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Denoising applied to spectroscopies – part II: decreasing computation 

time

Spectroscopies are of fundamental importance but can suffer from low sensitivity.  

Singular Value Decomposition (SVD) is a highly interesting mathematical tool, 

which can be conjugated with low-rank approximation to denoise spectra and 

increase  sensitivity.  SVD  is  also  involved  in  data  mining  with  Principal 

Component Analysis (PCA). In this paper, we focussed on the optimisation of 

SVD duration,  which is  a time-consuming computation.  Both Intel  processors 

(CPU) and Nvidia graphic cards (GPU) were benchmarked. A 100 times gain was 

achieved  when  combining  divide  and  conquer  algorithm,  Intel  Math  Kernel 

Library (MKL),  SSE3 (Streaming SIMD Extensions) hardware instructions and 

single precision. In such case, the CPU can outperform the GPU driven by CUDA 

technology. These results give a strong background to optimise SVD computation 

at the user scale.

Keywords:  spectroscopy,  signal  processing,  Cadzow denoising,  Singular Value 

Decomposition (SVD), benchmarking
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Introduction

Spectrocopies are very efficient tools  to help scientists  in  various domains:  physics, 

chemistry, biology or medecine. However, the intrinsic sensitivity is highly dependant 

of  the  technique  used.  In  particular,  Nuclear  Magnetic  Resonance  (NMR)  (1) and 

Raman  spectroscopy  (2) are  poorly  sensitive  but  are  very  precise  local  probes 

commonly used to study materials. While NMR can detect only one nucleus over 105 in 

usual conditions (3), Raman spectroscopy can only detect one photon over 106 (4). Both 

NMR and Raman sensitivity were improved over the years, as was detailed in part (I) of 

this study  (5), but still  suffer from low signal-to-noise ratio (SNR), especially when 

studying amorphous  or  non-stable  materials.  Additionally,  different  physicochemical 

techniques can be hyphenated to obtain multiple signatures in a single experiment (6, 7).

This sensitivity gain entails an increasing amount of data to analyse, especially 

in the domain of metabolomics (8, 9). In such case, it is necessary to combine statistics 

and chemistry, what is called chemometrics (10, 11). A similar problem of data mining 

is present in social engineering  (12) or with medical images dictionaries  (13).  Many 

tools are available to process these data: Principal Component Analysis (PCA)  (14), 

Principal  Component  Regression  (PCR)  (15),  Partial  Least  Squares  (PLS)  (16), 

Discriminant Analysis (PLS-DA)   (17), Independent Component Analysis (ICA)  (18), 

or Non-negative Matrix Factorisation (NMF)  (19). The aim of these multivariate data 

analysis methods is to find relevant parameters in order to discriminate samples (ex 

wine from region A or B (20)). These tools are of paramount importance to apply data 

mining  to  spectroscopies  (21).  For  instance,  PCA  was  used  recently  with  Gas 

Chromatography / Quadrupole  Time-of-Flight  (GC/Q‐ToF)  mass  spectrometry  (22), 

Mid-InfraRed  (MIR)  spectroscopy  (23) and  Inductively  Coupled  Plasma  Optical 
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Emission  Spectroscopy  (ICP-OES)  (24).  An  important  step  of  PCA and  relative 

techniques is Singular Value Decomposition (SVD) (25, 26).

Moreover, SVD was proposed as a method to denoise signals by Tufts et al (27), 

and was generalised by Cadzow in 1988 (28). In the context of low sensitivity and in the 

continuation of a previous communication  (29), we thoroughly described SVD in part 

(I)  of  this  work  (5). We  first  gave  theoretical  background  on  SVD,  low-rank 

approximation  (30), Hankel or Toeplitz matrices  (31) and SNR definitions. SVD was 

applied to Raman and NMR spectra. We highlighted that best results were obtained with 

square matrices and data in time domain rather than in frequency domain. Automatic 

thresholding  was  applied  thanks  to  Malinowki’s  significant  level  indicator  (32). 

6 × 7380 = 44280 denoised spectra with known noise were compared to their non-noisy 

counterparts. It was evidenced that the minimum peak SNR measured on maximum of 

noise (PSNRmax) needed to have reliable results was PSNRmax = 2, leading to a gain on 

acquisition time of 2.3. Surprisingly, while Lorentzian peaks were correctly denoised, 

SVD transformed Gaussian peaks into intermediate Gaussian / Lorentzian ones, which 

overestimated their peak area by 20 %.

The main disadvantage of SVD is its long computation time, especially for big 

data  sets.  It  is  thus  essential  to  optimise  the  computation  procedure.  Different 

approaches  have  been  chosen  in  literature:  specialised  processors  (33),  wavelet 

transformation before performing the SVD  (34),  divide and conquer method  (35) or 

sparse matrices (36, 37). Another approach is General Purpose computing on Graphics 

Processing Unit (GPGPU)  (38). SVD has been applied multiple times using GPGPU 

(39–42). Two programming languages are available: CUDA (Compute Unified Device 

Architecture) for Nvidia graphic cards (43) and OpenCL (Open Computing Language) 

for  all  graphic  cards  (Graphic  Processing  Unit,  GPU)  and  processors  (Central 
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Processing  Unit,  CPU)  (44).  In  addition,  Dongarra  et  al. developed  very  efficient 

algorithms combining CPU and GPU (45, 46), what is called heterogeneous computing 

(47). Recently Man et al proposed a Java implementation of SVD for NMR (48) using 

CPU  (49) or  Nvidia  GPU  (50).  Pending  questions  can  be  raised  on  these  Java 

applications:  (i)  how  powerful  does  the  computer  need  to  be?  (ii)  how  long  does 

computation  take?  (iii)  how  large  can  be  the  data  set?  (iv)  is  the  used  algorithm 

efficient? (v) will other programming languages give better results?

In this  second part  (II),  after  providing some experimental  details  in  section 

“Materials  and  methods”,  we  benchmarked  SVD  using  Java,  on  various  CPU  and 

Nvidia GPU ranging over 10 and 6 years, respectively. We then focussed on algorithms 

and precision under Matlab. In a further step, we tried to decorrelate software libraries 

from hardware capabilities (Single Instruction Multiple Data, SIMD) (51). Finally, we 

compared Java, Matlab and Python to reach the fastest possible denoising computation.

Materials and methods

Solid-state NMR experiments

Two solid-state NMR spectra were used to benchmark SVD. The first one was a  29Si 

spectrum with 4096 complex points, used for matrices up to 2015 × 2014 = 4.1e6. For 

matrices above this limit, a 87Sr spectrum with 30504 complex points, was chosen. The 

noisy  and  denoised  spectra  for  29Si  and  87Sr  are  presented  on  Figures  1a  and  1b, 

respectively. SVD  was  applied  on  Free  Induction  Decay  (FID,  time  domain)  after 

removal of the first 68 points corresponding to oversampled digitalisation.
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Figure 1: Spectra used to benchmark SVD; top: noisy spectra; bottom: denoised spectra. 

a)  29Si  CPMG MAS solid-state  NMR spectrum of  a  50:50  MTEOS:TEOS sample; 

processing:  Java  GPU  application  with  2015 × 2014 = 4.1e6  points,  k = 25  singular 

values,  computation  time  of  6 s  on  a  GTX 660,  cosine  apodisation.  b)  87Sr  DFS-

WURST-CPMG  solid-state  static  NMR  spectrum  of  non-hydrated  non-protonated 

Sr(PO3F); processing: Java GPU application with 4097 × 4096 = 1.7e7 points, k = 25 

singular values, computation time of 31 s on a GTX 660, cosine apodisation, magnitude 

calculation.

The  sample  analysed  by  29Si  solid  state  NMR  and  the  experiments  were 

presented in part (I) of this study (5). Briefly, it was representative of sol-gel chemistry, 

combining  hydrophobicity  and  mechanical  properties  (52).  A  50:50  mix  of 

Methyltriethoxysilane (MTEOS) : tetraethylorthosilicate (TEOS) was prepared by spray 

drying giving spherical micrometer silica particles. Carr-Purcell-Meiboom-Gill (CPMG) 

Magic Angle Spinning (MAS) experiments  (53) were performed in 40 minutes on a 

Bruker Avance III spectrometer operating at 300.29 MHz for 1H and 59.65 MHz for 29Si.

The sample analysed by  87Sr solid state NMR was a model of biocompatible 

material in relation with bone substitutions (54). Non-hydrated non-protonated Sr(PO3F) 

was studied on a Bruker Avance III spectrometer operating at 699.98 MHz for  1H and 

30.34 MHz for  87Sr in a 5 mm static probe. In order to enhance sensitivity, DFS (55), 

WURST (56) and CPMG were used with 58,000 transients and a relaxation delay of 
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300 ms, leading to a total acquisition time of 5.5 h. 260 echoes were acquired with a full 

echo delay of 0.12 ms.

Measurement of SVD computation times

Special care has been taken to validate measured times: the computer was checked to be 

idle, without any update running and without an active internet browser window, which 

would  use  the  graphic  card  through  Adobe  Flash  module.  Computations  were 

systematically repeated and results  were highly reproducible.  Nvidia  drivers ranging 

from 331.113 to 352.30 were used, either under Linux Ubuntu 14.04, Centos 5, Fedora 

21, 22 or Windows XP, 7 SP1 or 8.1. Under Windows it was necessary to modify the 

TdrLevel registry key to 0 in order to avoid graphics driver failure  (57). Under Java 

(Oracle Corporation, Redwood Shores, CA, USA) and Matlab (The MathWorks, Inc., 

Natick, MA, USA), 29Si FID was used up to 4028 points. Above this value, 87Sr FID was 

used. The corresponding FID was truncated if needed to the desired data length. Under 

Python  (58),  data  set  was a  simple list  of  increasing values with the corresponding 

length.  Unless  otherwise  stated,  k = 25  singular  values  were  kept  for  low-rank 

approximation.  This  value  corresponded  to  the  major  spikelets  observed  on  29Si 

spectrum (Figure 1a) and was not changed for coherence along the series. The measured 

delays are the sum of decomposition and low-rank approximation steps, including all 

processor to graphic card latencies, if relevant.

Java

Two applications are available online: one for CPU (49) and the other one for Nvidia 

GPU  (48, 50). While CPU version calls  JAMPACK library  (59),  GPU version calls 

CULA  R15  (60).  The  CPU  32 bits  version  failed  above  a  matrix  size  of 
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1025 × 1024 = 1.0e6 points, whatever the CPU used. The same problem was observed 

with GPU 32 bits version above a matrix size of 3005 × 1024 = 3.1e6 points. The reason 

is that Java heap space is limited to around 1.5 GB for 32 bits applications (61), while it 

is 16 exabytes for 64 bits applications. This memory amount corresponds not only to the 

data, but also to the program and its libraries. 64 bits applications are not compatible 

with 32 bits  Java runtime environment  and 32 bits  operating systems. As the source 

code  was  not  accessible  and  no  internal  timer  was  implemented  in  these  Java 

applications, computation times were measured with a handheld chronograph giving a 

time resolution of 1 s for both SVD step and low-rank approximation step. For a same 

GPU, no computation time difference was observed between Windows and Linux. 

Matlab

Three versions were tested: R2010a, corresponding to the most recent compatible with 

CULA library free (in version R14) (62); R2014a, corresponding to the most recent for 

old graphic cards with Compute Capability (CC) less than 2.0, such as GTX 260; and 

R2015a, corresponding to a recent version. FID were imported thanks to matNMR (63). 

Under R2014a and R2015a, their respective Parallel Computing Toolbox was added to 

use gpuArray function. Computation times were measured with an internal timer.  The 

source code is available in file Figure_II.4a_II.4b.m of (64).

Python

No significant  time  difference  was  observed  between  Python  2.7  and  3.5  versions, 

neither between 32 and 64 bits versions. The source code is compatible with all of these 

options and is available in file Figure_II.5.py of (64) (CPU and GPU). Different SVD 

implementations were tested with NumPy 1.10.1  (65), SciPy 0.16.1  (66) and Scikit-
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Cuda 0.5.0  (67). The last one required PyCUDA 2015.1.3  (68) and CULA R18 free 

(60). Computation times were measured with an internal timer as well.

Under Linux, Automatically Tuned Linear Algebra Software (ATLAS) (69) and 

Open source Basic Linear Algebra Subprograms (OpenBlas) (70) development libraries, 

separately either one or the other,  were installed as rpm packages.  For each library, 

NumPy and SciPy were build with the pip mechanism1.  Compiling these two latter 

packages with Intel Math Kernel Library (MKL) (71) was also tested. Under Windows, 

NumPy and SciPy superpack 32 bits with ATLAS library are available (72, 73), and also 

pre-compiled packages with MKL library (74).

Results and discussion

As stated in the introduction, the main disadvantage of SVD is its long computation 

time. Of course the hardware itself is important but multiple steps are present between 

the  human  level  function  call  and  the  hardware  level  implementation,  namely  the 

algorithm,  the  libraries  and  the  use  of  hardware  instructions  (Figure  2a).  Even  on 

hardware, we can choose to compute either on CPU or on GPU. In the following, we 

checked the respective benefits of all these parameters.

1 Forcing reinstallation of a specific python package can be done with ‘pip install --ignore-
installed numpy==1.10.1’.
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Figure  2: a) SVD function call diagram on CPU and GPU. MKL: Intel Math Kernel 

Library; SSE: Streaming SIMD Extensions; AVX: Advanced Vector Extensions; FMA: 

Fused Multiply Add; DP: double precision; SP: single precision. b) Some Nvidia GPU 

used. From top to bottom: 8400 GS, GTX 260, GTX 660.

Influence of hardware under Java CPU and GPU applications

Java CPU and GPU benchmarks

In an  attempt  to  characterise  the hardware needed to compute  SVD, we used CPU 

ranging over  10 years  and GPU ranging over  6 years,  for  both desktop and laptop 

computers (Tables 1 and 2 and Figure 2b). According to Figure 2a, we were changing 
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hardware  level,  supposing  that  everything  was  optimised  at  software  level  and 

measuring durations at human level. Study has been restricted to Intel CPU and Nvidia 

GPU because no AMD CPU was available in the laboratory and AMD GPU are not 

compatible with CUDA. Results are presented on Figure 3a.

We noticed first that computation were much faster for GPU than for CPU, with 

2 to 23 s for GPU (dashed lines) and 67 to 500 s for CPU (top right end of plain lines), 

i.e. 22 to  34 times  speed increase, for  a  quite  small  matrix  of  1025 × 1024 = 1.0e6 

points. This almost square shape was due to construction of the Hankel matrix with a 

dataset containing an even number of points. Indeed, in order to not overwrite the corner 

point, it is necessary to add one row over columns. No significant time difference was 

seen with a true square matrix and thus this small shape difference will be neglected in 

the following.

Surprisingly, even a low-end GPU of 2008 (8400 GS) was surpassing a middle-

range CPU of 2013 (Core i5 4670K) (with 23 and 67 s, respectively). This behaviour 

was really intriguing, as we would expect at least similar computation performance (75). 

However, when checking CPU activity, we observed that, with the CPU application, 

only one core was busy, what is called mono-threading. On the contrary, with the GPU 

application, not only GPU was fully busy, but also all the available CPU cores were 

used,  what  is  called  multi-threading.  This  difference  between  mono-  and  multi-

threading is explored in section“Influence of algorithm under Matlab”.
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Table 1. Properties of CPU used for SVD under Java. Gray rows indicate hardware used for SVD under Matlab and Python. a: ark.intel.com; b: CPU-

Z 1.72; c: Performance Test 8.0.

Central Processing Unit 
(CPU)

Type
Year

a

Fabri-
cation 
(nm)

b

Number 
of cores

b

Cache 
(MB)

a

Core 
frequency 

(MHz)
b

Memory 
frequency 

(MHz)
b

Memory 
size 

(MB)
b

CPU
Mark

c

Mono-
thread 

(Mops/s) c

Matrices 
(millions/s) 

c

Intel Pentium M 745 laptop 2004 90 1 2 1800 133 1024 444.8 577 1.41
Intel Pentium 4 530 desktop 2004 90 2 1 3000 200 1024 335.2 726 0.29

Intel Core 2 Duo E6400 desktop 2006 65 2 2 2130 333 2048 1451 849 3.72
Intel Core 2 Quad Q8200 desktop 2008 45 4 4 2330 400 4096 2001 1004 5.8
Intel Core 2 Duo T9600 laptop 2008 45 2 6 2800 400 4096 2190 1161 4.67

Intel Core i3 4005U laptop 2013 22 4 3 1700 800 4096 2551 1010 11.4
Intel Core i5 4670K desktop 2013 22 4 6 4200 1000 8192 8824 2519 31.6

Table 2. Properties of GPU used for SVD under Java. Gray rows indicate hardware used for SVD under Matlab and Python. a: GPU-Z 0.8; b: Cuda-Z  

0.9; #N/A: not available.

Graphics Processing Unit 
(GPU)

Type
Year

a

Fabri-
cation 
(nm)

a

Number 
of cores

a

Band-
width 
(GB/s)

a

Core 
frequency 

(MHz)
a

Memory 
frequency 

(MHz)
a

Memory 
size 

(MB)
a

Single 
precision 

float 
(GFLOPS)

b

Double 
precision 

float 
(GFLOPS)

b

CUDA 
compute 

capability
b

Nvidia Quadro FX 570 desktop 2007 80 16 12.8 460 400 256 29 #N/A 1.1
Nvidia GeForce 8400 GS desktop 2008 65 8 6.4 567 400 512 21 #N/A 1.1

Nvidia Quadro NVS 160M laptop 2008 65 8 11.2 580 700 256 23 #N/A 1.1
Nvidia Quadro FX 770M laptop 2008 65 32 25.6 500 800 512 79 #N/A 1.1
Nvidia GeForce GTX 260 desktop 2008 65 216 111.9 576 1000 896 533 67 1.3

Nvidia GeForce 820M laptop 2012 28 96 14.4 625 900 2048 315 31 2.1
Nvidia GeForce GTX 660 desktop 2012 28 960 144.2 1100 1500 2048 1707 88 3.0



Figure 3: Computation times for SVD under Java. a) Comparison of CPU and GPU times against matrix size; ◊: rectangular matrix; □: square matrix. 

b) CPU times against CPU frequency. c) GPU times against single precision float performance. d) CPU times against monothread performance; light  

blue and light green arrows evidence CPU cache and CPU release year influence, respectively. CPU and GPU times are drawn with plain lines and  

dashed lines, respectively.



When increasing the square matrix size, a linear trend was visible in logarithmic 

scale, down-shifted for faster hardware (Figure 3a). However, computation time jumped 

when  going  from  a  rectangular  matrix  (diamond  symbol)  to  a  square  one  (square 

symbol), even if matrix size was not so different. This behaviour was observed for both 

CPU and GPU at 1537 × 512 = 7.9e5 vs. 1025 × 1024 = 1.0e6 points, and similarly for 

GPU  at  3005 × 1024 = 3.1e6  vs. 2015 × 2014 = 4.1e6  points.  This  denoted  that  the 

number  of  mathematical  operations  dramatically  increased  for  a  square  matrix.  An 

explanation could be the use of reduced SVD for rectangular matrices, not computing 

the last rows and columns of U and VT unitary matrices (see part (I) of this work (5)). 

This time jump is probably the reason why a rectangular matrix shape is chosen in most  

studies, despite a square matrix gives more precise singular values, i.e. more performant 

denoising.

Thanks to the speed up obtained on GPU, it was possible to compute a matrix of 

4097 × 4096 = 1.7e7  points  in  31 s  on  a  mid-range  GPU  of  2012  (GTX  660).  By 

extrapolating the curve in Figure 3a, it may take around 6000 s on a mid-range CPU of 

2013 (Core i5 4670K). For square matrices, the slope seems similar between graphic 

cards. As underlined in section “Materials and methods”, only 64 bits Java versions can 

handle matrix sizes above 3005 × 1024 = 3.1e6 points. However, all the processors and 

some graphic cards (NVS 160M, FX 770M and 820M) were benchmarked using the 

32 bits Java applications, which explains the truncated curves for this hardware.

Java CPU performance indicator

To  better  characterise  the  hardware  needed  for  Java  CPU  SVD,  we  looked  for  a 

performance indicator. One would expect CPU frequency to be a good one but it was 

clearly  not  the  case  as  shown  on  Figure  3b.  However,  mono-thread  performance 
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evidenced a trend and was thus a usable parameter as shown on Figure  3d.  This is 

coherent with our observation of only one active processor core under the Java CPU 

application.

Characteristic points are visible on these curves (Figures 3b and 3d). Light blue 

arrows highlight Pentium M 745 and Pentium 4 530, which were two processors of 

2004. Their frequencies were very different (1800 and 3000 Mhz, respectively) but their 

mono-thread performance were similar. Additionally, with a bigger matrix size (yellow 

line), the Pentium M 745 was faster than the Pentium 4 530, even if the latter had a 

higher frequency. The main difference between them was their  cache size,  of 2 and 

1 MB, respectively. The CPU cache is the amount of quick memory directly available 

inside the processor. On the contrary, memory plugged into motherboard is at least 10 

times slower.  As SVD request many matrix-vector  multiplication,  memory access is 

limiting.

Light green arrows evidence Core 2 Duo E6400 and Core i3 4005U, which were 

two processors with a similar frequency but released in 2006 and 2013, respectively. No 

performance increase was observed using Java SVD CPU application between these 

two processors.  That  was also questioning as we would expect  that  some hardware 

optimisations happened in 7 years. These observations highlight that the best CPU for 

SVD under Java will not necessarily be recent or have a high frequency, but rather have 

a high memory cache and a high monothread performance. In other words, it is better to 

use an old high- or middle-range CPU than a new low-range one. This explains why 

Core 2 Duo T9600 was faster than Core i3 4005U. The former processor is a good 

candidate to denoise all over the night a matrix of 8193 × 8192 = 6.7e7 points with the 

64 bits CPU Java application.
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Java GPU performance indicator

Graphic card computing power is characterized by core frequency and number of cores. 

Despite frequency was not so different along the series, number of cores was strongly 

increasing  over  the  years  and  with  them  the  Single  Precision  Floating  Point 

performance (SP or FP32), expressed in Giga FLoating-point Operations Per Second 

(GFLOPS)  (76).  Only  high-end  professional  cards  have  a  high  Double  Precision 

Floating Point performance (DP or FP64). General public GPU are more commonly 

devoted  to  games  and  lack  DP.  The  precision  is  the  number  of  bits  used  to  store 

numbers, 32 and 64 for SP and DP, respectively (77). The higher the precision used, the 

lower the computed error.  However, the errors initially present in the matrix can be 

larger than rounding errors (78). Moreover, CULA free (60), the library implemented on 

Java  GPU  application  could  only  use  SP.  It  was  thus  useless  to  invest  money  in 

professional cards and we favoured general public GPU. For instance, a Nvidia Tesla 

P100 GPU costs around 8 k€. On Figure 3c, a time decreasing linear trend was obtained 

in logarithmic scale when increasing SP, which denoted a good indicator.

Another  important  parameter  for  SVD  with  Java  GPU  application,  was  the 

amount  of  memory  available,  both  on  GPU  (device)  and  on  motherboard  (host). 

Plassman stated that SVD needed up to 8 n² + 12 n work storage (79), for a matrix with 

n columns. This value had to be multiplied by 4 bytes for both floating and integer 

numbers  to  be  stored  in  memory.  Additionally,  there  was  a  1.5-3  times  transient 

overhead  during  low-rank  approximation.  Following  this  rule,  the  largest  tractable 

matrix was 6657 × 6656 = 4.4e7 points on a GPU with 2 GB of memory.

In this section we have seen influence of hardware on SVD computation time 

under  Java.  As  stated  above,  the  time  difference  between  CPU  and  GPU  Java 

application  was  intriguing,  especially  when  comparing  the  low-end  graphic  card 
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8400 GS to the middle-range processor Core i5 4670K. Additionally, the CPU and GPU 

application were mono-threaded and multi-threaded, respectively. This was typically an 

algorithm problem and we explored it using Matlab.

Influence of algorithm under Matlab

Algorithms  are  the  mathematical  operations  involved  and  their  informatics 

implementation to obtain the relevant function. Plassman compared the available SVD 

algorithms and their impact on ill-conditioned matrices (79). The simplest computation 

method is to use eigendecomposition, but its lack of precision was demonstrated by 

Läuchli (80). The classic complete SVD uses a three steps process:

(1) reduction to bidiagonal form,
(2) computation of SVD on bidiagonal matrix,
(3) obtention of singular vectors.

Step  (1)  involves  Householder  reflections  and  step  (2)  can  either  use  QR 

iteration  in  Golub-Kahan-Reinsch  (GKR)  algorithm  (81,  82),  divide-and-conquer 

method  (35,  83) or  Multiple  Relatively  Robust  Representations  (MRRR)  (84).  An 

alternative SVD algorithm, combining steps (1) and (2), is to use Jacobi rotations and 

convergence criteria (85).

To explore algorithm influence we focussed on two computers, one from 2008 

with a Core 2 Quad Q8200 and a GTX 260 under Linux, and the other one from 2013 

with a Core i5 4670K and a GTX 660 under Windows. Both were in the same price 

segment  and  reflected  middle-range  equipment  available  at  those  dates.  The  used 

Matlab versions were detailed in section “Materials and methods”. According to Figure 

2a, we fixed hardware level and observed software level influence.
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Figure  4: a) and b) Computation times for  SVD under Matlab. Comparison of CPU 

and GPU times against matrix size for different Matlab versions. a) C2Q Q8200 + GTX 

260 (2008). b) i5 4670K + GTX 660 (2013). c) SP performance against matrix size 

measured with GPUBench v1p7 under R2014a; the horizontal scale is larger than on a) 

and b).  CPU and GPU times are drawn with plain and dashed lines, respectively. Red 

and green arrows indicate bad algorithm and CPU-GPU crossing, respectively.
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Matlab R2010a

Under Matlab R2010a, DP computation times on CPU were already smaller than those 

with Java CPU application for a matrix of 1025 × 1024 = 1.0e6 points (plain dark blue 

line on Figures 4a and 4b): 78.2 s instead of 149 s for Core 2 Quad Q8200, and 11.6 s 

instead of 67 s for Core i5 4670K. It should be noted that computation times can be 

divided by two when using single precision (plain red line), and by two again with non-

complex  data  (not  shown).  Java  CPU  application  used  complex  numbers  and 

accordingly to the above results, it presumably used DP. While Java used only mono-

threading, Matlab computation started with a multi-threaded step and kept on with a 

mono-threaded  one.  This  already  denoted  a  different  algorithm  between  the  two 

programming languages.

Under this Matlab version it was also possible to use GPU with CULA, which 

was the library implemented under Java GPU application. Results were similar between 

Java  GPU  and  Matlab  R2010a + CULA + SP  GPU  applications  (dashed  red  line). 

However, as we used the free version of CULA, DP computation was not allowed on 

GPU and R2010a + CULA + DP (plain black line) felt  back on CPU with LAPACK 

library in multi-threading mode. As a consequence, strong improvement was observed 

against R2010a + DP (plain dark blue line). At this point, an order of magnitude on 

computation times has already been gained for CPU DP under Matlab.

Matlab R2014a

Further improvement on CPU was obtained with R2014a + DP (plain yellow line on 

Figures  4a and  4b) being almost two times faster than R2010a + CULA + DP (plain 

black line), and 7-33 times faster than R2010a + DP (plain dark blue line), depending on 

matrix size. This was explained by the divide and conquer approach preferred for SVD 
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starting  from R2010b.  Gu  et  al claimed  that  this  algorithm was  9  times  faster  on 

bidiagonal matrices (86), in agreement with our observations. The extra gain is due to 

the four cores simultaneously used on the CPU. Again SP (plain green line) was two 

times faster than DP. Small matrices, up to 1025 × 1024 = 1.0e6 points for Core 2 Quad 

Q8200, and up to 3073 × 3072 = 9.4e6 points for Core i5 4670K, were even computed 

faster on CPU with R2014a + SP than on GPU with R2010a + CULA + SP, as indicated 

by the green arrow. Unfortunately, CULA free was not compatible with R2014a, but it  

was  nevertheless  possible  to  use  GPU  thanks  to  the  gpuArray  Matlab  function. 

Surprisingly,  worst  results  were  obtained,  with  a  GPU  time  longer  than  its 

corresponding  CPU  time.  Moreover  R2014a + gpuArray + DP times  (dashed  yellow 

line) were shorter or equal to R2014a + gpuArray + SP times (dashed green line), what 

is in contradiction with DP / SP ratio on GPU (1 / 8 and 1 / 24 for GTX 260 and GTX 

660, respectively). This revealed that part of the computation was done in DP, despite 

SP was called. When checking CPU and GPU activity during SVD, it was observed that 

GPU was only used at the beginning and at the end of the processing. This denoted that 

SVD using gpuArray under Matlab R2014a was not an optimised algorithm and that 

this version should be avoided.

Matlab R2015a

In order to check if a new version of Matlab could further improve computation times, 

we used Matlab R2015a. A slight decrease was observed on CPU from 57.8 to 52.5 s 

and from 29.1 to 27.0 s for R2014a + DP (plain yellow line on Figures  4a and  4b), 

R2015a + DP (plain  brown  line),  R2014a + SP (plain  green  line)  and  R2015a + SP 

(plain light blue line), respectively, for a matrix of 4097 × 4096 = 1.7e7 points. Matlab 

R2015a was not compatible with GTX 260 GPU, due to its compute capability of 1.3. A 
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much stronger  improvement  was obtained for  the above matrix  size with GTX 660 

GPU: from 69.1 to 41.4 s and from 52.7 to 12.9 s for R2014a + gpuArray + DP (dashed 

yellow line), R2015a + gpuArray + DP (dashed brown line), R2014a + gpuArray + SP 

(dashed green line) and R2015a + gpuArray + SP (dashed light blue line), respectively. 

The latter configuration outperformed R2010a + CULA + SP (27.5 s, dashed red line) 

owing to a more pronounced GPU utilisation during SVD. Despite SP was faster than 

DP, the DP / SP = 1 / 24 ratio was not respected. However, SVD algorithm was strongly 

optimised  in  R2015a + gpuArray  against  R2014a + gpuArray.  While  Core i5  4670K 

CPU remained more efficient for matrices up to 1025 × 1024 = 1.0e6 points, GTX 660 

GPU outperformed it in SP mode for larger matrices. The obtained computation times 

under Matlab R2015a are thus very good, both on CPU and GPU and were better than 

under Java.

Matlab GPUBench

The cross in computation time between CPU and GPU was further investigated with 

GPUBench v1p7 (87). This code compared CPU and GPU performance against matrix 

size for matrix-vector  left  division,  which is  a linear  equations system solver.  Such 

computation  gives  much  less  peak  SP and  DP float  performance  than  reported  in 

Table 2, and is rather compute-bond than memory-bound. This benchmark involves lots 

of matrix-vector operations as SVD does. For both 2008 and 2013 computers, a crossing 

was visible between CPU and GPU in SP mode (Figure 4c). This was explained by the 

time  needed  for  data  goings  and comings  between  processor  and  graphic  card  and 

between graphic card core and its memory (Figure  2a). This is a hardware limitation. 

Interestingly, the cross appeared in the same matrix size range (1e5 to 1e7) than the one 

observed for SVD (Figures  4a and 4b). However, its position strongly depends on the 
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algorithm used and on the relative float performance of CPU and GPU. Low-end GPU 

are thus not recommended as better results are obtained with CPU. In DP mode, despite 

the  half  computing  power  of  a  Core  i5  4670K against  SP,  even a  GTX 660 never 

overpassed it (not shown).

Similarly  to  Java,  matrix  size  under  Matlab  is  limited  by  host  and  device 

memory. Nevertheless, memory consumption under Matlab is improved over Java as no 

overhead is  present  during low-rank approximation,  pushing away maximum matrix 

size. Additionally,  host memory amount is considerably reduced, down to be almost 

identical  to  device  memory  one.  A GPU with  2 GB of  memory  is  thus  limited  to 

matrices of 7169 × 7168 = 5.1e7 points.

In this section, we highlighted that the divide and conquer algorithm decrease 

SVD computation time by a factor of nine.  SP gives an additional  factor  of two in 

computation  time  on  CPU,  being  faster  than  GPU  for  matrices  smaller  than 

1025 × 1024 = 1.0e6  points  (Matlab  R2014a  vs. R2010a).  Despite  the  strong 

improvement for SVD on CPU, middle-range GPU remains relevant in SP mode for 

matrices above this size, up to the GPU memory limit (see previous paragraph). For 

legacy hardware dating from 2008, the best compromise is to use Matlab R2010a and 

CULA free R14 with SP. For hardware dating from 2013, the best choice is to use the 

most recent Matlab version with SP and gpuArray function. CPU computation should 

especially be avoided on Matlab R2010a as evidenced by the red arrows on Figures 4a 

and 4b. Matlab R2014a is not recommended neither for GPU. Next step was to focus on 

the  libraries  used  and their  call  to  hardware  instructions,  which  we explored  under 

Python.
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Influence of libraries and hardware instructions under Python

According to  Figure  2a,  software  level  is  divided in  algorithms and libraries.  After 

changing the algorithms, i.e. the involved mathematical functions, we were interested in 

the  underlying libraries,  i.e. the  link  between software  level  and hardware  level.  A 

library is a collection of functions that consists of pre-written optimised code. A single 

library can be called by multiple software or by other libraries. Usually, SVD first calls 

LAPACK  (Linear  Algebra  PACKage)  (88) which  itself  calls  BLAS  (Basic  Linear 

Algebra Subroutines) (89). While LAPACK is a high-level library, BLAS is a low-level 

one, optimised by CPU hardware specialists  (90). On GPU, CULA (60) is a unified 

BLAS/LAPACK package based on nvidia CUDA technology (43).

ATLAS, OpenBLAS and MKL libraries

Two libraries are available for SVD on CPU under Python: NumPy and SciPy. Those 

packages  provide  algorithms  which  are  linked  to  low-level  libraries.  Under  Linux 

Fedora  22,  ATLAS  (69) was  the  default2.  It  was  possible  to  replace  it  either  with 

OpenBLAS  (70) or with MKL (91). Results for a matrix size of 1025 × 1024 = 1.0e6 

points are presented on Figure 5a for our reference computer with a Core 2 Quad Q8200 

and  a  GTX  260  (2008).  First,  we  noticed  that  decreased  computation  times  were 

obtained when moving from ATLAS (left column) to OpenBLAS (middle column) and 

MKL (right column). While OpenBLAS improved only Scipy results, MKL was almost 

twice faster than OpenBLAS for both Numpy and Scipy. Secondly, with ATLAS (left 

column), SciPy computation times (yellow and green lines) were longer than NumPy 

ones (blue and red lines), both for DP and SP. This behaviour was surprising as SciPy 

was intended to do some scientific calculation. It may be improved in a newer ATLAS 

2 NumPy library can be verified using ‘numpy.show_config()’.
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version. Third, for all libraries tested, no performance increase was visible with NumPy 

when changing from DP (blue  line)  to  SP (red line),  which  may indicate  a  bug of 

NumPy. On the contrary, SciPy + SP computation times (green line) were almost half 

DP ones (yellow line), as expected from DP / SP computing power ratio. Finally, for this 

small matrix of 1025 × 1024 = 1.0e6 points, and no matter if ATLAS, OpenBLAS or 

MKL library was installed,  CULA + SP (hatched red line) was slower on GPU than 

MKL + SciPy + SP on CPU.

Figure  5: Computation times for  SVD under Python with influence of libraries and 

hardware optimisations for a matrix size of 1025 × 1024 = 1.0e6 points. a) C2Q Q8200 

+ GTX 260 (2008) under Linux. b) i5 4670K + GTX 660 (2013) under Windows.
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SSE and AVX hardware instructions

Despite MKL seemed very promising, it was not the only factor changing in the above 

experiment  as  the  implemented  hardware  optimisations  changed  from  SSE23 to 

SSE4.14.  SSE  stands  for  Streaming  SIMD  Extensions  and  its  number  reflects  the 

version used. SIMD are embedded capabilities on CPU. Since 2008, a new family of 

instructions  is  available,  named  Advanced  Vector  Extensions  (AVX).  Even  if  the 

processor support them, the library does not necessarily call them. A history of SIMD 

development  is  available  in  reference  (51).  Under  windows,  NumPy  and  SciPy 

superpack provided options to selectively use no SSE or SSE35. Results are presented 

on Figure 5b for our reference computer with a Core i5 4670K and a GTX 660 (2013). 

When moving from no SSE (left column) to SSE3 (middle column), computation times 

were divided by three with an additional gain for SP. Moreover, when using both MKL 

and AVX2, a huge performance was obtained, outperforming GPU computation with 

CULA + SP (hatched red line).

As underlined here, the time needed to perform SVD was impressively reduced 

by a factor of 38 on the same CPU under Python, by optimising the used libraries and 

their  hardware calls.  Indeed, decomposition of a matrix of size 1025 × 1024 = 1.0e6 

points  was done with SciPy in 7.6 s  without  optimisations and in  0.2 s  using MKL 

library and AVX2 instructions.

3 SSE2  instruction  can  be  checked  with  ‘objdump  -d 
/lib64/python/site-packages/numpy/core/*.so | grep -i ADDPD’.

4 NumPy  and  SciPy  are  compiled  with  ‘-xHost’  option  enabling  the  highest  SIMD. 
instruction set available, which is SSE4.1 on a Core 2 Quad Q8200.

5 No SSE option is ‘numpy-1.10.1-win32-superpack-python2.7.exe /arch nosse’.

25



Comparison of Java, Matlab and Python

Computation times

In previous sections,  Java,  Matlab and Python software were used for their  specific 

testing capabilities. But how do they compare to each other?  In order to answer this 

question, Figure 6 shows SVD computation times for a matrix of 1025 × 1024 = 1.0e6 

points,  which  is  the  maximum  size  for  Java  32 bits  CPU  application.  Similar 

conclusions  were  raised  for  our  two  reference  computers  (2008  and  2013).  The 

measured computation times were grouped into three categories: unoptimised CPU (in 

plain blue), GPU (in hatched red) and optimised CPU (in plain red), from the slowest to  

the fastest.  The first group consisted of Java CPU, Matlab R2010a and Python with 

default  configuration.  The  second  group contained  Java  GPU,  Matlab  R2010a with 

CULA or Matlab R2015a with gpuArray, depending on GPU generation, and of Python 

with CULA. The third group referred to a recent version of Matlab and to compiled 

Python, both with MKL library and all available SIMD instructions activated6. For this 

small matrix of 1025 × 1024 = 1.0e6 points, the CPU outperformed the GPU, due to 

data transfer delays limiting GPU efficiency. However, for larger matrices, computation 

was faster on GPU.

Comparing Java CPU and Python with MKL, there was a gain of 100 on the 

same CPU. This was explained as follows:

• a factor of 9 using the divide and conquer algorithm

• a factor of 3 using hardware instructions such as SSE3 or AVX2

• a factor of 2 using MKL library

• a factor of 2 using single precision instead of double precision

6 ‘version('-blas')’ under Matlab gives MKL 11.0.5 for R2014a and MKL 11.1.1 for R2015a.
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Figure  6:  Comparison of  Java,  Matlab and Python SVD computation  times  for  a 

matrix size of 1025 × 1024 = 1.0e6 points, in logarithmic scale. a) C2Q Q8200 + GTX 

260 (2008) under Linux. b) i5 4670K + GTX 660 (2013) under Windows.

Maximum matrix size

This major time improvement raise the question of the absolute maximum matrix size 

that  could  be  computed  using  SVD and  low-rank  approximation.  As  underlined  in 

section “Java GPU performance indicator”, the limiting parameter is memory, both on 

GPU device side and on CPU host side. The crucial point is to use 64 bits applications 

and a GPU with as much memory as possible. Nevertheless, this will depend on the way 

memory is allocated and released during SVD process. Our late investigations,  on a 

GTX 1070 with 8 GB of memory and 7040 SP GFLOPS, gave the following maxima on 
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our  87Sr FID. The computation times were the sum of SVD and low-rank steps.  To 

maximize the latter, the operation was performed with all singular values, that is to say 

without any denoising.

• Java GPU: 9217 × 9216 = 8.5e7 complex points in 150 + 32 = 182 s.

• Matlab  R2018a + gpuArray + SP:  12289 × 12288 = 1.5e8  complex  points  in 

188 + 4 = 192 s.

• Python + CULA + SP:  15219 × 15218 = 2.3e8  complex  points  in 

574 + 6 = 600 s.

Under Python, it was thus possible to apply SVD on the full  87Sr FID, without 

any  truncation.  For  comparison,  a  Nvidia  P100  GPU,  with  4670 DP GFLOPS  and 

16 GB of memory, completed the full SVD of a 20000 × 20000 = 4.0e8 real matrix in 

90 s,  with  a  highly  optimised  CPU-GPU  algorithm  (46).  This  result  was  really 

impressive as the authors obtained a faster computation on a much larger matrix with 

less computing power and double precision. There is thus plenty of place to improve 

SVD denoising.

Directly comparing Java, Matlab and Python was a difficult task as they were 

not optimised in the same way and it was hard to check what was hidden under the 

hood. However, Java GPU was less performant, both in speed and in matrix size. Better 

results may be obtained with optimised libraries. While Matlab was faster, the memory 

usage was limiting. Python computation was not as fast but could handle the biggest 

matrix. This time advantage for Matlab was explained by a better CPU usage during 

SVD on GPU. However memory was more finely managed under Python. Our results 

suggested that the key parameter was not the software and the programming language, 

but rather the used libraries and the calls to hardware instructions.
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An additional advantage of Python is that it is free of charge and rather easy to 

program. In order to compute SVD in a minimum amount of time, we recommand to 

install a Python distribution with MKL library included, such as Anaconda (92), and to 

add the following libraries: SciPy  (73), scikit-cuda  (67), PyCUDA (68), and nmrglue 

(93) for  NMR data.  In  addition,  CULA  (60) and  CUDA toolkit  (43) packages  are 

necessary. We provide in file svd_auto.py of  (64) an optimised SVD function using 

either  the  CPU  or  the  GPU,  depending  on  the  matrix  size.  Our  tests  suggested  a 

minimum value of 4096 columns or rows to switch from the CPU to the GPU. This 

default value will depend on the hardware used and can be checked by running directly 

the program. The code is designed to be as simple as possible, with only one necessary 

parameter, namely the matrix two-dimensional array. Automatic thresholding is applied 

using Malinowski’s significant level indicator (32). This SVD function is also suitable 

to be used in PCA and related data mining techniques. In addition, we provide a second 

program (file denoise_nmr.py of  (64)), in charge of importing and exporting Bruker 

NMR data  and to  prepare  the  matrix  transferred  to  SVD program.  Again,  the  only 

requested parameter is the data directory.

Conclusion

This article separated in two parts focussed on SVD, which is used both for spectra 

denoising  and  as  part  of  PCA data  mining.  In  the  first  part,  we  gave  theoretical 

background and found the minimum experimental signal-to-noise ratio needed to have a 

correct  denoised  spectrum.  We highlighted  the  overestimation  of  denoised  Gaussian 

peaks.  In  this  second  part,  we  focussed  on  the  computation  time  needed  for  SVD 

treatment. While our first attempts under Java CPU were extremely slow even with a 

recent  processor,  their  counterparts  with graphic cards  were extraordinary  fast.  This 
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unexpected difference led us to check if different Matlab versions could improve this 

situation.  The divide and conquer algorithm was very helpful.  Additional tests  were 

undergone  under  Python  to  check  the  influence  of  software  libraries  and  of  SIMD 

hardware  instructions  call.  Combining  these  optimisations,  computation  times  on 

processor were even better than on graphic cards, being 100 times faster than our first 

tests under Java CPU, for a matrix of 1025 × 1024 = 1.0e6 points. Despite this approach 

is generalisable to any intensive computation,  specific time gain will  depend on the 

involved mathematical operations.  The take-home message is thus to update software 

and to use optimised libraries and especially Intel MKL if available. This choice should 

be preferred against hardware updates.

However,  for  matrix  above  4097 × 4096 = 1.7e7  points  and  middle  range 

hardware, GPU gave better results, up to GPU memory limit. We thus provided Python 

programs to apply SVD either on CPU or on GPU, and to denoise NMR FID. Further 

improvement  could  be  obtained  with  mixed  CPU/GPU  optimised  code,  i.e. hybrid 

computing (94). However, such an approach is not suitable for non-computer-scientists 

people. Using clMAGMA library (95), combining divide and conquer on both CPU and 

GPU could be a good alternative (96). In this case, it would be possible not only to use 

Nvidia GPU with CUDA but also AMD GPU with OpenCL.

This  study  has  given  strong  background  and  optimisations  for  experiments 

involving SVD, either for denoising or for PCA. It may thus help scientists who want to  

use efficiently this technique, which is expected to be widely used in the forthcoming 

years.

Supplementary material

Programs source codes are available online in (64).
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