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Abstract
The transversely confined propagatingmodes of an opticalfibermediate virtually infinite range energy
exchanges among atoms placedwithin theirfield, which adds to the inherent free space dipole–dipole
coupling. Typically, the single atom free space decay rate largely surpasses the emission rate into the
guidedfibermodes. However, scaling up the atomnumber as well as the system size amounts to
entering a collective emission regime, where fiber-induced superradiant spontaneous emission
dominates over free space decay.We numerically study this super- and subradiant decay of highly
excited atomic states for one or several transverse fibermodes as present in hollow corefibers. As
particular excitation scenarios we compare the decay of a totally inverted state to the case ofπ/2 pulses
applied transversely or along the fiber axis as in standardRamsey or Rabi interferometry.While a
mean field approach fails to correctly describe the initiation of superradiance, a second-order
approximation accounting for pairwise atom–atomquantumcorrelations generally proves sufficient
to reliably describe superradiance of ensembles from two to a few hundred particles. In contrast, a full
account of subradiance requires the inclusion of all higher order quantum correlations. Considering
multiple guidedmodes introduces a natural effective cut-off for the interaction range emerging from
the dephasing of different fiber contributions.

1. Introduction

Over the last decades, high precision spectroscopy as one of the leadingfields in quantummetrology [1] has
brought forward ground-breaking results such as theworld’s best atomic clocks [2–4] alongside all kinds of
state-of-the-art devices asmagnetometers, accelerometers or other quantum sensing devices [1]. To improve
measurements one seeks tominimize quantumprojection noise diminishing as N1 with an increasing
numberN of emitters. However, whenmany atoms are confined in a small volume this leads to a compromise
between reducing projection noise and introducing detrimental interaction effects owing to larger atom
densities and the resulting increased dipole–dipole couplings. One close to ideal approach for clocks is to place
the atoms into amagic wavelength optical lattice, cancelling the differential lightshifts between the ground and
excited levels, with one particle per site [5], where interactions occur via the remaining resonant dipole–dipole
coupling only [6]. This leads to unprecedented precision and accuracy at the cost of a high preparation effort.

The platformof opticalfibers has attracted a lot of interest in the last years with tapered nano-fibers used for
trapping and observation of single emitters from cold atoms [7, 8] to nanoparticles [9]with applications as a
single particle optical switch [10] or an optical isolator [11]. Similarly, atoms have been trapped inside hollow
core photonic crystalfibers for spectroscopy [12–15] or nonlinear optics [16] and even singlemolecules were
coupled to dielectric nano-waveguides [17]. In parallel, a great deal of theoretical investigations of the effective
collective atom-field dynamics, the resulting light forces and possible applications in these systems have been
carried out ranging from self organization [18–21], to nonlinear scattering [22, 23]. Applications of the collective
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radiative behavior into the lightmodes also point towards improved photonicmemories [24]. Other recent
studies include [17, 25–27].

Along these lines, the idea to use opticalfibers and in particular hollow core photonic crystal fibers [28] for
high precision spectroscopywas put forward byOkaba et al in 2014 [13]. This should allow for a collision-free
setup of a large number of atoms trapped in a one-dimensional optical lattice with afilling factor of�1, which
can be addressed in a uniformway via fiber guidedmodes.Here, confinement comes at the expense of some
remaining atom-wall interactions and the sometimes unwanted enhanced long range dipole–dipole coupling. In
their studyOkaba et al saw clear indications of collective radiative emission as well as energy shifts and studied
the effect of tight confinement and atomic interactions with the fiberwall. Nevertheless, even in theirfirst
pioneering study theywere already able to reduce the relative uncertainty inmeasuring the S P1

0
3

1 transition
in 88Sr to the order of 10−13.

For long lived atomic transitions as used in optical clocks, free space spontaneous emission is only a small
hinderance to precisionmeasurements. However, at higher densities (leading to a larger optical depth) even in
free space scenarios, collective radiative effects can be increased drastically [29–31]. Such a fast collective decay
(dubbed superradiance) can substantially decrease the sensitivity of a Ramsey typemeasurement. However,
collective subradiant states coexist with the superradiant ones and the choice of favorable lattice and excitation
geometries can lead to improved precision via subradiant state protection [32, 33].

In this paperwe study superradiant/subradiant effects occurring in a 1Dopticalfiber geometry, where in
addition to the collective coupling to the 3D free space vacuummodes, the guided discretemodes of the fiber
have the potential to introduce an additional virtually infinite-range dipole–dipole coupling. This is particularly
true in single transversemode geometries [18]. Recently, closely related long range superradiance effects were
observed in evanescent wave nano-fibers [34].Moreover, we generalize the treatment tomultimode fibers with a
particular emphasis on photonic bandgap hollow core geometries as used in [13].We consider a regular 1D
chain of clock atoms coupled to severalmodes of amultimode opticalfiber including free space spontaneous
emissionwith inherent dipole–dipole coupling. As a reference point towards new physics wefirst study the
enhanced spontaneous emission for a singlemodefiber using various numerical approaches from the fullmaster
equation (ME) down to a simplemeanfield (MF) approach. In a further stepwe generalize these ideas to several
fibermodes.While for small systems sizes theME can be solved directly, we have to resort to enhancedmean-
fieldmethods for larger particle numbers.

2.Model

WeconsiderN identical two-level emitters with transition frequencyω0 positioned at points =
{ }ri i

N
1 along a chain

inside an (infinitely extended) optical fiber (seefigure 1) of cross-sectionA=πa2 (where a is an effective fiber
radius). The atoms interact bothwith the free spacemodes aswell as with the fiber guidedmodes.Wewill work
in the approximation that the two processes can be separated, which is valid as long as the non-guided fiber
modes are not that substantially different from the free-spacemodes, as is the case in the experiment byOkaba
et al [13], where thefiber’s diameter is large compared to the interatomic distance. In situations, where the
unguided localfield in thefiber needs to be evaluated explicitly, a Green’s tensor formalism could be employed
as described in [35].

After the elimination of the radiationfield, this results in dipole–dipole contributions stemming from the
free-spacemodes (Wij

3D) and guidedmodes (Wij
1D). Additionally, incoherentmutual processes resulting from free

space vacuum fluctuations are quantified by Gij
3D while the guidedmodes lead tomutual decay rates Gij

1D.

Figure 1.Model.A collection ofN two-level emitters is positioned in a chain of lattice constant d along the propagation direction of an
optical fiber. Fibermediated and free space coherent interactions are represented bymutual coupling strengths Wij

1D and Wij
3D, while

the collective spontaneous emission rates are denoted by Gij
1D and Gij

3D.
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2.1. EffectiveME
The fullHamiltonian for the systemof atoms and radiationmodes can be decomposed into contributions
originating from coupling to 3D free space and 1Dfibermodes andwe have

= + + + + ( )H H H H H H , 1full A F
3D

F
1D

int
3D

int
1D

with w s s= å + -H i i iA 0 , where s
i denote the raising and lowering operators of the ith emitter andwe assume

identical transition frequencies w p l= =ck c20 0 0 for all atoms. The freeHamiltonian of the radiationmodes
is split as w= å l l l

  †H a ak k k kF
3D

, , , with the frequency w =


∣ ∣c k , thewave vector

k and the polarizationλ, and

w= åh h h
†H b bF

1D where h w l n= ( )f, , , with the frequencyω, polarizationλ, themode index ν and the
propagation direction f=±1.We have assumed complete independence of the free-space and guidedmodes
such that = =

l h l h [ ] [ ]† †a b a b, , 0
k k, , . Furthermore, we have d d=l l ll¢ ¢

¢ ¢
  [ ]†a a,k k kk, ,

and d=h h hh¢ ¢[ ]†b b, . The

two interaction terms in dipole and rotatingwave approximation are given in the appendix.
The elimination of the radiationmodes is done in the standard quantumoptics procedure [36] by formally

integrating the equations ofmotion for l
ak , and bη and inserting the solution into an integro-differential

equation for an arbitrary operator of the emitters. Under theMarkov approximation (see [37, 38]) one can show
that the dynamics of the reduced systemofN atoms is properly described by the effectiveME

r r r= +˙ [ ] [ ] ( )Hi , , 2

where the eliminated fields result in an effective dipole–dipole interaction via free space as well as via the guided
modes, i.e.

å åw s s s s= + W + W
=

+ -

¹

+ -( ) ( )H . 3
i

N

i i
i j

ij ij
D

i j0
1

3D 1

The two contributions are fundamentally different. The free space coupling isfinite rangewith considerable
strengths only around the distances of the order of awavelength

x
x

x
x

x
x

x
W = = -

G
- +

⎡
⎣⎢

⎤
⎦⎥( ) ( )k r a

3

4

cos sin cos
, 4ij ij

3D
0 2 3

while the guidedmodes yield a sumof infinite range interactions, periodic along thefiber’s axis (as in [39])

åx c b xW = =
G

n

n n( ) ( ) ( )k z b
2

sin , 4ij ij
1D

0

1D

whereχν expresses the coupling strength of eachmode andβν is the propagation constant as defined in
equation (A.16) in the appendix discussing the 1D field contributions. The 3Dfield-induced couplings are
derived in [37].

The coherent part is accompanied by incoherent processes responsible for dissipative dynamics such as
super- and subradiance.We have

 år s rs s s r rs s= G + G - -- + + - + -[ ] ( )[ ] ( )1

2
2 . 5

i j
ij ij i j i j i j

,

3D 1D

As above, afinite range free-space contribution,

x
x

x
x

x
x

x
G = =

G
+ -

⎡
⎣⎢

⎤
⎦⎥( ) ( )k r a

3

2

sin cos sin
, 6ij ij

3D
0 2 3

competes with the sumof infinite rangefibermediated decay rates,

åx c b xG = = G
n

n n( ) ( ) ( )k z bcos . 6ij ij
1D

0
1D

The single particle emission rates are

 
m
p

m
aG = G = = G ( )k k

A3
, 70

3 2

0

1D 0
2

0

where a pG G =≔ ( )k A31D
0
2 and m m=

∣ ∣ is the atomic transition dipolemoment, whichwe assume to be
orthogonal to the propagation direction in the fiber, i.e. m

ex. The prefactor in the sumover all the guided
modes of the 1D confinedfield reads

c
b

=n
n

n
n

=
· ∣ ∣ ( )

k

A

C
E

d

d
8

k k
x

2

0

and incorporates thefieldEx experienced by the dipoles, the normalization of thefield

ò ò j =
p n n¥

∣ ∣r nE Cd d
0 0

2 2 for eachmode and the (scaled) group velocity. Thefield itself is obtained by solving
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Maxwell’s equations in cylindrical coordinates for a cylindricalfiber of cross sectionA=πa2 and refractive
index >n 11 cladded by vacuum n2=1 (see appendix) in a similarmanner to [40].

2.2. Numericalmethods
The presented resultsmainly stem fromnumerical investigations based on the reducedMEof theN atoms under
different initial conditions. As full simulations in theHilbert space ofN two-level systems are computationally
costly, wemake use of different approximationmethods factorizing in terms of individual operators or pairs of
operator correlations. In increasing orders of computational time, themethods consist of: (i) aMFmodel, (ii) an
augmentedMFmodel developed in [41] including particle–particle correlations, whichwe dub ’MFplus
correlations’ (MPC) and (iii) an exact integration of theME as a basis of comparison [42]. For the exactME
solution the number of equations that need to be integrated scales as 4N. TheMF approach reduces the effort in
the integration to 3N equations, i.e. to the expectation values  sá ñj

x , sá ñj
y and sá ñj

z for every atom ( j=1,KN).
In theMPC approachwe include second order correlations and therefore our number of equationswill scale as

+( )N N3 2 1 .More precisely, forMFwe choose

r r= ⨂ ( )( ), 9
k

k

which effectively factorizes all correlations of the form á ñ » á ñá ñAB A B , while the second orderMPC approach is
based upon the ansatz

år r r r= + Ä
< ¹

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⨂ ⨂ ( )( ) ( ) ( ) 10

i

i

j k

j k

i j k

i,

,

andwe factorize á ñ » - á ñá ñá ñ + á ñá ñ + á ñá ñ + á ñá ñABC A B C A BC B AC C AB2 . In order to investigate the
validity of our approximations we compare the two inexactmethodswith the solution of the fullME for reduced
ensembles of notmore than 10 atoms.Where the dynamics arewell containedwithin the approximations, we
can performnumerical simulations up to a few hundred atoms (forMPC) or up to 104 atoms (forMF).

2.3. Initial states selected for the collective dynamics
All simulations describe the combined effects of guided and free spacemodes onto the collective decay of the
atomic system. Interestingly, the dominant physicalmechanisms not only depend on the geometric properties
of the atoms andmodes but they are very sensitive to the prepared initial state.We gowell beyond the states of
the single excitationmanifold, which have been studied extensively in earlier work. In order to exhibit themost
striking properties of superradiance, first, we consider the completely inverted state ¼ ñ∣eee e and analyze its
dynamics in theMF,MPC andME treatments. In principle, this state can be prepared by a perfectπpulse
applied to all atoms simultaneously. Note, that all phase information of the excitation process is lost andwe start
with á ñ = á ñ =S S 0x y .We expect the appearance of a prototypical superradiant pulse with itsmaximal intensity
scaling asN2 after the initial time of building up coherence in the ensemble.

Yet, even if the excitation pulsewas perfect for a single atom, interactions among the atoms during the
preparationwill prevent us from reaching inversionwith unit fidelity. Thus, as a second case, wewill consider an
imperfect preparationwhere the system is initialized by a small non-vanishing transverse spin at t=0. This is
equivalent to surpassing the initial difficulty of initializing amacroscopic coherence characteristic of the onset of
superradiance. Consequently, that small contribution turns out to have a striking impact on the reliability of the
approximationmethods.

The third scenario we analyze is the case of aπ/2 pulse as applied in the first step of a Ramsey sequence. Here,
we prepare a state with amaximal transverse dipolemoment as all dipoles are aligned in parallel in the transverse
plane. This state is expected to exhibit superradiant decay immediately. In this case the relative phase of the
dipoles is crucial for the decay behavior andwewill study two important limiting cases, where theπ/2Ramsey
pulses are applied either longitudinally or transversely with respect to the fiber axis. Transverse excitation
prepares each atom in the same state ñ + ñ(∣ ∣ )g e 2j j , while longitudinal drivingwill imprint progressing

phases depending on the atomic positions, bñ + ñ(∣ ( ) ∣ )g k r eexp i 2j j j
0

0 andwe chose the fundamental fiber
mode for the driving.

3. Singlemodefiber: fully inverted state

Setupswhere a suitable choice of the inter-particle separation can lead to the cancellation of differential light
shifts, as described e.g. in [43, 44], are of particular interest.We therefore focus on such amagic wavelength
configurationwith d/λ0≈0.59, as used in optical lattice experiments with trapped Strontium atoms driven on
the 1S0 to

3P0 transition [13]. These distances feature relativelyminute dipole–dipole energy shifts as well.We
thenfix the effective fiber propagation constant toβ=1.2 and set the ratioα (largely defined by thefiber’s

4
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diameter, which can bemodified to tailor the relative role of the free-space and confinedfield collective
interactions) to 0.75. The dynamics is characterized by following the time evolution of the total excitation
operator

å s s= + - ( )S , 11z

j
j j

from the initial value ofN.
Generally, wefind quantitative agreement between the exactME solution and theMPC solution for short

times and at least a qualitative one for longer times (seefigure 2(a)). However, while two particle correlations
between all pairs of emitters, long- and short-range for guided aswell as free spacemodes, as included in the
MPCmethod, are sufficient to capture the initial superradiant behavior, larger time subradiance impliesmore
than twoparticle correlations. In contrast, the simpleMF result is often far off and usually only useful for
independently decaying ensembles; this is because theMF cannot capture collective effects such as entanglement
ormultipartite correlations. Especially when starting from a perfectly inverted state, theMF approximation fails
to correctly account for the buildup of correlations and coherence. TheMF equations are setup in such away
that they feature a driving term for the individual expectation values sá ñz

i consisting of a sumover the other
dipole’s expectation values sá ñx

j and sá ñy
j .When starting from a perfectly inverted state the latter two are zero for

all times and thus the equation ofmotion for sá ñz
i will result in uncoupled dynamics, as no seed for the build-up

of superradiance is present.
In theMPC treatment a perfectly inverted state will feature three-particle correlations of the form s s sá ñz

i
z
j

z
k ,

which, when factorized in to two-particle correlations and single-particle expectation values, can provide for this
initial seed and thus result in superradiant dynamics for a perfectly inverted initial state. The full set of equations
can be found in [41].

However, assuming an initialmacroscopic non-zero dipole (which is normally associatedwith the initial
spontaneous build-up ofmacroscopic coherence in superradiance), theMF approximation is closer to the real
dynamics.We can achieve this regime by assuming imperfect excitation pulses close but not exactly at theπ
value. This could be the result of non-negligible dipole–dipole interactions and collective decay during the
excitation.

Numerically we simulate the excitation under the followingHamiltonian (in an interaction picture
removing the laser frequency) for the duration τ of the pulse

å ås s s s= + = W + W +
¹

+ - + -( ) ( )H H H , 12
i j

ij i j
i

i iexc L R

supplementedwith the collective Lindblad termdescribing decay.We have assumed resonant laser excitation
with the Rabi frequency WR. For an intendedπ pulsewe set the driving time τ by demanding that t pW = 2R .
The interatomic separation is fixed at themagicwavelength trapping distance d/λ0=0.59.Note, that at this
distance, the one-dimensional collective decay (of infinite range) due to thefiber dominates over the free space
collective decay (falling off with increasing distance). For the dynamics infigure 2(b), we consider a square pulse
with Rabi frequency W = G100R

1D, for which the population of the excited state corresponds to a rotationwith
an angle θ=0.95π on the collective Bloch sphere. Preserving some finite coherence in the spins as opposed to a
perfect inversion.We compare independent decay for 1000 spins prepared in the perfectly inverted statewith the
situationwhere the ensemble is prepared as described above via the application of a excitation laser. The perfect

Figure 2.Collective dissipative dynamics.Collective decay of a regular chain of (a) ten atoms from the fully inverted state. The full
master equation solution (ME) is compared to amean field (MF) and a second orderMPC solution aswell as to the independent
decay. The parameters are: d/λ0=0.59,α=0.75,χ1=1 andβ1=1.2. (b)Mean field prediction of time evolution of 1000 atoms
positioned at d/λ0=0.05 from the fully inverted state yñ = ñÄ¼Ä ñ∣ ∣ ∣e e in contrast to a state with only 95% excitation of every
individual emitter, i.e. y j jñ = ñÄ¼Ä ñ∣ ∣ ∣2 with j q qñ = ñ + ñ∣ ( )∣ ( )∣g esin 2 cos 2 , where θ=0.95π.We see that assuming a tiny
initial dipolemoment suffices in order to capture the essence of superradiant decay viamean field calculations.
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π pulse leads to initial conditions sá ñ = =( )t 0 0j
x and sá ñ = =( )t 0 0j

y which evolve into

s sá ñ = á ñ =( ) ( )t t 0j
x

j
y for all times. This implies that the atoms are decaying independently. In reality,

spontaneous emission events lead to the emergence of a collectivemacroscopic dipole which speeds up the
collective decay. Asfigure 2(b) shows, this can be simulated by assuming the imperfect preparation scheme
which creates an initialmacroscopic dipole leading to faster decay than that of an independent ensemble.

Let us now analyze the effect of the competition between free radiationmodes induced decay versus
collective decay aided by guidedmodes. For increasing values of the ratioα, figure 3 quantifies the additional
superradiance induced by the fiber. The parameters chosen here are: l = 689 nm0 ,χ1=1 and the propagation
constant isβ1=1.2.While the free space superradiance is practically negligible atmagicwavelength
separations, the long-range fibermediated interactions, even formodestα, can lead to considerable
superradiant behavior. For example, for the parameters of [13], whereλ0=689 nmand a=20 μm, the
resulting ratio a ~ -10 4, requires a large number of atoms only, i.e.more than 104, to show a sizable effect of the
guidedmodes’ superradiance. This aspect ismore clearly analyzed infigure 3(b)with the direct conclusion that
themore emitters are present in the ensemble, themore dominant the 1Ddecay is over the 3D free space decay.
Thefigure shows the time at which half the population has decayed as a function of the number of emitters and
the ratio between 1D and 3Ddecaywhen starting from the fully inverted state.

4. Singlemodefiber: half-inverted states

In standardRamsey interferometry, ensembles of atoms are prepared in states exhibitingmaximal dipole
moments along some direction, typically via the application ofπ/2 pulses. As described in section 2.3, at least
two distinct procedures can be distinguished: (i) transversal versus (ii) longitudinal excitation.While transversal
excitation imprints the same phase on all atoms, longitudinal excitation imprints different phases along the
preferential direction defined by thefiber axis.We perform a detailed analysis of the numericalmethods used for
the two cases whichwe illustrate in figure 4. For both situations, as concluded before, theMPC solution is a good
estimate of the real dynamics while theMF solution depends strongly on the particularities of the initial state. In
the transverse case, as shown infigure 4, the dynamics aremostly subradiant. The effects largely stem from the
fiber-induced collective decay.

Starting in the transversally pumpedRamsey state, which features amaximal dipolemoment, theMF
solution ismuch closer to the exact result butwill still not completely concurwith theME results on a long time
scale. This initial state has a substantial overlapwith states not radiating into the fiberwhich adds a long-lived
component in the inversion that is again captured by theMPC corrections. In the other extremal case of afiber
excited Ramsey state, wherewe have an initial non-zero value for the Pauli operator in the x-direction allmodels
capture superradiance along thefiber quite well, in contrast to the independent decay. Therefore, aMF
treatment represents a suitable choice to capture the system’s dynamics when compared to the fullME solution.
We observe that in the experimentallymost relevant case of a Ramsey sequence driven through the fiber,
superradiance is strongly present limitingmeasurement time and thus precision.

Figure 3.Collective decay for different ratiosα between 1D and 3D contributions and its scaling with atomnumbers. (a)Time evolution of
the fully inverted state for themagicwavelength lattice interatomic distance of d/λ0=0.59.MPC calculations show that thefiber-
induced superradiance dominates with increasing 1Dparticipationα. (b)Time at which half the population has decayed out of the
system starting at the fully inverted state as a function of the number of emittersN and the ratioα in a chain of d/λ0=0.59 calculated
viaMPC simulations. For an independently decaying ensemble this would be the case atΓt=0.69. For a fixedα (albeit small)
increasing the number of atoms always leads to fiber-induced superradiance.
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5. Collective decay inmultimodefibers

The diameter of optical fibers used in current experiments in conjunctionwith quantum emitters can range
from∼0.5 to∼40 μm.While for sub-micron fibers the singlemode approximation is well justified, for large
diameterfibers one necessarily needs to considermore than one allowedmode.Of course, in the limit of very
large diameters onewould end up in the free space regime. This is equally true for evanescent fields of nanofibers
aswell as for the guided field inside a hollow corefiber. As the transversemode functions are orthogonal, the
Lindblad decay terms are independent and additionalmodes can be incorporated into our theory directly.
Hence, in analogy to equations (4b) and (6b) the dipole–dipole interaction as well as the collective dissipation
through the 1D guidedmodes is given by

å åc b x c b xW =
G

G = G
n

n n

n

n n( ) ( )
2

sin cos ,ij ij
1D

1D
1D 1D

where ν is again themode index and the propagation parameterβν andχν are particular to everymode and have
to be determined numerically as a function of the fiber properties (see appendix).

For simplicity, we choose amodel of an infinitely extended cylindrical fiberwhere analytical expressions
exist; in principle, one can use any suitablemodel calculation (e.g. using programs asCOMSOL) in order to
obtain the field in arbitrary optical structures, such as hollow core photonic crystals, taperedwaveguides or nano
fibers as done in [45]. The only thing that will changewith respect to our formalism are the values ofχν andβν.
As the collective couplings are a superposition of trigonometric functions of different periodicity sinceβν is
different for eachmode, by using different fiber diameters it is thus possible to tailor the interaction range. This is
illustrated infigure 5, wherewe observe regions ofmore and less pronounced collective couplings.
Consequently, instead of treating themultimode problem as a detrimental effect, we propose here that one can
carefully include a number ofmodes to design interactions of tailorable range. The quite pronounced
exponential decay of the couplings with distance can be achieved by allowing eachmode to have a certain
(Lorentzian) bandwidthwithin the interval of allowed propagation constants as opposed to only one discrete
contribution. The bandwidths are chosen in such away that there is an overlap between themodes of a few
percent [21].

6. Conclusions and outlook

For a reliable prediction of collective dynamics of quantum emitters periodically arrangedwithin the field of a
fiber, one has to include infinite range interactions via the effective 1D geometry of the system aswell as finite
range contributionsmediated by the free 3D electromagnetic vacuum. In principle, nomatter how small the
atom-fiber coupling is, the 1D contributionwill always dominate and introduce superradiant decay for large
enough atomnumbers. The combination of both effects introduces extra line shifts, which are small but
important for clock applications. Interestingly, shifts and collective decay are reduced inmultimode fibers,
where only atomswithin afinite rangewill participate so that divergences of shifts and decay rates in the limit of
large particle numbers are prevented. In some regimeswhere the build-up of particle–particle correlations can
be neglected,MF calculations can give reasonable quantitative estimates of the collective systemdynamics.
However, two-particle correlations can quite reliably be accounted for in theMPCmethod derived in [41] and
allow for a general simulation of the correct dynamics for hundreds of particles. Yet, some aspects of subradiance
seem to necessarily includemore than particle–particle quantum correlations falling outside the validity of the
MPC approach. As a bottom line, a hollow coremultimode fiber systembased on afiber guidedmagic lattice

Figure 4.Dynamics of half-inverted states.Collective decay of a regular chain of ten atoms at d/λ0=0.59 andα=0.75 from the half
inverted state prepared by a (a) transversal and (b) longitudinal excitation pulse. At themagic wavelength distance symmetric states are
subradiant which leads to longer lifetimes for transverse excitation. In the longitudinal excitation case, the accumulated propagation
phases counteract this behavior leading to superradiant decay, which limits the interrogation time in a Ramsey experiment.
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trap could thus be a favorable way for a technically simplified but still accurate and precise implementation of an
optical clock. It requires, however, a careful design of the excitation process and lattice geometry to keep
collective shifts and superradiance limited. In this respect a transformation to an active reference oscillator
system looks very promising, if a clever way of pumping and collective cooling [46] via higher order fibermodes
could be engineered.
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Appendix. Fiberfield and interactions

Our system consists of a cylindrical infinitely long vacuum clad fiber of radius a and refractive index n1
embedded in vacuum (n2=1)withN two-level atoms (ω0,μ)fixed at positions ={ }zj j

N
1 along thefiber.

A.1. Electricfield in and outside thefiber
For the guided field in thefiberwe solveMaxwell’s equations, whichwe sketch briefly. For the electric field along
thefiber axis we have thewave equation in radial coordinates with the propagation parameterβ

 = ( )E 0. A.1z

With the ansatz

= nj w b-( ) · ( )( )E Af r e e A.2z
t zi i

Figure 5.Collective radiative decay formultimode fibers.The singlemode infinite range interaction ismodified by theweighted coupling
to additionalmodes.We plot the distance dependence of themutual decay rates of two atoms separated by d for a small fiber diameter
in (a) and (c), versus large diameter fibers in (b) and (d), where (a) is a zoom-in of (b) and (c) is a zoom-in of (d) for short distances,
respectively. Forλ0=689 nm the thin fiber of a=1 μmallows six guidedmodes, while a radius of a=5 μmpermits the
propagation of 39modes. The inclusion of additionalmodes leads to an effective decrease of thefiber-mediated atom–atom
interaction range. In (e), (f) and (g)we show theMPC time evolution of a fully (half) inverted system for those twofiber radii.
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this reduces to

b¶ + ¶ + ¶ + - =j⎜ ⎟⎛
⎝

⎞
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r r
n k E

1 1
0 A.3r r z

2
2

2 2 2 2

with the refractive index n (n1, n2) and w m w= =k c2 2 2
0 0

2. The same equation holds for themagnetic fieldHz

and from that we can calculate the other two electric field components as

k
b

wm
=

-
¶ + ¶j⎜ ⎟⎛

⎝
⎞
⎠ ( )E E

r
H

i
, A.4r r z z2

0

k
b
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¶ - ¶j j⎜ ⎟⎛
⎝

⎞
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E H

i
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For the radial component f (r)we obtain the differential equation for the Bessel functions

k
n

¶ + ¶ + - =
⎛
⎝⎜

⎞
⎠⎟ ( )f

r
f

r
f

1
0. A.6r r

2 2
2

2

This results in thefields

=
< <
< < ¥

n

n

⎧⎨⎩( ) ( )
( ) ( )f r

AJ hr r a
CK qr a r

0
, A.7

where b= -h n k1
2 2 2 and b= -q n k2

2
2 2 . Jν denotes the Bessel function of the first kind, whileKν is the

modifiedBessel function of the second kind. Similar solutions exist forHz (constantsB andD). Thus, we can
construct the electric fields for <r a

= n
nj( ) ( )E AJ hr e , A.8z

i

b wm
n

=
- ¢ +n n
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and for r>a
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=
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From the boundary condition for the tangential field components at r=awefind

= =n

n

n

n

( )
( )

( )
( )

( )C
J ha

K qa
A D

J ha

K qa
B, A.14

n w m b
=
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-
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( )B
ahq n qJ ha K qa n hJ ha K qa

n n J ha K qa
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. A.15

1
2

2
2

1
2

2
2

0

Furthermore we obtain an eigenvalue equation for the propagation parameterβ from the condition that the
linear system forA,B,C,D has to have a solution, i.e.

n
b

¢
+

¢ ¢
+

¢

- + =

n

n

n

n

n

n

n

n

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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1
2

2
2

2
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2 2

2

This leaves uswith one free parameterAwhichwe fix by the normalization condition

ò òj =
p ¥

∣ ∣ ( )r r n Ed d 1, A.17
0

2

0

2 2

where n=n1 for r<a and n=n2 for r�a.

A.2. Interactionwith atoms
Wewill nowderive aME for the atomswhere coherent and incoherent atom–atom interactions stem from the
collective coupling to both free and guided radiationmodes.We start from theHamiltonian
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= + + + + ( )H H H H H H , A.18full A F
3D

F
1D

int
3D

int
1D

with w s s= å + -H i i iA 0 , where s
i denote the raising and lowering operators of the ith emitter and

å åw w= =
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l l
h

h h
  ( )† †H a a H b b , A.19

k

k k kF
3D

,
, , F

1D

where h w l n= ( )f, , , with the frequencyω, polarizationλ, themode index ν and the propagation direction
f=±1.We have assumed complete independence of the free-space and guidedmodes such that

= =
l h l h [ ] [ ]† †a b a b, , 0

k k, , . The two interaction terms in dipole and rotatingwave approximation read
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g V2k k 0 and


w

m j=h
[ · ( )] ( )g

v
E r

2
, , A.22

g
j j

0

where vg=dω/dβ is the group velocity in accordance with [40]. As the 3D and the 1Dparts are linearly
superimposed and thus can be treated independently, wewill now focus on the 1Dpart onlywhereas the 3D
derivation can be found e.g. in [37]. Furthermore wewill restrict ourselves to onemode, i.e. neglect the sumover
ν for now. From this we can calculate the time evolution of our fieldmode by solving

*åw
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Wecontinue bywriting down the equation ofmotion for an arbitrary systemoperator, i.e. any operator
acting on our ensemble of two-level emitters.We substitute for bη, replace ò wå  åh l nd f, , and have
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Let us now focus on the interaction part and replace h ( )b t and h
†b with the inhomogeneous part from the

expression from above (the homogeneous part is the in-field andwewill neglect it too)
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At this point we perform theMarkov approximation (similar for s-
j )
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For the integral over t′weuse the Sokhotski–Plemelj theorem as
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Let us pull out åj k, perform the sumover the propagation direction f, set m m=
 · ex (which kills the sum

overλ) and proceed
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In this formwe can roll the equation back to the time evolution of the density operator and obtain a
Lindblad-typeME reading
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wherewe have neglected the infinite Lamb shift for j=k. The two coupling parameters are calculated as
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and for the dipole–dipole shift we employ the residue theorem, create a pole at w + i0 with   0, close the
integration path in the upper half plane and take only the real part of the integral, such that
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At this point it is important to realize, that all functional dependencies, i.e. Ex, vg andβ are evaluated at the
transition frequencyω0 and thus become amere number.

The couplings as a function of the interatomic distance ξ=k0d are depicted infigure A1. For the 1D
couplingwe show the spatial behavior of onemode. Taking severalmodes into account leads to a superposition
of trigonometric functionswith different periodicities and amplitudes as is discussed in the paper.

A.3.Multiplemodes
In order to allow formultiplemodes in ourmodel, wemodify the interactionHamiltonian to accommodate for
severalmodes, i.e.

ò å å
p

w s= - -
l n

h h
b w

¥
+n( ) ( )( )H g b

i

2
d e h.c. . A.35

f j

f z
jint

0 , ,

i j

Figure A1.Collective couplings in 3D and 1D. Spatial dependence of the 3D (left) and 1D (right) coherent/incoherent coupling
strengths as a function of distance between atoms as a function of the normalized distance ξ=k0d. Observe, that the 3D free space
couplings decaywith increasing distance, while the 1D contributions, shown for a singlemode here, are periodic and of infinite range.
Including severalmodes, finite ranges can be engineered as discussed below.
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Doing this with the photonic operators for differentmodes commutingwe get slightlymodified coupling
constants in a very similar derivation, which read

å
w m
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x

g
jk

0
2 2

0

For an impression of how the differentmodes will propagate, figure A2 depicts the dispersion relation as a
function of the ratio between the fiber’s radius and thewavelength of the propagating light. In a thin nanofiber,
where l <a 0.50 , only a fewmodeswill be allowed, up to the extremal case, where only the fundamentalmode
is permitted. Thewider thefiber becomes in relation to the light’s wavelength, themoremodes will be able to
propagate. For l »a 30 we observe about 15 differentmodes. This implies that the tailoring of the interaction
cannot only be done by placing the atoms at suitable distances to each other, but also by choosing a desiredfiber
radius.

A.4. Numerical parameters
Wenowdefine a one-dimensional decay rate independent of the particularmode or the particular position of
the atomas a prefactor


w m

G = ( )
cA

, A.381D
0

2

0

whereA is the cross section of thefiberA=a2π and is compensated for by the normalization of the electric field.
We can thenwrite

å c bG = G
n

n n( ¯ ) ( )k rcos A.39jk jk
1D

1D 0

andwith b b= ¯k , where b̄ is the dimensionless scaled propagation parameter

c b b= + ¢n n
n

n( ¯ ¯ ) [ ∣ ( )k
A

C
e . A.40x0

2

The parameters are evaluated numerically for eachmode ν.
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