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testing a Cognitive Control Model 
of Human Intelligence
Yu Chen1,2, Alfredo spagna3,4, Tingting Wu1, Tae Hyeong Kim1, Qiong Wu5, Caiqi Chen6, 
Yanhong Wu7,8,9 & Jin Fan1,2

The definition of human intelligence and its underlying psychological constructs have long been 
debated. Although previous studies have investigated the fundamental cognitive functions determining 
intellectual abilities, such as the broadly defined executive functions including working memory, the 
core process has yet to be identified. A potential candidate for such a role might be cognitive control, a 
psychological construct for the coordination of thoughts and actions under conditions of uncertainty. 
In this study, we tested a cognitive control model of intellectual ability by examining the association 
between cognitive control, measured by a perceptual decision-making task and by the attention 
network test, and general intelligence including components of fluid intelligence (Gf, concerning the 
ability to solve problems by abstraction) and crystalized intelligence (Gc, related to learning from prior 
knowledge and experience) measured by the Wechsler Adult Intelligence Scale. We also examined the 
potential role of cognitive control as a core process involved in another determinant of intellectual 
abilities, the working memory, measured by the N-back tasks and the working memory complex span 
tasks. The relationship among intelligence, cognitive control, and working memory was examined using 
structural equation modeling. Results showed that cognitive control shared a large amount of variance 
with working memory and both measures were strongly associated with Gf and Gc, with a stronger 
association with Gf than Gc. These findings suggest that cognitive control, serving as a core construct of 
executive functions, contributes substantially to general intellectual ability, especially fluid intelligence.

Although intelligence has been thought of as the most prominent property that makes humans unique in the 
history of biological evolution1,2, the challenges associated with capturing its ultimate nature3 have had a signifi-
cant impact on the consensus regarding its definition. The early attempt to define intelligence was conducted by 
Charles Spearman4, who hypothesized the existence of a general factor, g, as the core of all cognitive abilities. This 
unitary conception of intelligence has, however, been challenged by a variety of models of intelligence, including 
the Primary Mental Abilities5, the Structure of Intellect6, and the Theory of Multiple Intelligences7, with all of 
them proposing that intelligent behavior arises from a collection of factors, e.g., verbal comprehension, spatial 
visualization, reasoning, and processing speed. These intellectual abilities have been further synthetized as two 
components, the fluid intelligence (Gf), reflecting the ability to solve problems by abstraction and supported 
by the multiple-demand system in the brain8,9, and the crystallized intelligence (Gc), concerning the ability to 
learn from previous knowledge, with g located at the apex of this hierarchical model10–12. Most of these theories 
were derived from a psychometric approach and aimed at quantifying this psychological phenomenon, but this 
approach has been extensively challenged13–16 and the process(es) underlying the g factor remains unclear.

In contrast to looking for a unique component of intelligence, the triarchic theory of intelligence16 
defines it as comprising three components: the metacomponents, the performance components, and the 
knowledge-acquisition components. The metacomponents refer to the executive processes involved in problem 
solving, including mental manipulation and management. The performance components work as the carrier 
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to implement the outcome of metacomponents, i.e., carrying out the actions. The knowledge-acquisition com-
ponents are associated with the mental processes to obtain new information involving selectively dealing with 
relevant information and combining various pieces of information16. To some extent, the existence of a com-
mon element of information processing among these three components is indicated17, but the nature of this 
process remains unclear. More recently, the Planning, Attention-Arousal, Simultaneous and Successive (PASS) 
theory of intelligence13–15 suggested that intelligence is implemented across a variety of domains and consists of 
interdependent, but separate, functions supported by different brain areas. Specifically, the process of planning 
involves executive functions to control and organize behaviors by selecting and constructing strategies, and mon-
itoring performance; the attention-arousal process requires maintaining arousal levels and alertness, and selec-
tively focusing on relevant information; the simultaneous processing and successive processing are responsible 
for encoding, transforming, and recollecting information. Both the triarchic theory of intelligence and the PASS 
theory constitute the attempts to embrace both qualitative and quantitative perspectives, and to emphasize the 
mental processes and operations involved in the intellectual behaviors. Although contemporary theories, whether 
psychometric or cognitive, have attempted to define intelligence in terms of different components, it remains 
unclear whether a unique component is at the basis of these functions, leaving the question about the core process 
of intelligence open.

In an effort to solve this puzzled picture, prior work has proposed that working memory, a cognitive function 
comprising temporary storage spaces entangled with a central executive component in charge of the manipu-
lation of stored information18–20, might be the psychological core of the Gf 21–23. Although evidence of a strong 
relationship between measures of working memory capacity and of the Gf 23–27 exists, this result has been shown 
to reside on the shoulder of the central executive component only, while the storage component does not seem to 
correlate with the Gf 28. This evidence suggests that it is the central executive component20,29 that plays a key role 
in the relationship between working memory and the Gf. Another psychological construct that has frequently 
been related to the Gf is the broad “executive functions”, which can be divided into three sub-functions of updat-
ing, inhibiting, and shifting30,31. Updating refers to the ability to dynamically manipulate the contents of working 
memory, and it can be measured by the N-back task32, inhibiting is for the suppression of inappropriate responses, 
and it can be measured by the Stroop task33, and shifting is the switch between multiple tasks, operations, or 
mental sets, and it can be measured by the category switch task34. While the updating component has been shown 
to be strongly related to the Gf 30,35, the weaker to non-significant association between inhibiting/shifting and 
the Gf 30,35–37 may result from the fact that the tasks (e.g., the Stroop task and the category switch task) used in 
these studies may have been tapping less on the core of the executive functions34,38. We speculate that a stronger 
relationship between the executive functions and the Gf would be identified if tasks that require a greater extent 
of mental coordination, which is the function of cognitive control, were used to examine executive functions. In 
the past hundred years, a variety of tests were developed to capture the essence of intelligence, with more recent 
efforts devoted to understanding the role of abstract reasoning in the Gf 16,39,40. Abstraction has been defined as 
a solution for the new knowledge paradox41,42 emerging gradually from the coordination of the thoughts43, a 
definition that closely resembles that of cognitive control, a high-level mental operation required to coordinate 
thoughts and actions under conditions of uncertainty44–47. Cognitive control may serve as the core component 
of both working memory and executive functions and the significant relationship between working memory/
updating function and the Gf should be accounted by the common involvement of cognitive control.

The present study aimed to advance the current understanding of the role of cognitive control in human intel-
ligence. We examined the relationship between cognitive control and intellectual ability, as well as the relationship 
between cognitive control and working memory in light of their relationship with intellectual abilities. If working 
memory and cognitive control are two independent cores of intelligence, their measurements should be highly 
correlated to intellectual abilities, but not with each other. Alternatively, if cognitive control and working mem-
ory share a common process, as the core of intelligence, their estimates should share a large amount of variance 
and therefore should be significantly correlated, as well as correlated to the measures of intellectual abilities. We 
proposed that the latter case would be true, and predicted that the shared component between these constructs 
would be related to the coordination of thoughts and actions, rather than memory. Further, cognitive control 
should be more related to the construct of the Gf, rather than the Gc because the function of mental coordination 
is at the core of the Gf.

Material and Methods
Participants. Students who were taking the General Psychology (Psych101) course at Queens College, the 
City University of New York, participated in this study (n = 151) and received academic course credits for their 
participation. The study was approved by the Institutional Review Board of Queens College of the City University 
of New York, all research was performed in accordance with relevant guidelines/regulations, and written 
informed consent was obtained from each individual prior to participation. In order to rule out the influence of 
different languages on the estimation of intellectual abilities48, participants with less than 15 years of education in 
the United States (n = 41) were considered non-native speakers and excluded from further data analysis. An addi-
tional 22 participants were also excluded from further analysis due to the following performance-related reasons: 
(1) the proportion of trials with valid responses across all conditions was less than 95% in the Majority Function 
Task - Masked (n = 8); (2) the overall response accuracy in the Attention Network Test – Revised (n = 4), or in 
the 0-back condition in any of the N-back tasks was lower than 90% (n = 5); (3) the response accuracy in the dis-
tracting task in any of the working memory complex span tasks was lower than 85% (n = 5). The final sample size 
consisted of 88 participants (53 females; age: 18–31 years; mean age: 20.42 years, SD = 2.88).

Measurement of intellectual ability. Wechsler adult intelligence scale - fourth edition (WAIS-IV). The 
WAIS-IV49 was used to obtain a comprehensive assessment of participants’ general intellectual abilities through 
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the administration of the following ten core subtests: Block Design (assemble red-and-white blocks based on a 
given model-picture within time constraint), Similarities (summarize how two objects or concepts are similar), 
Digit Span (recall numbers in a forward order, a backward order, and in an ascending order), Matrix Reasoning 
(select a comparable picture for the incomplete matrix or pattern), Vocabulary (define words), Arithmetic (men-
tally solve arithmetical problems within time constraint), Symbol Search (make decision on whether a set of 
items matches with sample items within time constraint), Visual Puzzle (select components to reconstruct a given 
puzzle within time constraint), Information (answer questions regarding general knowledge), and Coding (copy 
symbols based on a key template within time constraint).

Four composite scores representing major components of intellectual abilities were derived from the following 
combinations of subtests50,51: (1) Verbal Comprehension Index (VCI), derived from the subtests of Similarities, 
Vocabulary, and Information, to represent the ability of verbal reasoning and accumulated knowledge from learn-
ing and education; (2) Perceptual Reasoning Index (PRI), derived from the subtests of Block Design, Matrix 
Reasoning, and Visual Puzzles, to represent the ability of abstract perceptual reasoning and spatial processing; (3) 
Working Memory Index (WMI), derived from the subtests of Digit Span and Arithmetic, to represent the ability 
of mentally manipulation on information stored temporarily in memory; and (4) Processing Speed Index (PSI), 
derived from the subtests of Symbol Search and Coding, to represent the ability of fluently process information, 
including visual-motor coordination and cognitive decision-making. The Full Scale Intelligence Quotient (FSIQ) 
was based on the total combined performance of VCI, PRI, WMI, and PSI, which estimates the general intellec-
tual ability.

Consistent with prior work that interpreted VCI as a measurement of verbal ability, comprehension, knowl-
edge, and crystalized intelligence52, we categorized VCI as the manifest variable of the Gc construct in the 
structural equation modeling (SEM). According to the description of composite scores in the technical and inter-
pretive manual of WAIS-IV53, PRI represents the ability of perceptual and fluid reasoning, spatial processing, and 
visual-motor integration, WMI characterizes the ability of temporary maintenance of information in memory 
while performing mental operation on it, and PSI indicates the ability of simple visual information processing, 
short-term visual memory, attention, and visual-motor coordination. These three composite scores (PRI, WMI, 
PSI) are related to the nature of the Gf, i.e., coordination of mental resources to solve abstract, novel problems54, 
and were categorized as the manifest variables of the Gf in the SEM.

Measurements of cognitive control. To measure cognitive control, we used two tasks that are theoreti-
cally independent of short- and long-term memory requirements: the backward Majority Function Task-Masked46 
(MFT-M) and the Attention Network Test-Revised (ANT-R)55,56. The MFT-M estimates the capacity of cognitive 
control (CCC) by purportedly challenging an individual’s upper limit of information processing. The ANT-R55,56 
measures the processing efficiency of cognitive control by the flanker conflict effect57.

The backward majority function task-masked (MFT-M). We used a modified version of the MFT-M that uses 
only one condition of arrow set size, i.e., five arrows as the stimuli, in order to maintain the total task dura-
tion to less than 1 hour. Other parameters were kept identical to the original version. In each trial (Fig. 1a), after 
a variable fixation period ranging between 0 and 500 ms, a set of five arrows was displayed simultaneously and 
randomly distributed at eight possible locations arranged as an octagon centered on a fixation cross, with each 
arrow pointing either left or right. The arrow congruency (the number of arrows pointing to the majority direc-
tion vs. the number of arrows pointing to the minority direction) could be 5:0, 4:1, or 3:2. After a varied exposure 
time (ET) of 250, 500, 1000, or 2000 ms (Fig. 1b), the arrow set was replaced by a mask of eight diamonds at 
the same eight possible locations, and the mask set was presented for 500 ms. Subsequently, an after-mask fixa-
tion interval ranging between 0 and 1750 ms was presented, making the total duration of the response window 
2500 ms. Participants had to make a response by clicking either the left or right mouse button to indicate the 
majority direction of the arrows presented in the set of imperative stimuli as accurately and quickly as possible. 
Responses were required to be made in all trials, with participants being instructed to guess if they were unsure 
about the correct answer, within a fixed response window of 2500 ms starting from the onset of the arrow set. 
After the response window, a feedback indicating whether the response was correct or not was shown for 750 ms, 
followed by a fixation period of 1250–1750 ms. Each trial lasted 5000 ms in total. The experimental design was, 
therefore, a 3 (Congruency) × 4 (ET) factorial design. For each block, there was only one ET condition presented 
in combination with three conditions of Congruency. The task comprised of 12 blocks (3 blocks for each ET) pre-
sented in a random order, and each block consisted 36 trials, for a total of 432 trials for the task. The total duration 
of the task was approximately 40 minutes.

Response accuracy for each condition, calculated as the percentage of correct trials, was used to estimate the 
CCC. In our previous studies46,58,59, we demonstrated that the grouping search algorithm is the most plausible 
strategy used in the Majority Function Task. With this strategy, participants keep randomly sampling 3 arrows as 
a group (majority size, Nmaj) out of 5 (total set size) until acquiring a congruent sample, i.e., all three arrows in the 
sampled group are pointing to the same direction. The average numbers of to-be-scanned arrows (N) is computed 
as Nmaj divided by the probability of obtaining a congruent group from sampling attempts (Pgroup). Corresponding 
to this strategy, the information entropy of each congruency condition is calculated as the log2 transformation of 
N, resulting in 1.58 bits for the 5:0 condition, 2.91 bits for the 4:1 condition, and 4.91 bits for the 3:2 condition, 
respectively. The information rate of each ET condition (in the unit of bits per second, bps) is calculated as the log2 
transformation of N per second, i.e., log2 (N/ET), resulting in a range of information rate between 0.59 bps and 
6.91 bps. The CCC of each participant refers to the maximum information rate that can be reliably processed. An 
individual with a high CCC can reliably handle high-level mental operations under time constraints, and there-
fore should perform better in tasks requiring cognitive control.
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Due to the influence of time constraint, i.e., the ET, in responding to the arrow set in each trial, the sampling 
process can be categorized as either voluntarily terminated (VT) or forcefully terminated (FT). For the VT trials, 
a response is made when a congruent sample is acquired, which leads to a correct response. Higher CCC, longer 
ET, and lower information entropy will result in a greater probability of VT trials. The response accuracy on the 
VT trial depends on the baseline response accuracy (p0) that can be computed as the average accuracy across all 
congruent conditions (i.e., the arrow congruency of 5:0). While for the FT trials, response is made by guessing 
because the arrow set disappears before a congruent sample is acquired, which leads to a random response. The 
probability of guessing correctly is at chance level (pguess = 0.5). The expected response accuracy (E [accuracy]) is 
computed as the sum of response accuracy on the VT and FT trials using the equation below in which C is a free 
parameter denoting the CCC. Details and derivations of this equation have been shown in our previous study46.
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Response accuracy in each condition can be predicted for a given parameter C. The CCC can be estimated as 
the C value that provides optimal likelihood between the predicted and the empirical response accuracy across 
all conditions.

The attention network test-revised (ANT-R). In this task, participants were required to identify the direction of 
an arrow that was flanked by two other arrows on each side. The flankers could point either in the same direc-
tion as the target arrow (congruent condition) or in the opposite direction (incongruent condition) of the target 

Figure 1. Schematic of the backward majority function task-masked (MFT-M). (a) An illustration of a 3:2 
congruency condition in the MFT-M and the event sequence of a trial. Participants are requested to report the 
majority of arrow directions (left or right) among a set of imperative stimuli. The upper-right panel shows the 
three possible arrow ratios. (b) Timeline of the stimuli presentation under different exposure time (ET, in ms). 
Duration of each event is indicated by the length of each texture. Participants are required to make a response 
within a 2500 ms response window starting from the onset of the arrow set and the entire trial lasts 5000 ms.
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arrow. Target and flankers were presented within one of two boxes located either at the right or at the left side of 
a central fixation cross (Fig. 2). In each trial, a visual cue in the form of a 100 ms flashing of the contours of the 
boxes, was displayed 0, 400, or 800 ms before the target. There were four cue conditions: double-cue (both boxes 
flashed, giving temporal but not spatial information about the upcoming target), valid-cue (one of the two boxes 
flashed, providing temporal and spatial information about the correct location where the target would appear), 
invalid-cue (one of the two boxes flashed, selecting the alternative location as opposed to the location where the 
target would be presented), and no-cue (neither of the boxes flashed prior to the target display). Participants were 
required to respond as quickly and accurately as possible within 1700 ms from the target onset, by clicking either 
the left or right button on the mouse. The interval between trials varied from 2000 to 12000 ms (mean = 4000 ms). 
Each trial lasted about 5000 ms on average. There were 4 blocks consisting of 72 trials in each block, for a total of 
288 trials and approximately 30-minute task duration.

Trials with error response or with response time (RT) exceeding ± 3 SD of the mean RT in each condition 
(congruent, incongruent) were removed from further analysis. In total, 1.25% of trials were excluded. Mean RT in 
each condition was then calculated based on the remaining trials, and was used to estimate the executive control 
(EC) function55. The conflict effect was calculated by subtracting the mean RT of the congruent condition from 
the mean RT of the incongruent condition. Typically, a more positive conflict effect suggests lower cognitive con-
trol ability. Because we hypothesized that general intelligence would be positively correlated to cognitive control 
ability, and in order to obtain all positive values of estimates to be included in the SEM, we reversely coded this 
variable by inverting the terms used in formula, therefore subtracting the mean RT of the incongruent trials from 
the mean RT of the congruent trials (conflict effect = RTcongruent − RTincongruent). Thus, a less negative conflict effect 
indicates higher cognitive control ability. Because the executive control is related to the coordination of thought 
to guide complex behavior via supramodal mechanisms45,56, as indexed by the conflict effect, the EC was included 
as an additional index of cognitive control in this study.

Measurements of working memory. N-back tasks (spatial and verbal) and working memory complex 
span tasks were used to measure different aspects of working memory. The N-back tasks assess the ability of 
challenging control over familiarity-based responding60, or recognition-based discrimination processes61. The 
working memory complex span tasks measure the ability of actively recalling and concurrently processing 
information61.

Figure 2. Schematic of the revised attention network test (ANT-R). For each trial, a 100 ms cue (no box 
flashes under the no cue condition, a single box flashes under the valid and invalid cue conditions, and both 
boxes flash under the double cue condition) is followed by a variable fixation period (0, 400, 800 ms) and then 
by the imperative target. The target (the center arrow) is flanked on each side by two other arrows presented 
for 500 ms, followed by an inter-trial fixation period varying between 2000 and 12000 ms (mean = 4000 ms). 
Participants are required to report the direction of the target.
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Spatial and verbal N-back tasks. Participants completed a spatial and a verbal N-back task sequentially. In the 
spatial N-back task62, four gray boxes were located above, below, to the left, and to the right of a central fixation 
cross (see Fig. 3a). In each trial, one of the four gray boxes turned yellow for 1538 ms. Participants responded 
to the location of the yellow box in the 0-back condition, the location of the previous yellow box in the 1-back 
condition, and the location of the yellow box two trials before in the 2-back condition. Participants responded by 
pressing the corresponding arrow key on the keyboard. Blocks of the three conditions (0-, 1-, and 2-back) were 
presented sequentially, and each repeated four times, resulting in a total of twelve blocks. At the beginning of each 
block, participants were instructed about the upcoming task condition. Each block contained 20 trials and lasted 
approximately 31 seconds. The total number of trials was 240, and the entire task lasted about 7 minutes.

In the verbal N-back task, a series of letters was presented sequentially for a duration of 1500 ms each, and 
four conditions (blocks) were presented in a fixed order: 0-back, 1-back, 2-back and 3-back (see Fig. 3b). For the 
0-back block, participants were instructed to decide whether the current letter on screen was an ‘X’. For the other 
blocks, participants were instructed to decide whether the current letter on screen matched the letter presented 
on one trial before (the 1-back block), on two trials before (the 2-back block), or on three trials before (the 3-back 
block). Each block consisted of 18 letters. The entire task lasted about 5 minutes.

In both N-back tasks, the response accuracy (ACC) for each condition was calculated. A spatial N-back task 
index was estimated by subtracting the ACC of the easiest condition (ACC0-back) from the ACC of the hardest con-
dition (ACC2-back): spatial N-back = ACC2-back − ACC0-back. Similarly, the performance index of the verbal N-back 
task was determined by subtracting the ACC of the easiest condition (ACC0-back) from the ACC of the hardest 
condition (ACC3-back) from: verbal N-back = ACC3-back − ACC0-back. The ACC of the 0-back condition is expected 
to be higher than in any other condition, therefore, the indices for both the spatial and verbal N-back perfor-
mance should be negative. The closer the negative N-back index is to zero, the smaller the difference between the 
easiest and hardest condition, and the better the performance.

Working memory complex span tasks. Participants completed shortened versions of three working memory com-
plex span tasks in sequence: operation span (OSpan), rotation span (RotSpan), and symmetry span (SymSpan)63 
(http://englelab.gatech.edu/tasks.html). In each task, participants were required to remember a sequence of items 
(e.g., a sequence of letters in the OSpan task) while completing a distractor task (e.g., solving a math problem) 
presented between each item in the sequence. Feedbacks including participants’ performance on the current trial 
(for both the memory task and the distractor task) and the cumulative accuracy were presented on the screen at 
the end of each trial.

In each trial of the OSpan task (Fig. 4a), two to seven letters (e.g., “J and F”) appeared sequentially at the center 
of the screen. A simple math problem (e.g., “(1 × 2) + 1 = ?”) was presented as the distracting task before the 
presentation of each letter (e.g., J). After all the letters were presented, participants were required to recall all of 
them in the order presented by sequentially checking the corresponding boxes on the screen. Feedbacks including 

Figure 3. Schematic of the spatial and verbal N-back tasks. (a) Illustration of the spatial N-back task. Three 
conditions are involved in the task: 0-back, 1-back, and 2-back. Participants should make responses to the 
location of the yellow box each trial (1 represents up, 2 represents left, 3 represents right, and 4 represents 
down). The arrow under each stimulus indicates the correct response key. (b) Illustration of the verbal N-back 
task. Four conditions are involved in the task: 0-back, 1-back, 2-back, and 3-back. For the 0-back condition, 
participants should click ‘left’ botton when the letter X is presented, and click ‘right’ botton when other letters 
are presented. For the other conditions, participants should click ‘left’ button when the current letter matches 
the letter 1/2/3 times ago, otherwise click ‘right’ button.
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the number of letters correctly recalled, the number of committed errors in solving the math problems, and the 
cumulative accuracy of math problems were presented.

In each trial of the RotSpan task (Fig. 4b), three to seven arrows appeared sequentially, being either short or 
long in length and pointing towards one of eight possible directions. Before the presentation of each arrow, a 
distracting task was presented, which required participants to judge whether a rotated letter was presented in its 
normal configuration (e.g., R) or backwards (mirrored). After all of the arrows were presented, participants were 
asked to recall them with the correct length and direction, and in the order they were presented by sequentially 
selecting the arrows on the response screen. Feedbacks including the number of arrows with correct length and 
direction that were successfully recalled, the number of errors regarding letter rotation, and the cumulative accu-
racy of letter-rotation task were presented.

In each trial of the SymSpan task (Fig. 4c), two to five red squares appeared sequentially and at different 
locations (one of sixteen possible locations on a 4 × 4 grid). Before the presentation of each square, a distracting 
task required participants to judge whether a picture was vertically symmetrical or not. At the end of a trial, 
participants were asked to recall all the locations of red squares in the order presented by sequentially clicking 
the squares on the response screen. Feedbacks including the number of squares that were correctly recalled, the 
number of errors regarding symmetrical pictures, and the cumulative accuracy of the picture task were presented.

Participants were required to keep at least 85% accuracy on each distracting task. There were 10 trials in the 
OSpan, and 8 trials in both the RotSpan and SymSpan. Each task lasted about 10 minutes. The whole section of 
working memory span tasks lasted about 30 minutes.

The all-or-nothing load (ANL) scoring64 was calculated as the ratio between the sum of the correctly recalled 
elements in correct serial order and the total amount of elements to be recalled in the task, which is ranged 
between 0 and 1. The ANL is the mostly used method to evaluate the performance in the OSpan, RotSpan, and 

Figure 4. Schematics of the working memory span tasks. (a) An illustrative trial of the operational span task 
(OSpan). A math problem to be solved is followed by a letter. Subsequently, another math problem to be solved 
is followed by another letter. At the end of the trial, all letters should be recalled by checking corresponding 
boxes sequentially, followed by a feedback. (b) An illustrative trial of the rotation span task (RotSpan). A 
rotated letter to be judged is followed by an arrow. Subsequently, another rotated letter to be judged is followed 
by another arrow. At the end of the trial, all arrows should be recalled (both size and direction) by checking 
corresponding arrowheads sequentially, followed by a feedback. (c) An illustrative trial of the symmetrical span 
task (SymSpan). A picture to be judged as symmetrical or not is followed by a square at one location of the 4 × 4 
grid. Subsequently, another picture to be judged is followed by another square at a different location. At the end 
of the trial, all squares (locations) should be recalled by checking corresponding location boxes sequentially, 
followed by a feedback.
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SymSpan tasks. “All-or-nothing” refers to trials in which all the memory elements were recalled in the correct 
serial order to be counted as a correct trial, while “load” refers to the response accuracies being weighted by the 
set size of the memory elements in each trial. Therefore, a higher ANL score indicates a larger working memory 
span.

Procedure. All the behavioral tasks were compiled and run on a PC using E-Prime 2.0 software (Psychology 
Software Tools, Pittsburgh, PA). Participants were required to finish the entire battery of tasks on two separate 
days within one week. In the first part (day) of the study, each participant first completed three working memory 
span tasks sequentially: OSpan, RotSpan, and SymSpan. In each span task, they practiced for three trials tran-
sitioning from easy to difficult to familiarize with the task, and then continued with the experimental session. 
After the span tasks, they completed 10 subtests of the WAIS-IV, in a fixed order. Each subtest took approximately 
6–8 minutes to complete, for a total duration of approximately 60–80 minutes. In the second part (day) of the 
study, participants completed the MFT-M, ANT-R, spatial N-back task, and verbal N-back task in a fixed order. 
For each task, a short practice session was performed before the experimental session. Participants were allowed 
to rest as long as needed between tasks.

Data analysis. To examine the relationship among all the measures, one-tailed Pearson’s correlation analyses 
were conducted. In addition, the Bayes Factor (BF) was calculated for each correlation65. A BF greater than 100 
indicates decisive evidence for the alternative hypothesis (H1) that there is a real correlation in the population, a 
BF greater than 3 suggests substantial evidence for the correlation, while a BF less than 1/3 indicates substantial 
evidence for the null hypothesis H0 that there is no correlation in the population, and any BF value ranging from 
1/3 and 3 suggests insensitivity of the data to distinguish between the H0 and H1

66.
SEM was conducted to estimate the relationship among all the latent variables, using AMOS 18.067,68. A latent 

variable “cognitive control” (CC) was derived from CCC and EC. A latent variable, “N-back”, was derived from 
the performance indices of two N-back tasks (spatial and verbal), and the other latent variable, “working memory 
span” (WMS), was derived from three span scores of OSpan, RotSpan, and SymSpan. A second-order latent varia-
ble, “working memory” (WM), was derived from the latent variables of N-back and WMS. A latent variable, “Gf ”, 
was derived from PRI, WMI, and PSI, and a latent variable “Gc” was derived from VCI. A second-order latent 
variable, “IQ”, was derived from the latent variables of Gf and Gc to represent the general intellectual ability. We 
used the maximum likelihood estimation method, which is the most commonly utilized, to select the set of values 
that maximizes the likelihood of observed covariance69.

Mean SD Min Max

Intellectual ability

FSIQ 97.01 8.07 79 117

VCI 99.05 9.49 80 125

PRI 93.13 10.29 73 121

WMI 98.78 9.76 77 122

PSI 100.81 11.48 81 135

Cognitive control

CCC (bps) 3.82 0.62 2.04 5.08

EC (ms) −144.06 41.65 −82.32 −276.42

Working Memory

Spatial 0-back 0.99 0.02 0.92 1.00

   1-back 0.76 0.19 0.17 1.00

   2-back 0.51 0.22 0.06 0.99

   N-back 
(2backminus 0back) −0.47 0.21 −0.92 −0.01

Verbal 0-back 0.95 0.05 0.83 1.00

   1-back 0.91 0.11 0.47 1.00

   2-back 0.90 0.13 0.38 1.00

   3-back 0.87 0.12 0.47 1.00

   N-back 
(3backminus 0back) −0.09 0.13 −0.53 0.17

OSpan 0.56 0.23 0 1

RotSpan 0.44 0.23 0 1

SymSpan 0.45 0.26 0 1

Table 1. Mean, standard deviation (SD), and range for the indices of behavioral tasks and composite 
scores of the WAIS-IV. Note: CCC: capacity of cognitive control; bps: bits per second; EC: executive control; 
OSpan: operational span task; RotSpan: rotation span task; SymSpan: symmetric span task. FSIQ: Full Scale 
Intelligence Quotient; VCI: Verbal Comprehension Index; PRI: Perceptual Reasoning Index; WMI: Working 
Memory Index; PSI: Processing Speed Index.
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In order to examine the relationship among intelligence, cognitive control, and working memory, we esti-
mated four models: (1) an overall model with IQ, CC, and WM as the latent variables was estimated to examine 
the relationship among them; (2) a model with Gc, Gf, and CC as latent variables was estimated to directly exam-
ine their relationship, and to examine the relationship among different components of IQ (Gc and Gf) and CC; 
(3) a model with Gc, Gf, and WM as latent variables was estimated to directly examine their relationship, and to 
further examine the relationship among different components of IQ and WM; and (4) a model with CC and WM 
as latent variables was estimated to test the relationship between them. Standardized estimates are presented in all 
models. Negative error variances were constrained to 070,71. Fisher’s r-to-z transformation was conducted to test 
the significance of the difference between two correlations coefficients.

Multiple fit measures, including the ratio of chi-square over degrees of freedom (χ2/df), root mean square 
error of approximation (RMSEA), Tucker Lewis index (TLI), comparative fit index (CFI), and Bayesian infor-
mation criterion (BIC), were calculated to assess how effectively the models captured the covariance between 
the variables. In line with previous publications72,73, the cut-off criteria used to establish the good fit between the 
hypothesized model and the observed data were considered acceptable when the χ2/df is less than 2, the RMSEA 
is less than 0.06, and the TLI and CFI are above 0.95. If a pair of variables theoretically correlated to each other 
and showed a modification indices for the covariance between their error variances greater than 4, the error vari-
ances in the model were linked to improve the model fit74,75. For the model comparison, chi-square difference was 
tested. In addition, a BIC difference greater than 2 indicates positive evidence against the model with higher BIC 
(2–6: positive; 6–10: strong; >10: very strong)76.

FSIQ VCI PRI WMI PSI CCC EC
Spatial 
N-back

Verbal 
N-back OSpan RotSpan

VCI
0.68*** —

(>100)

PRI
0.77*** 0.31** —

(>100) (6.20)

WMI
0.54*** 0.28** 0.18* —

(>100) (2.72) (0.34)

PSI
0.55*** 0.05 0.33*** 0.10 —

(>100) (0.09) (11.37) (0.13)

CCC
0.39*** 0.17 0.28** 0.46*** 0.16 —

(94.25) (0.29) (2.72) (>100) (0.25)

EC
0.30** 0.27** 0.21* 0.12 0.14 0.22* —

(4.66) (2.11) (0.57) (0.16) (0.20) (0.69)

Spatial N-back 0.33*** 0.21* 0.19* 0.28** 0.20* 0.32*** 0.13 —

(11.37) (0.57) (0.40) (2.72) (0.48) (8.35) (0.17)

Verbal N-back 0.16 0.10 0.14 0.15 0.02 0.10 0.06 0.04 —

(0.25) (0.13) (0.20) (0.22) (0.09) (0.13) (0.10) (0.09)

OSpan
0.30** 0.13 0.18* 0.43*** 0.11 0.36*** 0.18* 0.15 0.01 —

(4.66) (0.17) (0.34) (>100) (0.14) (30.92) (0.34) (0.22) (0.08)

RotSpan
0.32*** 0.11 0.27** 0.27** 0.19* 0.17 0.23* 0.12 0.11 0.41*** —

(8.35) (0.14) (2.11) (2.11) (0.40) (0.29) (0.85) (0.16) (0.14) (>100)

SymSpan
0.54*** 0.33*** 0.49*** 0.25** 0.28** 0.36*** 0.35*** 0.21* 0.10 0.34*** 0.46***

(>100) (11.37) (>100) (1.31) (2.72) (30.92) (21.89) (0.57) (0.13) (15.68) (>100)

Table 2. Pearson’s correlation coefficients (and Bayes Factor values) among all IQ, CC, and WM measures. 
Note: n = 88. *p < 0.05; **p < 0.01; ***p < 0.001 (one-tailed). Values below the correlation coefficients represent 
the corresponding Bayes factor (BF). BF > 100: decisive evidence for the correlation; BF > 3: substantial 
evidence for the correlation; BF < 1/3: substantial evidence for no correlation; 1/3 ≤ BF ≤ 3: insensitivity in 
detecting correlation.

Model χ2 (df) RMSEA TLI CFI BIC

IQ, CC, and WM 35.33 (39) 0.00 1.04 1.00 156.22

Gc, Gf, and CC 8.12 (7) 0.00 1.02 1.00 70.80

Gc, Gf, and WM 24.09 (25) 0.04 0.95 0.98 113.66

CC and WM 13.83 (13) 0.03 0.98 0.99 80.99

Table 3. Fit indices for all models. Note: RMSEA: root mean square error of approximation; TLI: Tucker Lewis 
index; CFI: comparative fit index; BIC: Bayesian information criterion.
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Results
The composite scores of the WAIS-IV and the performance scores of the behavioral tasks are shown in Table 1. The 
mean (and SD) FSIQ score, an estimate of general intellectual ability, was 97.01 (8.07). The mean (and SD) of VCI, 
PRI, WMI, and PSI were 99.05 (9.49), 93.13 (10.29), 98.78 (9.76) and 100.81 (11.48), respectively. The mean (and 
SD) of the CCC and the EC were 3.82 (0.62) bps and −144.06 (41.65) ms, respectively. The mean (and SD)  
performance indices of the spatial and verbal N-back tasks were −0.47 (0.21) and −0.09 (0.13), respectively. In 
addition, the mean (and SD) of ANL scores was 0.56 (0.23) for OSpan, 0.44 (0.23) for RotSpan, and 0.45 (0.26) 
for SymSpan.

Correlation among the composite scores of the WAIS-IV and all task performance. Correlation 
coefficients between the composite scores of the WAIS-IV, different measures of cognitive control and working 
memory, and BF values are shown in Table 2. For the correlation coefficients among the measures within each 
construct, the FSIQ was significantly and positively correlated to all its composite scores (VCI, PRI, WMI, and 
PSI) in the WAIS-IV (rs = 0.54–0.77, ps < 0.001). VCI was significantly correlated to PRI (r = 0.31, p = 0.002) 
and to WMI (r = 0.28, p = 0.004), while PRI was significantly correlated to WMI (r = 0.18, p = 0.045). WMI was 
not correlated to PSI (r = 0.10, p = 0.171, BF < 1/3). The CCC was significantly and positively correlated to EC 
(r = 0.22, p = 0.021), indicating that higher CCC was associated with more efficient EC (less negative conflict 
effect). The spatial N-back was significantly correlated to the SymSpan only (r = 0.21, p = 0.027), the verbal 
N-back was not correlated to any other WM measures (rs = 0.01–0.10, ps > 0.05, BF < 1/3), and the three WM 
complex spans were significantly and positively correlated to each other (rs = 0.34–0.41, ps < 0.001).

For the correlation coefficients between measures of different constructs, we report coefficients that are only 
relevant to our hypothesis testing. Refer to Table 2 for all the other coefficients. The FSIQ was significantly cor-
related to CCC, EC, spatial N-back, OSpan, RotSpan, and SymSpan (rs = 0.30–0.54, ps < 0.01); the VCI was sig-
nificantly correlated to EC, spatial N-back, and SymSpan (rs = 0.21–0.33, ps < 0.05); the PRI was significantly 
correlated to CCC, EC, spatial N-back, OSpan, RotSpan, and SymSpan (rs = 0.18–0.49, ps < 0.05); the WMI was 
significantly correlated to CCC, spatial N-back, OSpan, RotSpan, and SymSpan (rs = 0.25–0.46, ps < 0.01), but 
not to the EC (r = 0.12, p = 0.274, BF < 1/3); the PSI was correlated to spatial N-back, RotSpan, and SymSpan 
(rs = 0.19–0.28, ps < 0.05), but not correlated to either CCC (r = 0.16, p = 0.069, BF < 1/3), and EC (r = 0.14, 
p = 0.095, BF < 1/3); the CCC was significantly correlated to spatial N-back, OSpan, and SymSpan (rs = 0.32–
0.36, ps < 0.001); the EC was significantly correlated to OSpan, RotSpan, and SymSpan (rs = 0.18–0.35, ps < 0.05).

Figure 5. Structural equation model with general intelligence (IQ), cognitive control (CC), and working 
memory (WM) as latent variables. Double-headed arrows connecting second-order latent variables (ellipses) 
represent the correlations between constructs. Single-headed arrows from the second-order latent variables 
to the first-order latent variables (ellipses), and from the latent variables to the manifest variables (rectangles) 
represent the loadings on the constructs. Single-heading arrows with numbers pointing to the manifest variables 
represent the error variance of each task. Double-headed lines connecting the error variances represent the 
correlations between measures. Standardized coefficients of correlations and loadings are presented next to the 
arrows. Significant paths are displayed by the solid lines (ps < 0.05), while nonsignificant paths are displayed by 
the dashed lines.
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Structural equation modeling results. Table 3 summarizes fit indices of the four models examined, indi-
cating good fit of all the models. Figures 5–7 show the regression weights of the manifested variables to the latent 
variables, which were significant (ps < 0.05) except for the two N-back tasks, suggesting that most of the tasks 
were able to represent the constructs of interest. All the latent variables were significantly correlated to each other 
(rs = 0.37–1.00, ps < 0.05).

Figure 5 shows the overall model with IQ, CC, and WM as the latent variables. The error variances of WMI in 
Gf and CCC in CC, and the error variances of WMI in Gf and OSpan in WMS were linked to improve the model 
fit. In this model, IQ was strongly correlated to CC (r = 0.84, p = 0.017) and WM (r = 0.87, p = 0.021), and CC was 
strongly correlated to WM (r = 0.96, p = 0.001), indicating that a large amount of common variance was shared by 
the three constructs. Fisher’s r-to-z transformation showed that the correlation between IQ and WM was greater 
than the correlation between IQ and CC, z = 1.97, p = 0.024 (one-tailed), resulting in an additional 5% of variance 
explained by WM compared to CC. See the discussion section regarding a potential explanation of this result.

Figure 6a shows the model examining the relationship among Gc, Gf, and CC. In this model, the error var-
iances of WMI in Gf and CCC in CC were linked to improve the model fit, and the negative error variance of 
VCI in Gc was constrained to 0. CC was significantly correlated to both Gf (r = 0.80, p = 0.013) and Gc (r = 0.40, 
p = 0.041). The correlation between CC and Gf was significantly greater than the correlation between CC and 
Gc, z = 5.21, p < 0.001 (one-tailed), suggesting that a greater amount of variance was shared between Gf and 
CC than between Gc and CC. Additionally, Gf and Gc were positively correlated (r = 0.44, p = 0.002). Figure 6b 
shows the model examining the relationship between Gc, Gf, and WM. In this model, the error variances of 
WMI in Gf and OSpan in WMS were linked to improve the model fit, and the negative error variance of VCI 
in Gc was constrained to 0. WM was significantly correlated to both Gf (r = 0.87, p < 0.001) and Gc (r = 0.37, 
p = 0.002). The correlation between Gf and WM was significantly greater than the correlation between Gc and 

Figure 6. Structural equation models with cognitive control and working memory as latent variables. (a) SEM 
with CC, Gf, and Gc as latent variables. (b) SEM with WM, Gf, and Gc as latent variables. Significant paths are 
indicated by solid lines (ps < 0.05), while nonsignificant paths are indicated by dashed lines.
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WM, z = 7.50, p < 0.001 (one-tailed), suggesting that a greater amount of variance was shared between Gf and 
WM than between Gc and WM. In addition, Gf and Gc were significantly correlated (r = 0.47, p < 0.001), a result 
consistent with findings from a previous study (Friedman et al., 2006). For the model comparison, the difference 
between the CC-Gf-Gc and WM-Gf-Gc models tested as chi-square difference was not significant (Δχ2 = 15.97, 
Δdf = 18, p > 0.05). Further, the comparison of the BIC values showed that the difference between these two 
models was 42.86, with higher BIC (i.e., 113.66) for the WM-Gf-Gc model and lower BIC (i.e., 70.80) for the 
CC-Gf-Gc model, indicating that the latter model was better than the former model in terms of model fit.

Figure 7 shows the model examining the relationship between CC and WM as latent variables. CC was 
strongly correlated to WM (r = 1.00, p < 0.001), indicating a strong link between these two constructs.

The non-significant regression weights of the two N-back tasks to the latent variable “N-back” in all mod-
els might be due to the ceiling effect in the verbal N-back task. In this task, the accuracy of each condition in 
verbal N-back was very high (0-back: 0.95, 1-back: 0.91, 2-back: 0.90, 3-back: 0.87) and the difference of accuracy 
between conditions of 0-back and 3-back (verbal N-back index) was very small, suggesting that less mental oper-
ation might have been involved and that the cognitive load in this task was not adequate to challenge cognitive 
control. Similarly, we found no correlations between the verbal N-back index and any other WM measures as 
well as cognitive control and IQ measures. To examine the influence of the verbal N-back index, we removed the 
manifest variable of verbal N-back in all of the current models in Figs 5, 6b, and 7. Results of these new models 
showed that N-back loaded significantly onto working memory (ps < 0.05).

Discussion
The significant relationship between cognitive control and intellectual abilities, especially the Gf, suggests that 
cognitive control is a core component of human intelligence. The two measures used to estimate cognitive 
control, the EC and the CCC, tap on participants’ ability to simultaneously select and prioritize visual inputs 
that are behaviorally relevant and to coordinate mental operations under uncertainty. This core component is 
also involved in the performance of subtests of the WAIS-IV, especially in those tapping on Gf such as Matrix 
Reasoning which requires examinees to select a reasonable geometric pattern from a set of options to complete a 
matrix or a series, giving a measure of classification and spatial ability, simultaneous processing, and perceptual 
organization77–79. Further, the significant zero-order correlations found between the CCC and the composite 
scores of the Gf (including PRI and WMI subscales), as well as the significant correlation between the EC and 
the PRI, also favor the explanation of the involvement of cognitive control in human intelligence. The significant 
correlation found between the latent variables of CC and of Gc (VCI subscale) could instead be pointing at the 
involvement of the abstract reasoning processes in the Similarities subtest in VCI53. The need of a coordination of 
thoughts and actions to perform the IQ tests explains the association between CC and IQ, supporting our hypoth-
esis that cognitive control serves as a core component of intellectual abilities.

The significant correlations among CC, WM, and IQ suggest that cognitive control may be the common factor 
involved in all of these constructs. We found a significant correlation between WM and IQ, especially the Gf, 
which is consistent with existing literature22,28,80 indicating that working memory capacity is a primary predictor 
of general intelligence (g), if not essentially isomorphic81. The significant correlation between the latent variables 
of CC and WM indicates that these two constructs share the core component. We speculate that that the shared 
component between WM and CC is the coordination of thoughts and actions, i.e., cognitive control, rather than 
the memory storage component. Specifically, the performance of the MFT-M involves the sensory or iconic mem-
ory which is automatic, high-capacity, and short-lived82, and this component emerges at a lower level of infor-
mation processing and is theoretically distinct from higher-level mental operation. Further, participants using 

Figure 7. Structural equation model with WM and CC as latent variables. Significant paths are indicated by 
solid lines (ps < 0.05), while nonsignificant paths are indicated by dashed lines.
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the grouping search algorithm do not need to store information of previous outcomes of sampling in working 
memory, which keeps the WM loads constant across MTF-M conditions. In addition, the majority size is 3, which 
is much smaller than the working memory capacity (WMC)20. Thus, the CCC measured by our task should not be 
limited and impacted by WMC. Thus, the shared component between these two constructs should be independ-
ent from memory storage, favoring our hypothesis that cognitive control is the core component. Regarding the 
significant correlation between WM and the Gf, it is in line with the central executive account of Gf 28,83–85, which 
proposes that the relationship between working memory and Gf may be related to the functioning of the central 
executive process. On a similar line of evidence, in our previous study45 we proposed that executive control is 
one of the attentional functions whose interplay underlies cognitive control, and our current results suggest that 
the strong link between working memory and Gf may be related to the involvement of cognitive control in these 
constructs. Unsurprisingly, the stronger correlation between WM and Gf compared to the correlation between 
CC and Gf (i.e., the additional 5% of variance explained) might be due to simultaneous presence of the memory 
component and of the cognitive control component in the WM tasks.

We found that CC was significantly associated with Gf in term of latent variables in our models. However, the 
patterns of the zero order correlation for the two measures of cognitive control, the CCC and the EC, in relation 
to the indices of Gf including PRI, WMI, and PSI were different. In the current study, we found that both the 
CCC and EC were positively correlated to the PRI. This result may indicate that both capacity and processing effi-
ciency play an important role in perceptual reasoning of fluid intelligence86,87. Further, the CCC was significantly 
correlated to the WMI subscale, while the EC was not. A potential explanation for this pattern may reside in the 
difference between the capacity of cognitive control and its processing efficiency. The CCC measures the upper 
limit of mental operation involved in cognitive control46,47, whereas the EC, assessed by the ANT-R, represents the 
processing efficiency of cognitive control in a unit of time to a fixed amount of information44. The WMI was sig-
nificantly correlated to CCC because it measures the capacity of working memory, which is greatly related to the 
manipulation of information29. Surprisingly, although we argue that cognitive control is for the coordination of 
mental operation, we found no evidence for the correlation between both CCC/EC and the PSI. This subscale of 
the WAIS was designed according to the processing efficiency theory88, which suggests that processing efficiency 
represents the information-processing rate required by a task. The little involvement of thought processing in PSI 
may explain our negative result because, as shown by previous studies, a strong relationship between processing 
speed and fluid intelligence can be found only in condition of high mental demands22,89,90.

The existence of a link between CC and IQ is also supported by the common involvement of the fronto-parietal 
network found in studies investigating cognitive control47,58,91–100 and intellectual activity101–106. In addition to the 
psychometric studies, the neuromechanism of intelligence has recently attracted increased attention. Even though 
alternative theories are currently being explored, a great extent of interest has been directed towards a network 
of regions in the frontal and parietal lobes that consistently co-activates across domains involved in intellectual 
activity. For example, a recent Parieto-Frontal Integration Theory (P-FIT) has identified a distributed brain net-
work supporting human intelligence, especially its fluid component, including the anterior cingulate cortex, the 
inferior and superior parietal lobule, and the dorsal prefrontal cortex102,103,107,108. Further, fluid intelligence has 
been associated with a multiple-demand system8,9 residing in somewhat overlapping regions with those proposed 
by the P-FIT model. This “intelligence network” greatly overlaps with the cognitive control network, and includes 
the regions of the anterior insular cortex, the anterior cingulate cortex, the frontal eye field and the intraparietal 
sulcus47,109,110, strengthening the conclusion that intellectual activity is supported by cognitive control processes 
with the cognitive control network as its substrate.

Our cognitive control model of human intelligence emphasizes the mental operations for the coordination 
of thoughts and actions in intelligent behaviors, which is not fundamentally opposed to the previous models of 
intelligence, such as the g factor theory, the Gf-Gc theory, the triarchic theory, or the PASS theory. For instance, 
although the g factor underlies all cognitive abilities and has been regarded as the most fundamental factor (the 
apex) of the hierarchical structure of intelligence3,90, its nature remains unclear. Our model attempts to link the 
nature of g factor to cognitive control, an essential intellectual component that may be added to the psycho-
metric measurements of intelligence. Similarly, we propose that cognitive control is a core element in the three 
components in the triarchic theory and in the four mental processes included in the PASS theory. Both theo-
ries have been proposed as alternative models to general intelligence16,111, attempting to define the important 
aspects of human intellectual competence by identifying independent but interactive cognitive processes/com-
ponents. However, whether a common component across these processes/components exists was not empha-
sized. According to the definitions and the manipulations involved in the PASS tests such as the PASS Reading 
Enhancement Program (PREP)112, planning would be the most complex process that includes all the other three 
processes to solve problems113. The process of planning involves dynamic coordination of thoughts and actions, 
together with an evaluation of the behavioral outcome, to carry out the goal-directed behaviors, which should 
involve the process of cognitive control as the core. The evidence that the key regions of planning are located at 
the prefrontal cortex114, which is also one of the substrates underlying cognitive control, may further support our 
argument.

As a core component in Gf, cognitive control could be used to explain a well-known phenomenon of 
goal-neglect115, which has been shown in populations and individuals with lower Gf, such as patients with dam-
age in the frontal lobe116,117 and neurotypical controls115,118–120. It refers to participants’ performance failure on 
a specific task due to limited capacity of information processing although they are able to correctly recall the 
task requirement. Goal neglect has been shown to be greatly influenced by task complexity115 and the ability to 
convert complex requirements into effective attentional episodes or cognitive segmentation119,121,122. Based on 
these accounts, an efficient way to improve cognitive performance is to (1) dissect an unstructured and chaotic 
problem/goal into simpler sub-problems/sub-goals; and (2) only a sub-goal of behavior needs to be achieved in 
each attentional episode or each piece of cognitive segmentation. The essence of this strategy is to reduce the load 

https://doi.org/10.1038/s41598-019-39685-2


1 4Scientific RepoRts |          (2019) 9:2898  | https://doi.org/10.1038/s41598-019-39685-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

of cognitive control for the coordination of thoughts and actions between attentional episodes. Even within each 
attentional episode, cognitive control is necessary to achieve subgoal-directed behavior. Therefore, this strategy 
of cognitive segmentation is consistent with our information theory account of cognitive control that is to reduce 
uncertainty44.

In the current study, we showed the correlation between CCC and IQ in a homogenous group of young par-
ticipants with mean IQ scores around 100, and standard deviations of maximally 11 IQ points. In another study 
of our group123, a significant correlation between CCC and IQ was found (r = 0.55, p = 0.003) in a group of 
individuals (n = 27) with higher mean IQ scores (mean = 124.56, SD = 12.70), indicating that our model is also 
valid in neurotypical groups with higher IQ scores. In previous studies on goal neglect115,119, major performance 
failures of tests were restricted to participants in the lower range of IQ scores, suggesting that this association is 
also true in individuals with lower IQ. However, further studies are needed to test the validity of our cognitive 
control model of human intelligence for neurotypical groups with low Gf. Additionally, our model seems to be 
able to explain previously shown deficits in the coordination of mental operations in individuals with mental 
retardation124,125, neurodevelopmental126–128, and psychiatric disorders129–132, resulting from a functional deficit 
of the areas within the cognitive control network133.
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