B. B. Jørgensen, Mineralization of organic matter in the sea bed-the role of sulphate reduction, Nature, vol.296, pp.643-645, 1982.

B. Thamdrup, H. Fossing, and B. B. Jørgensen, Manganese, iron and sulfur cycling in a coastal marine sediment, Geochimica et Cosmochimica Acta, vol.58, pp.5115-5129, 1994.

B. Thamdrup, Bacterial Manganese and Iron Reduction in Aquatic Sediments, Advances in Microbial Ecology, pp.41-84, 2000.

D. E. Canfield, B. Thamdrup, and J. W. Hansen, The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction, Geochimica et Cosmochimica Acta, vol.57, p.11537734, 1993.

D. R. Lovley and E. Phillips, Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments, Appl Environ Microbiol, vol.51, p.16347032, 1986.

S. Kasten and B. B. Jørgensen, Sulfate Reduction in Marine Sediments. Marine Geochemistry, pp.263-281, 2000.
DOI : 10.1007/978-3-662-04242-7_8

C. M. Bethke, R. A. Sanford, M. F. Kirk, J. Q. Flynn, and T. M. , The thermodynamic ladder in geomicrobiology, Am J Sci, vol.311, pp.183-210, 2011.

D. R. Lovley and E. Phillips, Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments, Appl Environ Microbiol, vol.53, p.16347483, 1987.

R. Jakobsen and D. Postma, Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Geochimica et Cosmochimica Acta, vol.63, pp.272-277, 1999.

C. M. Bethke, D. Ding, J. Q. Sanford, and R. A. , Origin of microbiological zoning in groundwater flows, Geology, vol.36, pp.739-742, 2008.

C. M. Hansel, C. J. Lentini, Y. Tang, D. T. Johnston, S. D. Wankel et al., Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments, The ISME Journal, vol.9, p.25871933, 2015.

M. Pester, K. Knorr, M. W. Friedrich, M. Wagner, and A. Loy, Sulfate-reducing microorganisms in wetlandsfameless actors in carbon cycling and climate change, Front Microbiol, vol.3, p.22403575, 2012.

A. J. Pyzik and S. E. Sommer, Sedimentary iron monosulfides: Kinetics and mechanism of formation. Geochimica et Cosmochimica Acta, vol.45, pp.90042-90051, 1981.

W. Yao and F. J. Millero, Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry, vol.52, pp.1-16, 1996.

S. W. Poulton, Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite, Chemical Geology, vol.202, pp.237-244, 2003.

B. B. Jørgensen, A Thiosulfate Shunt in the Sulfur Cycle of Marine Sediments, Science, vol.249, p.17836966, 1990.

R. Lohmayer, A. Kappler, T. Lö-sekann-behrens, and B. Planer-friedrich, Sulfur Species as Redox Partners and Electron Shuttles for Ferrihydrite Reduction by Sulfurospirillum deleyianum, Appl Environ Microbiol, vol.80, p.24632263, 2014.

K. L. Straub and B. Schink, Ferrihydrite-Dependent Growth of Sulfurospirillum deleyianum through Electron Transfer via Sulfur Cycling, Appl Environ Microbiol, vol.70, p.15466509, 2004.

K. O. Konhauser, D. K. Newman, and A. Kappler, The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations, Geobiology, vol.3, pp.167-177, 2005.

D. E. Canfield, S. W. Poulton, A. H. Knoll, G. M. Narbonne, G. Ross et al., Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry, Science, vol.321, p.18635761, 2008.

N. J. Planavsky, P. Mcgoldrick, C. T. Scott, C. Li, C. T. Reinhard et al., Widespread iron-rich conditions in the mid-Proterozoic ocean, Nature, vol.477, p.21900895, 2011.

S. W. Poulton and D. E. Canfield, Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History, Elements, vol.7, pp.107-112, 2011.

W. Li, A. D. Czaja, M. J. Van-kranendonk, B. L. Beard, E. E. Roden et al., An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago, Geochimica et Cosmochimica Acta, vol.120, pp.65-79, 2013.

C. T. Reinhard, N. J. Planavsky, L. J. Robbins, C. A. Partin, B. C. Gill et al., Proterozoic ocean redox and biogeochemical stasis, PNAS, vol.110, p.23515332, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00815464

T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, The rise of oxygen in Earth's early ocean and atmosphere, Nature, vol.506, p.24553238, 2014.

N. Planavsky, O. Rouxel, A. Bekker, R. Shapiro, P. Fralick et al., Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans, Earth and Planetary Science Letters, vol.286, pp.230-242, 2009.

V. Busigny, N. J. Planavsky, D. Jézé-quel, S. Crowe, P. Louvat et al., Iron isotopes in an Archean ocean analogue, Geochimica et Cosmochimica Acta, vol.133, pp.443-462, 2014.

A. D. Czaja, C. M. Johnson, B. L. Beard, E. E. Roden, W. Li et al., Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland), Earth and Planetary Science Letters, vol.363, pp.192-203, 2013.

A. Kappler, C. Pasquero, K. O. Konhauser, and D. K. Newman, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology, vol.33, pp.865-868, 2005.

N. R. Posth, I. Köhler, D. Swanner, E. Schrö-der, C. Wellmann et al., Simulating Precambrian banded iron formation diagenesis, Chemical Geology, vol.362, pp.66-73, 2013.

J. Miot, D. Jé-zéquel, K. Benzerara, L. Cordier, S. Rivas-lamelo et al., Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes. Minerals, vol.6, p.24, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305500

S. A. Crowe, C. Jones, S. Katsev, C. Magen, A. H. O'neill et al., Photoferrotrophs thrive in an Archean Ocean analogue, PNAS, vol.105, p.18838679, 2008.

X. A. Walter, A. Picazo, M. R. Miracle, V. E. Camacho, A. Aragno et al., Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake, Front Microbiol, vol.5, p.25538702, 2014.

A. Camacho, X. A. Walter, A. Picazo, and J. Zopfi, Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments, Front Microbiol, vol.8, p.28377745, 2017.

S. A. Crowe, J. A. Maresca, C. Jones, A. Sturm, C. Henny et al., Deep-water anoxygenic photosythesis in a ferruginous chemocline, Geobiology, vol.12, p.24923179, 2014.

J. Cosmidis, K. Benzerara, G. Morin, V. Busigny, O. Lebeau et al., Biomineralization of ironphosphates in the water column of Lake Pavin, Geochimica et Cosmochimica Acta, vol.126, pp.78-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981391

V. Busigny, D. Jé-zéquel, J. Cosmidis, E. Viollier, K. Benzerara et al., The Iron Wheel in Lac Pavin: Interaction with Phosphorus Cycle. Lake Pavin, pp.205-220, 2016.

E. Bura-naki?, E. Viollier, D. Jézé-quel, A. Thiam, and I. Ciglene?ki, Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin, Chemical Geology, vol.266, pp.311-317, 2009.

J. Zopfi, T. G. Ferdelman, and H. Fossing, Distribution and fate of sulfur intermediates-sulfite, tetrathionate, thiosulfate, and elemental sulfur-in marine sediments, The Biogeochemistry of Sulfur, 2004.

A. Lehours, C. Bardot, A. Thenot, D. Debroas, and G. Fonty, Anaerobic Microbial Communities in Lake Pavin, a Unique Meromictic Lake in France, Appl Environ Microbiol, vol.71, pp.7389-7400, 2005.

A. Lehours, P. Evans, C. Bardot, K. Joblin, and . Gé, Phylogenetic Diversity of Archaea and Bacteria in the Anoxic Zone of a Meromictic Lake, Appl Environ Microbiol, vol.73, p.17261512, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00528262

A. Lehours, I. Batisson, A. Guedon, G. Mailhot, and G. Fonty, Diversity of Culturable Bacteria, from the Anaerobic Zone of the Meromictic Lake Pavin, Able to Perform Dissimilatory-Iron Reduction in Different in Vitro Conditions, Geomicrobiology Journal, vol.26, pp.212-223, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00398644

C. Biderre-petit, D. Boucher, J. Kuever, P. Alberic, D. Jé-zéquel et al., Identification of SulfurCycle Prokaryotes in a Low-Sulfate Lake (Lake Pavin) Using aprA and 16S rRNA Gene Markers, Microb Ecol, vol.61, p.21107833, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00842948

F. Widdel, Anaerober Abbau von Fettsä uren und Benzoesäure durch neu isolierte Arten sulfat-reduzierender Bakterien. Georg-August-Universität zu Gö ttingen, 1980.

A. Tschech and N. Pfennig, Growth yield increase linked to caffeate reduction in Acetobacterium woodii, Arch Microbiol, vol.137, pp.163-167, 1984.

R. M. Cornell, U. Schwertmann, and . Synthesis, The Iron Oxides, pp.525-540, 2004.

B. Mirvaux, N. Recham, J. Miot, M. Courty, S. Bernard et al., Iron Phosphate/Bacteria Composites as Precursors for Textured Electrode Materials with Enhanced Electrochemical Properties, J Electrochem Soc, vol.163, pp.2139-2148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389110

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., BLAST+: architecture and applications, BMC Bioinformatics, vol.10, p.421, 2009.

G. Michard, E. Viollier, D. Jézé-quel, and G. Sarazin, Geochemical study of a crater lake: Pavin Lake, FranceIdentification, location and quantification of the chemical reactions in the lake, Chemical Geology, vol.115, pp.90147-90150, 1994.

E. Viollier, G. Michard, D. Jézé-quel, M. Pèpe, and G. Sarazin, Geochemical study of a crater lake: Lake Pavin, Puy de Dô me, France. Constraints afforded by the particulate matter distribution in the element cycling within the lake, Chemical Geology, vol.142, pp.93-97, 1997.

W. Aeschbach-hertig, M. Hofer, M. Schmid, R. Kipfer, and D. M. Imboden, The physical structure and dynamics of a deep, meromictic crater lake, Hydrobiologia, vol.487, pp.111-136, 2002.

C. Bonhomme, M. Poulin, B. Vinçon-leite, M. Saad, A. Groleau et al., The key role of a sublacustrine spring, Comptes Rendus Geoscience, vol.343, pp.749-759, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00663291

C. Bonhomme, D. Jé-zéquel, M. Poulin, M. Saad, B. Vinçon-leite et al., Lake Pavin: History, geology, biogeochemistry, and sedimentology of a deep meromictic maar lake, pp.177-184, 2016.

S. B. Humayoun, N. Bano, and J. T. Hollibaugh, Depth Distribution of Microbial Diversity in Mono Lake, a Meromictic Soda Lake in California, Appl Environ Microbiol, vol.69, p.12571026, 2003.

K. T. Finneran, C. V. Johnsen, and D. R. Lovley, Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III), International Journal of Systematic and Evolutionary Microbiology, vol.53, p.12807184, 2003.

S. Lu, K. Chourey, M. Reiche, S. Nietzsche, M. B. Shah et al., Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates, Iron Snow"). Appl Environ Microbiol, vol.79, p.23645202, 2013.

J. S. Berg, D. Michellod, P. Pjevac, C. Martinez-perez, C. Buckner et al., Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno, Environmental Microbiology, vol.18, p.27768826, 2016.

G. N. Rees and B. K. Patel, Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake, International Journal of Systematic and Evolutionary Microbiology, vol.51, p.11594625, 2001.

G. Voordouw, The Genus Desulfovibrio: The Centennial, Appl Environ Microbiol, vol.61, p.16535089, 1995.

S. Elferink, W. M. Akkermans-van-vliet, J. J. Bogte, and A. Stams, Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge, International Journal of Systematic and Evolutionary Microbiology, vol.49, p.10319454, 1999.

E. Eisenmann, J. Beuerle, K. Sulger, P. Kroneck, and W. Schumacher, Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia, Arch Microbiol, vol.164, pp.180-185, 1995.

C. Hubert and G. Voordouw, Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors, Appl Environ Microbiol, vol.73, p.17308184, 2007.
DOI : 10.1128/aem.02332-06

URL : https://aem.asm.org/content/73/8/2644.full.pdf

D. Emerson, E. J. Fleming, and J. M. Mcbeth, Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective, Annual Review of Microbiology, vol.64, p.20565252, 2010.
DOI : 10.1146/annurev.micro.112408.134208

D. Emerson, E. Field, O. Chertkov, K. Davenport, L. Goodwin et al., Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics, Front Microbiol, vol.4, p.24062729, 2013.

D. B. Johnson, P. Bacelar-nicolau, N. Okibe, A. Thomas, and K. B. Hallberg, Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria, International Journal of Systematic and Evolutionary Microbiology, vol.59, p.19406797, 2009.

J. Miot, K. Benzerara, G. Morin, A. Kappler, S. Bernard et al., Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria, Geochimica et Cosmochimica Acta, vol.73, pp.696-711, 2009.
DOI : 10.1016/j.gca.2008.10.033

T. B. Parkin and T. D. Brock, The effects of light quality on the growth of phototrophic bacteria in lakes, Arch Microbiol, vol.125, pp.19-27, 1980.

O. Jö-rg-cypionka, N. Heribert, and . Pfennig, An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea, Limnology and Oceanography, vol.37, pp.150-155, 1992.

H. Kojima and M. Fukui, Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake, International Journal of Systematic and Evolutionary Microbiology, vol.61, p.20709913, 2011.

S. Rivas-lamelo, K. Benzerara, C. Lefèvre, C. Monteil, J. et al., Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin, Geochemical Perspectives Letters, vol.5, pp.35-41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01741645

S. Ma, A. Noble, D. Butcher, R. E. Trouwborst, and G. W. Luther, Removal of H2S via an iron catalytic cycle and iron sulfide precipitation in the water column of dead end tributaries, Estuarine, Coastal and Shelf Science, vol.70, pp.461-472, 2006.

A. Ehrenreich and F. Widdel, Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism, Appl Environ Microbiol, vol.60, p.7811087, 1994.

P. Albé-ric, E. Voillier, J. , D. Grosbois, C. Michard et al., Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake, Limnology and Oceanography, vol.45, pp.1088-1096, 2000.

C. M. Hansel, S. G. Benner, J. Neiss, A. Dohnalkova, R. K. Kukkadapu et al., Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow, Geochimica et Cosmochimica Acta, vol.67, pp.2977-2992, 2003.

T. Borch and S. Fendorf, Chapter 12 Phosphate Interactions with Iron (Hydr)oxides: Mineralization Pathways and Phosphorus Retention upon Bioreduction, Developments in Earth and Environmental Sciences, pp.7012-7019, 2007.

E. J. O'loughlin, C. A. Gorski, M. M. Scherer, M. I. Boyanov, and K. M. Kemner, Effects of Oxyanions, Natural Organic Matter, and Bacterial Cell Numbers on the Bioreduction of Lepidocrocite (?-FeOOH) and the Formation of Secondary Mineralization Products, Environ Sci Technol, vol.44, p.20476735, 2010.

F. Lopes, E. Viollier, A. Thiam, G. Michard, G. Abril et al., Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France), vol.26, pp.1919-1932, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00651276

D. R. Lovley, E. E. Roden, E. Phillips, and J. C. Woodward, Enzymatic iron and uranium reduction by sulfatereducing bacteria, Marine Geology, vol.113, pp.41-53, 1993.

P. Vandamme, M. Vancanneyt, B. Pot, L. Mels, B. Hoste et al., Polyphasic Taxonomic Study of the Emended Genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an Aerotolerant Bacterium Isolated from Veterinary Specimens, International Journal of Systematic and Evolutionary Microbiology, vol.42, p.1503968, 1992.

E. S. Shelobolina, K. P. Nevin, J. D. Blakeney-hayward, C. V. Johnsen, T. W. Plaia et al., Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses, International Journal of Systematic and Evolutionary Microbiology, vol.57, p.17220454, 2007.

J. J. Mosher, T. J. Phelps, M. Podar, R. A. Hurt, J. H. Campbell et al., Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of MetalReducing Pelosinus spp, Appl Environ Microbiol, vol.78, p.22267668, 2012.

K. P. Nevin, B. Kim, R. H. Glaven, J. P. Johnson, T. L. Woodard et al., Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells, PLOS ONE, vol.4, p.19461962, 2009.

K. Inoue, C. Leang, A. E. Franks, T. L. Woodard, K. P. Nevin et al., Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens, Environmental Microbiology Reports, vol.3, p.23761253, 2011.

D. R. Lovley, T. Ueki, T. Zhang, N. S. Malvankar, P. M. Shrestha et al., The Microbe Electric's Physiology, pp.1-100, 2011.

D. K. Newman and R. Kolter, A role for excreted quinones in extracellular electron transfer, Nature, vol.405, p.10811225, 2000.

S. J. Fuller, D. Mcmillan, M. B. Renz, M. Schmidt, I. T. Burke et al., Extracellular Electron TransportMediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles, Appl Environ Microbiol, vol.80, p.24141133, 2014.

D. R. Lovley, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol Rev, vol.55, pp.259-287, 1991.