C. Bonhomme, C. Gervais, and D. Laurencin, Recent NMR developments applied to organic-inorganic materials, Prog. Nucl. Magn. Reson. Spectrosc, vol.77, pp.1-48, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00881233

R. S. Das and Y. K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications, Vib. Spectrosc, vol.57, issue.2, pp.163-176, 2011.
DOI : 10.1016/j.vibspec.2011.08.003

M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, 2008.

R. Gautam, A. Samuel, S. Sil, D. Chaturvedi, A. Dutta et al., Raman and mid-infrared spectroscopic imaging: applications and advancements, Curr. Sci, vol.108, issue.3, pp.341-356, 2015.

G. Laurent, W. Woelffel, V. Barret-vivin, E. Gouillart, and C. Bonhomme, Denoising applied to spectroscopies -part I: concept and limits, Appl. Spectrosc. Rev. accepted
DOI : 10.1080/05704928.2018.1523183

URL : https://hal.archives-ouvertes.fr/hal-01879736

M. C. Tayler, S. Meerten, ). G. Bas, . Van, A. P. Kentgens et al., Analysis of mass-limited mixtures using supercritical-fluid chromatography and microcoil NMR, Analyst, vol.140, issue.18, pp.6217-6221, 2015.
DOI : 10.1039/c5an00772k

URL : https://repository.ubn.ru.nl/bitstream/2066/149607/1/149607.pdf

C. Cardell and I. Guerra, An overview of emerging hyphenated SEM-EDX and Raman spectroscopy systems: applications in life, environmental and materials sciences, TrAC Trends Anal. Chem, vol.77, pp.156-166, 2016.

M. R. Ali, Y. Wu, T. Han, X. Zang, H. Xiao et al., Simultaneous time-dependent surface-enhanced raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy, J. Am. Chem. Soc, vol.138, issue.47, pp.15434-15442, 2016.
DOI : 10.1021/jacs.6b08787

J. Marchand, E. Martineau, Y. Guitton, G. Dervilly-pinel, and P. Giraudeau, Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics, Curr. Opin. Biotechnol, vol.43, pp.49-55, 2017.
DOI : 10.1016/j.copbio.2016.08.004

URL : https://hal.archives-ouvertes.fr/hal-02141306

P. Gemperline, Practical guide to chemometrics, 2006.

W. Elmi-rayaleh, Extraction des connaissances en imagerie microspectrométrique par analyse chimiométrique : application à la caractérisation des constituants d'un calcul urinaire, Université des sciences et technologies de Lille 1, 2006.

X. Chen, M. Vorvoreanu, and K. Madhavan, Mining social media data for understanding students' learning experiences, IEEE Trans. Learn. Technol, vol.7, issue.3, pp.246-259, 2014.
DOI : 10.1109/tlt.2013.2296520

URL : https://doi.org/10.1109/tlt.2013.2296520

L. Wang, X. Dong, X. Cheng, L. , and S. , An improved coupled dictionary and multi-norm constraint fusion method for CT/MR medical images, Multimed. Tools Appl, pp.1-17, 2018.
DOI : 10.1007/s11042-018-5907-7

S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemom. Intell. Lab. Syst, vol.2, issue.1-3, pp.37-52, 1987.

W. Wu and R. Manne, Fast regression methods in a Lanczos (or PLS-1) basis. Theory and applications, Chemom. Intell. Lab. Syst, vol.51, issue.2, pp.145-161, 2000.
DOI : 10.1016/s0169-7439(00)00063-0

P. Geladi and B. R. Kowalski, Partial least-squares regression: a tutorial, Anal. Chim. Acta, vol.185, pp.1-17, 1986.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa et al., A tutorial review: metabolomics and partial least squaresdiscriminant analysis -a marriage of convenience or a shotgun wedding, Anal. Chim. Acta, vol.879, pp.10-23, 2015.

P. Comon, Independent component analysis, A new concept? Signal Process, vol.36, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

URL : https://hal.archives-ouvertes.fr/hal-00417283/file/como94-SP%20%281%29.pdf

W. Woelffel, C. Claireaux, M. J. Toplis, E. Burov, É. Barthel et al., Analysis of soda-lime glasses using non-negative matrix factor deconvolution of Raman spectra, J. NonCryst. Solids, vol.428, pp.121-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191795

Y. B. Monakhova, R. Godelmann, T. Kuballa, S. P. Mushtakova, R. et al., Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): application to NMR fingerprinting of wine, Talanta, vol.141, pp.60-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251886

C. Maione and R. M. Barbosa, Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: a review, Crit. Rev. Food Sci. Nutr, pp.1-12, 2018.

M. Wang, V. Raman, J. Zhao, B. Avula, Y. Wang et al., Application of GC/Q-TOF combined with advanced data mining and chemometric tools in the characterization and quality control of bay leaves, Planta Med, 2018.

D. Vimalajeewa, D. Berry, E. Robson, and C. Kulatunga, Evaluation of non-linearity in MIR spectroscopic data for compressed learning, IEEE International Conference on Data Mining Workshops (ICDMW), 2017.

F. Othman, M. S. Chowdhury, W. Z. Wan-jaafar, E. M. Faresh, and S. M. Shirazi, Assessing risk and sources of heavy metals in a tropical river basin: a case study of the Selangor river, Malaysia. Pol. J. Environ. Stud, vol.27, issue.4, pp.1659-1671, 2018.

S. J. Orfanidis, . Svd, . Pca, and C. Klt, , p.14, 2002.

J. Shlens, A tutorial on principal component analysis, p.14, 2014.

D. W. Tufts, R. Kumaresan, and I. Kirsteins, Data adaptive signal estimation by singular value decomposition of a data matrix, Proc. IEEE, vol.70, issue.6, pp.684-685, 1982.

J. A. Cadzow, Signal enhancement -a composite property mapping algorithm, IEEE Trans. Acoust. Speech Signal Process, vol.36, issue.1, pp.49-62, 1988.

G. Laurent, SVD Performances to denoise NMR and Raman spectra, 2016.

D. W. Tufts and A. A. Shah, Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix, IEEE Trans. Signal Process, vol.41, issue.4, pp.1716-1721, 1993.

G. Heinig and K. Rost, Toeplitz and Hankel matrices, Algebraic methods for Toeplitz-like matrices and operators, pp.9-135, 1984.
DOI : 10.1007/978-3-0348-6241-7_1

E. R. Malinowski, Factor analysis in chemistry, 2002.

J. R. Cavallaro and F. T. Luk, CORDIC arithmetic for an SVD processor, J. Parallel Distrib. Comput, vol.5, issue.3, pp.271-290, 1988.
DOI : 10.1109/arith.1987.6158686

URL : https://scholarship.rice.edu/bitstream/1911/19758/1/Cav1990May1CORDICArit.PDF

F. Vogt and M. Tacke, Fast principal component analysis of large data sets, Chemom. Intell. Lab. Syst, vol.59, issue.1-2, pp.1-18, 2001.

M. Gu and S. Eisenstat, A Divide-and-Conquer Algorithm for the Bidiagonal SVD, SIAM J. Matrix Anal. Appl, vol.16, issue.1, pp.79-92, 1995.

N. Halko, P. Martinsson, and J. Tropp, Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Rev, vol.53, issue.2, pp.217-288, 2011.

L. Condat and A. Hirabayashi, Cadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurements, Sampl. Theory Signal Image Process, vol.14, issue.1, pp.17-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00759253

M. Bourgoin, E. Chailloux, and J. Lamotte, High level data structures for GPGPU programming in a statically typed language, Int. J. Parallel Program, vol.45, issue.2, pp.242-261, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01320488

M. Andrecut, Parallel GPU implementation of iterative PCA algorithms, J. Comput. Biol, vol.16, issue.11, pp.1593-1599, 2008.

S. Lahabar and P. J. Narayanan, Singular value decomposition on GPU using CUDA, IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2009.

V. Novakovic and S. Singer, A GPU-based hyperbolic SVD algorithm, BIT Numer. Math, vol.51, issue.4, pp.1009-1030, 2011.

P. Irofti and B. Dumitrescu, GPU parallel implementation of the approximate K-SVD algorithm using OpenCL, 22nd European Signal Processing Conference (EUSIPCO), 2014.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, Scalable parallel programming with, CUDA. Queue, vol.6, issue.2, pp.40-53, 2008.

. Khronos-group, OpenCL parallel computing for heterogeneous devices, IEEE Hot Chips 21 Symposium (HCS), 2009.

J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek et al., Accelerating numerical dense linear algebra calculations with GPUs, Numerical Computations with GPUs, pp.3-28, 2014.

M. Gates, S. Tomov, and J. Dongarra, Accelerating the SVD two stage bidiagonal reduction and divide and conquer using GPUs, Parallel Comput, vol.74, pp.3-18, 2018.

G. Xie and Y. Zhang, A Few of the Most Popular Models for Heterogeneous Parallel Programming, 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2017.

P. P. Man, C. Bonhomme, and F. Babonneau, Denoising NMR timedomain signal by singular-value decomposition accelerated by graphics processing units, Solid State Nucl. Magn. Reson, pp.28-34, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01275072

P. P. Man, Java application for FID denoising with SVD, p.14, 2012.

P. P. Man, Graphic processing unit (GPU), 2012 SVD Java 7 application for FID denoising, p.14, 2012.

J. Hofmann, J. Treibig, G. Hager, and G. Wellein, Comparing the performance of different x86 SIMD instruction sets for a medical imaging application on modern multi-and manycore chips, Proceedings of the 2014 Workshop on Programming Models for SIMD/Vector Processing, 2014.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez et al., Hydrophobic, antireflective, self-cleaning, and antifogging sol?gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells, Chem. Mater, vol.22, issue.15, pp.4406-4413, 2010.

W. J. Malfait and W. E. Halter, Increased 29 Si NMR sensitivity in glasses with a Carr-Purcell-Meiboom-Gill echotrain, J. Non-Cryst. Solids, vol.354, issue.34, pp.4107-4114, 2008.

D. Laurencin, F. Ribot, C. Gervais, A. J. Wright, A. R. Baker et al., Sr, 119 Sn, 127 I single and { 1 H/ 19 F}-double resonance solidstate NMR experiments: application to inorganic materials and nanobuilding blocks, ChemistrySelect, vol.87, issue.15, pp.4509-4519, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01378175

D. Iuga, H. Schäfer, R. Verhagen, and A. P. Kentgens, Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems, J. Magn. Reson, vol.147, issue.2, pp.192-209, 2000.

R. W. Schurko, Ultra-wideline solid-state NMR spectroscopy, TDR registry keys. Available at, vol.46, p.14, 2013.

G. Van-rossum, Python Tutorial, p.14, 1995.

G. W. Stewart, Jampack: a Java matrix package, p.14, 2018.

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis, CULA: hybrid GPU accelerated linear algebra routines, Proc. SPIE 7705, Modeling and Simulation for Defense Systems and Applications V, 2010.

P. Javin, What is the maximum Heap Size of 32 bit or 64-bit JVM in Windows and Linux, p.14, 2013.

G. Laurent, SVD under Matlab with CULA link, 2015.

J. D. Van-beek, matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab®, J. Magn. Reson, vol.187, issue.1, pp.19-26, 2007.

G. Laurent, P. Gilles, W. Woelffel, V. Barret-vivin, E. Gouillart et al., Denoising applied to spectroscopies: parts I and IIprograms and datas, p.30, 2018.

T. E. Oliphant, A guide to NumPy, 2006.

E. Jones, T. Oliphant, and P. Peterson, SciPy: open source scientific tools for Python, 2001.

L. E. Givon, T. Unterthiner, N. B. Erichson, D. W. Chiang, E. Larson et al., , 2015.

A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov et al., PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation, Parallel Comput, vol.38, issue.3, pp.157-174, 2012.

R. C. Whaley and J. Dongarra, Automatically Tuned Linear Algebra Software, 1997.

Z. Xianyi, W. Qian, Y. , and Z. , Model-driven level 3 BLAS performance optimization on Loongson 3A processor, IEEE 18th International Conference on Parallel and Distributed Systems, 2012.

J. Gehrcke, Building NumPy and SciPy with Intel compilers and Intel MKL on a 64 bit machine, 2014.

. Scipy, Scientific library for Python, 2015.

C. Gohlke, Python extension packages for windows, 2018.

V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim et al., Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU, Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA '10, 2010.

R. Dolbeau, Theoretical peak FLOPS per instruction set: a tutorial, J. Supercomput, vol.74, issue.3, pp.1341-1377, 2018.

N. Whitehead and A. Fit-florea, Precision & performance: floating point and IEEE 754 compliance for NVIDIA GPUs, p.14, 2017.

G. W. Stewart, Perturbation theory for the singular value decomposition, p.15, 1990.

G. E. Plassman, A survey of singular value decomposition methods and performance comparison of some available serial codes, 2005.

P. Läuchli, Jordan-elimination und ausgleichung nach kleinsten quadraten, Numer. Math, vol.3, issue.1, pp.226-240, 1961.

G. Golub and W. Kahan, Calculating the singular values and pseudoinverse of a matrix, J. Soc. Ind. Appl. Math. Ser. B Numer. Anal, vol.2, issue.2, pp.205-224, 1965.

G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math, vol.14, issue.5, pp.403-420, 1970.

J. J. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math, vol.36, issue.2, pp.177-195, 1980.

P. R. Willems, B. Lang, and C. Vömel, Computing the bidiagonal SVD using multiple relatively robust representations, SIAM J. Matrix Anal. Appl, vol.28, issue.4, pp.907-926, 2006.

J. Demmel and K. Veseli?, Jacobi's method is more accurate than QR, SIAM J. Matrix Anal. Appl, vol.13, issue.4, pp.1204-1245, 1992.

M. Gu, J. Demmel, and I. Dhillon, Efficient computation of the singular value decomposition with applications to least squares problems, p.14, 1994.

, MathWorks parallel computing toolbox team. (2012) GPUBench. Available at, 2018.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel et al., LAPACK Users' Guide, 1999.

J. J. Dongarra, J. Du-croz, S. Hammarling, and I. S. Duff, A set of level 3 basic linear algebra subprograms, ACM Trans Math Softw, vol.16, issue.1, pp.1-17, 1990.

L. Hogben, Handbook of Linear Algebra, 2006.

V. Nguyen, Optimized R and Python: standard BLAS vs. ATLAS vs. OpenBLAS vs. MKL. Available at, 2014.

. Anaconda, Anaconda software distribution, 2016.

J. J. Helmus and C. P. Jaroniec, Nmrglue: an open source Python package for the analysis of multidimensional NMR data, J. Biomol. NMR, vol.55, issue.4, pp.355-367, 2013.

D. Liu, R. Li, D. J. Lilja, X. , and W. , A divide-and-conquer approach for solving singular value decomposition on a heterogeneous system, Proceedings of the ACM International Conference on Computing Frontiers, 2013.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson et al., From CUDA to OpenCL: Towards a performance-portable solution for multiplatform GPU programming, Parallel Comput, vol.38, issue.8, pp.391-407, 2012.

A. Haidar, C. Cao, A. Yarkhan, P. Luszczek, S. Tomov et al., Unified development for mixed multi-GPU and multi-coprocessor environments using a lightweight runtime environment. Parallel and distributed processing symposium, IEEE 28th international, 2014.