ 5–10 MB per
domain), the database of SAM can still store 2,000 to 10,000
visits and clicks before exceeding the available space. This
limit could be easily bypassed by using IndexedDB instead
of Local Storage.

5 USAGE AND EXTENSION
We release SAM as an open-source framework at https://
github.com/aalto-ui/sam. It can be adopted and/or extended
by different categories of users, based on their objectives.

Developers. Developers can edit the sources of a website
to include SAM, and turn their static menus into adaptive
menus. They first include the JavaScript library and CSS file
in the HTML sources of any page with menus to adapt:
5In our tests, SAM computations on wikipedia.org took 0.077s (average over
10 page loads).

https://www.typescriptlang.org
https://jquery.com
https://www.w3.org/DO/
https://github.com/aalto-ui/sam
https://github.com/aalto-ui/sam
wikipedia.org
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Item label Nb. clicks Duration (s)

Main page 2 74
Contents 0 0

Featured contents 6 29
Current events 0 0
Random article 10 —

Donate to Wikipedia 0 0
Wikipedia store 0 0

(a) Interaction history. (b) Highlighting
by Visit duration.

(c) Highlighting
by Click frequency.

(d) Item reordering
by Click frequency.

Figure 2: Various adaptive menus produced by SAM on Wikipedia, given a single interaction history (a).
Changing the target policy (b → c) or the adaptation style (c → d) both result in different adaptive menus.

<link rel="stylesheet" href="css/sam.css"></link>
<script type="text/javascript" src="js/sam.js"></script>

They then initialise the framework by calling the static
builder method fromSelectors on the global SAM object—
which is exposed in the global scope by sam.js. This step
requires the DOM to be fully loaded:
$(document).ready(() => {

SAM.fromSelectors(".menu", ".group", ".item");
});

Researchers. Researchers can extend SAM with new policies
and styles. To do so, they must implement the TargetPolicy
or AdaptationStyle interfaces, add the new class to the
right internal array, and recompile the framework (by run-
ning grunt6). For example, one could add a Magnify style
which increases the font size of the 3 elements with the high-
est scores. By adding a CSS rule which increases the font
size of all elements with class sam-magnified, the following
snippet is sufficient to implement this style:
public class Magnify implements AdaptationStyle {

readonly name = "Magnify";
readonly N = 3; // Number of items to select

apply(menuManager, policy, dataManager) {
// Select top N items ranked by the policy
let items = policy.getSortedItems(menuManager, dataManager)

.slice(0, N);
for (let item of items) {

item.node.addClass("sam-magnified");
} }

cancel() {
$(".sam-magnified").removeClass("sam-magnified");

} }

For convenience, abstract classes with partial implementa-
tions are provided. The following snippet illustrates how this

6 https://gruntjs.com/

allows to add a new target policy to SAM by implementing
only one method:

public class ExamplePolicy extends DefaultTargetPolicy {
readonly name = "ExamplePolicy";

getSortedItemsWithScores(menuManager, dataManager) {
let items = menuManager.getAllItems();
let itemsWithScores = items.map((item) => {

return {item: item, score: 0};
});

// --- Code to compute item scores ---

return itemsWithScores;
} }

End-users. End-users can use SAM to adapt any web menu.
This is achieved by injecting the SAM JavaScript library, the
CSS file, and an initialisation script, in selected webpages,
using a freely-available browser extension7. Moreover, by
building a public repository of initialisation scripts (e.g. one
per domain), end-users would not even have to specify the
selectors to use by themselves. This could make menu adap-
tation on the web seamless and accessible to anyone, without
requiring any technical knowledge.

6 CONCLUSION AND OUTLOOK
This paper has presented SAM, a JavaScript framework for
developing and deploying adaptive menus on the web. It
allows to compose policies and styles to easily explore new
types of adaptive techniques. In the future, we aim to provide
additional technical resources for inquiring user experience
via studies which include adaptive menus supported by SAM.
Furthermore, we intend to extend the framework with more
policies and styles, which better cover existing literature.

7 We used Code Injector:
https://addons.mozilla.org/en-US/firefox/addon/codeinjector/

https://gruntjs.com/
https://addons.mozilla.org/en-US/firefox/addon/codeinjector/
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