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ABSTRACT

The problem of keyword spotting i.e. identifying key-
words in a real-time audio stream is mainly solved by apply-
ing a neural network over successive sliding windows. Due to
the difficulty of the task, baseline models are usually large, re-
sulting in a high computational cost and energy consumption
level. We propose a new method called SANAS (Stochastic
Adaptive Neural Architecture Search) which is able to adapt
the architecture of the neural network on-the-fly at inference
time such that small architectures will be used when the
stream is easy to process (silence, low noise, ...) and bigger
networks will be used when the task becomes more difficult.
We show that this adaptive model can be learned end-to-end
by optimizing a trade-off between the prediction performance
and the average computational cost per unit of time. Exper-
iments on the Speech Commands dataset [1] show that this
approach leads to a high recognition level while being much
faster (and/or energy saving) than classical approaches where
the network architecture is static.

Index Terms— Neural Architecture Search, Keyword
Spotting, Deep Learning, Budgeted Learning

1. INTRODUCTION AND RELATED WORK

Neural Networks (NN) are known to obtain very high recog-
nition rates on a large variety of tasks, and especially over
signal-based problems like speech recognition [2], image
classification [3, 4], etc. However these models are usually
composed of millions of parameters involved in millions of
operations and have high computational and energy costs at
prediction time. There is thus a need to increase their pro-
cessing speed and reduce their energy footprint.

From the NN point of view, this problem is often viewed
as a problem of network architecture discovery and solved
with Neural Architecture Search (NAS) methods in which the
search is guided by a trade-off between prediction quality and
prediction cost [5, 6, 7]. Recent approaches involve for in-
stance Genetic Algorithms [8, 4] or Reinforcement Learning
[9, 10]. While these models often rely on expensive training

procedures where multiple architectures are trained, some re-
cent works have proposed to simultaneously discover the ar-
chitecture of the network while learning its parameters [5, 6]
resulting in models that are fast both at training and at infer-
ence time. But in all these works, the discovered architecture
is static i.e. the same NN being re-used for all the predictions.

When dealing with streams of information, reducing the
computational and energy costs is of crucial importance. For
instance, let us consider the keyword spotting1 problem which
is the focus of this paper. It consists in detecting keywords in
an audio stream and is particularly relevant for virtual assis-
tants which must continuously listen to their environments to
spot user interaction requests. This requires detecting when
a word is pronounced, which word has been pronounced and
able to run quickly on resource-limited devices. Some recent
works [11, 12, 13] proposed to use convolutional neural net-
works (CNN) in this streaming context, applying a particular
model to successive sliding windows [11, 13] or combining
CNNs with recurrent neural networks (RNN) to keep track of
the context [12]. In such cases, the resulting system spends
the same amount of time to process each audio frame, irre-
spective of the content of the frame or its context.

Our conjecture is that, when dealing with streams of infor-
mation, a model able to adapt its architecture to the difficulty
of the prediction problem at each timestep – i.e. a small ar-
chitecture being used when the prediction is easy, and a larger
architecture being used when the prediction is more difficult
– would be more efficient than a static model, particularly
in terms of computation or energy consumption. To achieve
this goal, we propose the SANAS algorithm (Section 2.3):
it is, as far as we know, the first architecture search method
producing a system which dynamically adapts the architec-
ture of a neural network during prediction at each timestep
and which is learned end-to-end by minimizing a trade-off
between computation cost and prediction loss. After learn-
ing, our method can process audio streams at a higher speed
than classical static methods while keeping a high recogni-
tion rate, spending more prediction time on complex signal
windows and less time on easier ones (see Section 3).

1See Section 3 for a formal description.



2. ADAPTIVE NEURAL ARCHITECTURE SEARCH

2.1. Problem Definition

We consider the generic problem of stream labeling where, at
each timestep, the system receives a datapoint denoted xt and
produces an output label yt. In the case of audio streams, xt
is usually a time-frequency feature map, and yt is the pres-
ence or absence of a given keyword. In classical approaches,
the output label yt is predicted using a neural network whose
architecture2 is denoted A and whose parameters are θ. We
consider in this paper the recurrent modeling scheme where
the context x1, y1, ....., xt−1, yt−1 is encoded using a latent
representation zt, such that the prediction at time t is made
computing f(zt, xt, θ,A), zt being updated at each timestep
such that zt+1 = g(zt, xt, θ,A) - note that g and f can share
some common computations.

For a particular architectureA, the parameters are learned
over a training set of labeled sequences {(xi, yi)}i∈[1,N ], N
being the size of the training set, by solving:

θ∗ = arg min
θ

1

N

N∑
i=1

[#xi∑
t=1

∆(f(zt, xt, θ,A), yt)
]

where #xi is the length of sequence xi, and ∆ a differentiable
loss function. At inference, given a new stream x, each label
ŷt is predicted by computing f(x1, ŷ1, ....., ˆyt−1, xt, θ

∗,A),
where ŷ1 . . . ˆyt−1 are the predictions of the model at previous
timesteps. In that case, the computation cost of each predic-
tion step solely depends on the architecture and is denoted
C(A).

2.2. Stochastic Adaptive Architecture Search: Principles

We propose now a different setting where the architecture of
the model can change at each timestep depending on the con-
text of the prediction zt. At time t, in addition to producing a
distribution over possible labels, our model also maintains a
distribution over possible architectures denoted P (At|zt, θ).
The prediction yt being now made following3 f(zt, xt, θ,At)
and the context update being zt+1 = g(zt, xt, θ,At). In that
case, the cost of a prediction at time t is now C(At), which
also includes the computation of the architecture distribution
P (At|zt, θ). It is important to note that, since the architec-
ture At is chosen by the model, it has the possibility to learn
to control this cost itself. A budgeted learning problem can
thus be defined as minimizing a trade-off between prediction
loss and average cost. Considering a labeled sequence (x, y),
this trade-off is defined as :

L(x, y, θ) = E{At}
[ #x∑
t=1

[∆(f(zt, xt, θ,At), yt) + λC(At)]
]

2a precise definition of the notion of architecture is given further.
3f is usually a distribution over possible labels.
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Fig. 1. SANAS Architecture. At timestep t, the distribution
Γt is generated from the previous hidden state, Γt = h(zt, θ).
A discrete architecture Ht is then sampled from Γt and eval-
uated over the input xt. This evaluation gives both a fea-
ture vector Φ(xt, θ, E ◦Ht) to compute the next hidden state,
and the prediction of the model ŷt using f(zt, xt, θ, E ◦Ht).
Dashed edges represent sampling operations. At inference,
the architecture which has the highest probability is chosen at
each timestep.

where A1, ...,A#x are sampled following P (At|zt, θ) and λ
controls the trade-off between cost and prediction efficiency.
Considering that P (At|zt, θ) is differentiable, and following
the derivation schema proposed in [14] or [5], this cost can be
minimized using the Monte-Carlo estimation of the gradient.
Given one sample of architectures A1, ...,A#x, the gradient
can be approximated by:

∇θL(x, y, θ) ≈
( #x∑
t=1

∇θ logP (At|zt, θ)
)
L(x, y,A1, ...,A#x, θ)

+

#x∑
t=1

∇θ∆(f(zt, xt, θ,At), yt)

where

L(x, y,A1, ...,A#x, θ) =

#x∑
t=1

[∆(f(zt, xt, θ,At), yt)+λC(At)]

In practice, a variance correcting value is used in this gradient
formulation to accelerate the learning as explained in [15, 16].

2.3. The SANAS Model

We now instantiate the previous generic principles in a con-
crete model where the architecture search is cast into a sub-
graph discovery in a large graph representing the search space
called Super-Network as in [5].

NAS with Super-Networks (static case): A Super-
Network is a directed acyclic graph of layers L = {l1, ...ln},
of edges E ∈ {0, 1}n×n and where each existing edge con-
necting layers i and j (ei,j = 1) is associated with a (small)
neural network fi,j . The layer l1 is the input layer while ln is
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Fig. 2. Example of labeling using the method presented in
section 3. To build the dataset, each word (green) in mixed
with a random background noise (red). The signal is then
split in 1s frames every 200ms. When a frame contains at
least 50% of the orginal word audio clip, it is labeled with the
corresponding word (frame B and C – frame A is labeled as
bg-noise ). Note that this process may result in noisy labelling
for very short words (see frame A and C).

the output layer. The inference of the output is made by prop-
agating the input x over the edges, and by summing, at each
layer level, the values coming from incoming edges. Given
a Super-Network, the architecture search can be made by
defining a distribution matrix Γ ∈ [0, 1]n×n that can be used
to sample edges in the network using a Bernoulli distribution.
Indeed, let us consider a binary matrix H sampled following
Γ, the matrix E ◦ H defines a sub-graph of E and corre-
sponds to a particular neural-network architecture which size
is smaller than E (◦ being the Hadamard product). Learning
Γ thus results in doing architecture search in the space of all
the possible neural networks contained in Super-Network.
At inference, the architecture with the highest probability is
chosen.

SANAS with Super-Networks: Based on the previously
described principle, our method proposes to use a RNN to
generate the architecture distribution at each timestep – see
Figure 1. Concretely, at time t, a distribution over possi-
ble sub-graphs Γt = h(zt, θ) is computed from the context
zt. This distribution is then used to sample a particular
sub-graph represented by Ht ∼ B(Γt), B being a Bernoulli
distribution. This particular sub-grap E ◦ Ht = At corre-
sponds to the architecture used at time t. Then the prediction
ŷt and the next state zt+1 are computed using the functions
f(zt, xt, θ, E◦Ht) and g(zt,Φ(xt, θ, E◦Ht), θ) respectively,
where g(zt, ., θ) is a classical RNN operator like a Gated Re-
current Unit[17] cell for instance and Φ(xt, θ, E ◦ Ht) is a
feature vector used to update the latent state and computed
using the sampled architecture At. The learning of the pa-
rameters of the proposed model relies on a gradient-descent
method based on the approximation of the gradient provided
previously, which simultaneously updates the parameters θ
and the conditional distribution over possible architectures.
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Fig. 3. SANAS architecture based on cnn-trad-fpool3 [11].
Edges between layers are sampled by the model. The high-
lighted architecture is the base model on which we have added
shortcut connections. Conv1 and Conv2 have filter sizes of
(20,8) and (10,4). Both have 64 channels and Conv1 has a
stride of 3 in the frequency domain. Linear 1,2 and the Classi-
fier have 32, 128 and 12 neurons respectively. Shortcut linears
all have 128 neurons to match the dimension of the classifier.

3. EXPERIMENTS

We train and evaluate our model using the Speech Commands
dataset [1]. It is composed of 65000 short audio clips of 30
common words. As done in [13, 18, 19], we treat this problem
as a classification task with 12 categories: ’yes’, ’no’, ’up’,
’down’, ’left’, ’right’, ’on’, ’off’, ’stop’, ’go’, ’bg-noise’ for
background noise and ’unknown’ for the remaining words.

Instead of directly classifying 1 second samples, we use
this dataset to generate between 1 and 3 second audio files
by combining a background noise coming from the dataset
with a randomly located word (see Figure 2), the signal-to-
noise ratio being randomly sampled with a minimum of 5dB.
We thus obtain a dataset of about 30,000 small files4, and
then split this dataset in train, validation and test sets using
a 80:10:10 ratio. The sequence of frames is created by tak-
ing overlapping windows of 1 second every 200ms. The in-
put features for each window are computed by extracting 40
mel-frequency spectral coefficients (MFCC) on 30ms frames
every 10ms and stacking them to create 2D time/frequency
maps. For the evaluation, we use both the prediction accu-
racy and the number of operations per frame (FLOPs) value.
The model selection is made by training multiple models, se-
lecting the best models on the validation set, and computing
their performance on the test set. Note that the ’best models’
in terms of both accuracy and FLOPs are the models located
on the pareto front of the accuracy/cost validation curve as
done for instance in [20]. These models are also evaluated
using the matched, correct, wrong and false alarm (FA) met-
rics as proposed in [1] and computed over the one hour stream
provided with the original dataset. Note that these last met-
rics are computed after using a post-processing method that
ensures a labeling consistency as described in the reference
paper.

As baseline static model, we use a standard neural net-
work architecture used for Keyword Spotting aka the cnn-
trad-fpool3 architecture proposed in [11] which consists in

4tools for building this dataset are available with the open-source code at
http://github.com/TomVeniat/SANAS



Match Correct Wrong FA FLOPs per frame
cnn-trad-fpool3

81.7% 72.8% 8.9% 0.0% 124.6M
cnn-trad-fpool3 + shortcut connections

82.9% 77.9% 5.0% 0.3% 137.3M
SANAS

61.2% 53.8% 7.3% 0.7% 519.2K
62.0% 57.3% 4.8% 0.1% 22.9M
86.5% 80.7% 5.8% 0.3% 37.7M
86.3% 80.6% 5.7% 0.2% 48.8M
81.7% 76.4% 5.3% 0.1% 94.0M
81.4% 76.3% 5.2% 0.2% 105.4M

Table 1. Evaluation of models on 1h of audio from [1] con-
taining words roughly every 3 seconds with different back-
ground noises. We use the label post processing and the
streaming metrics proposed in [1] to avoid repeated or noisy
detections. We report the performance of SANAS for differ-
ent budget constraint levels. Matched % corresponds to the
portion of words detected, either correctly (Correct %) or in-
correctly (Wrong %). FA is False Alarm.
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Fig. 4. Cost accuracy curves. Reported results are computed
on the test set using models selected by computing the Pareto
front over the validation set. Each point represents a model.

two convolutional layers followed by 3 linear layers. We then
proposed a SANAS extension of this model (see Figure 3)
with additional connections that will be adaptively activated
(or not) during the audio stream processing. In the SANAS
models, the recurrent layer g is a one-layer GRU [17] and the
function h mapping from the hidden state xt to the distribu-
tion over architecture Γt is a one-layer linear module followed
by a sigmoid activation. The models are learned using the
ADAM [21] optimizer with β1 = 0.9 and β2 = 0.999, gradi-
ent steps between 10−3 and 10−5 and λ in range [10−(m+1),
10−(m−1)] with m the order of magnitude of the cost of the
full model. Training time is reasonable and corresponds to
about 1 day on a single GPU computer.

Results obtained by various models are illustrated in Ta-
ble 1 for the one-hour test stream, and in Figure 4 on the test
evaluation set. It can be seen that, at a given level of accuracy,
the SANAS approach is able to greatly reduce the number of
FLOPs, resulting in a much more power efficient model. For
example, with an average cost of 37.7M FLOPs per frame,
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Fig. 5. Training dynamics. Average cost per output label
during training. The network is able to find an architecture
that solves the task while sampling notably cheaper architec-
tures when only background noise is present in the frames.

our model is able to match 86.5% of the words, (80.7% cor-
rectly and 5.8% wrongly) while the baseline models match
81.7% and 82.9% of the words with 72.8% and 77.9% cor-
rect predictions while having a higher budget of 124.6M and
137.3 FLOPs per frame respectively. Moreover, it is interest-
ing to see that our model also outperforms both baselines in
term of accuracy, or regarding the metrics in Table 1. This
is due to the fact that, with the added shortcut connections in
the base architecture, our model has a better expressive power.
Note that in our case, over-fitting is avoided by the cost mini-
mization term in the objective function, while it occurs when
using the complete architecture with shortcuts (see Figure 4).
Figure 5 illustrates the average cost per possible prediction
during training. It is not surprising to show that our model au-
tomatically ’decides’ to spend less time on frames containing
background noise and much more time on frames containing
words. Moreover, at convergence, the model also divides its
budget differently on the different words, for example spend-
ing less time on the yes words that are easy to detect.

4. CONCLUSION

We have proposed a new model for keyword spotting where
the recurrent network is able to automatically adapt its size
during inference depending on the difficulty of the prediction
problem at time t. This model is learned end-to-end based
on a trade-off between prediction efficiency and computation
cost and is able to find solutions that keep a high prediction
accuracy while minimizing the average computation cost per
timestep. Ongoing research includes using these methods on
larger super-networks and investigating other types of bud-
gets like memory footprint or electricity consumption on con-
nected devices.

5. ACKNOWLEDGMENTS

This work has been funded in part by grant ANR-16-CE23-
0016 “PAMELA” and grant ANR-16-CE23-0006 “Deep in
France”.



6. REFERENCES

[1] Pete Warden, “Speech commands: A dataset for
limited-vocabulary speech recognition,” CoRR, vol.
abs/1804.03209, 2018.

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Jingdong Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos, Erich
Elsen, Jesse Engel, Linxi Fan, Christopher Fougner,
Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGres-
ley, Libby Lin, Sharan Narang, Andrew Y. Ng, Sher-
jil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev
Satheesh, David Seetapun, Shubho Sengupta, Yi Wang,
Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama,
Jun Zhan, and Zhenyao Zhu, “Deep speech 2: End-to-
end speech recognition in english and mandarin,” CoRR,
vol. abs/1512.02595, 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

[4] Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le, “Regularized evolution for image classi-
fier architecture search,” CoRR, vol. abs/1802.01548,
2018.

[5] Tom Veniat and Ludovic Denoyer, “Learning
time/memory-efficient deep architectures with budgeted
super networks,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[6] Zehao Huang and Naiyan Wang, “Data-driven sparse
structure selection for deep neural networks,” CoRR,
vol. abs/1707.01213, 2017.

[7] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Tien-
Ju Yang, and Edward Choi, “Morphnet: Fast & sim-
ple resource-constrained structure learning of deep net-
works,” CoRR, vol. abs/1711.06798, 2017.

[8] Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Quoc V. Le, and Alex
Kurakin, “Large-scale evolution of image classifiers,”
CoRR, vol. abs/1703.01041, 2017.

[9] Barret Zoph and Quoc V. Le, “Neural architec-
ture search with reinforcement learning,” CoRR, vol.
abs/1611.01578, 2016.

[10] Barret Zoph, Vijay Vasudevan, Jonathon Shlens,
and Quoc V. Le, “Learning transferable architec-
tures for scalable image recognition,” CoRR, vol.
abs/1707.07012, 2017.

[11] Tara N. Sainath and Carolina Parada, “Convolutional
neural networks for small-footprint keyword spotting,”
in INTERSPEECH. 2015, pp. 1478–1482, ISCA.
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