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Abstract. In this paper, we introduce a new model for leveraging un-
labeled data to improve generalization performances of image classifiers:
a two-branch encoder-decoder architecture called HybridNet. The first
branch receives supervision signal and is dedicated to the extraction of
invariant class-related representations. The second branch is fully un-
supervised and dedicated to model information discarded by the first
branch to reconstruct input data. To further support the expected be-
havior of our model, we propose an original training objective. It favors
stability in the discriminative branch and complementarity between the
learned representations in the two branches. HybridNet is able to outper-
form state-of-the-art results on CIFAR-10, SVHN and STL-10 in various
semi-supervised settings. In addition, visualizations and ablation stud-
ies validate our contributions and the behavior of the model on both
CIFAR-10 and STL-10 datasets.

Keywords: Deep learning, semi-supervised learning, regularization, re-
construction, invariance and stability, encoder-decoder

1 Introduction

Deep learning and Convolutional Neural Networks (ConvNets) have shown im-
pressive state-of-the-art results in the last years on various visual recognition
tasks, e.g. image classification [1,2,3], object localization [4,5,6], image segmen-
tation [7] and even multimodal embedding [8,9,10]. Some key elements are the
use of very deep models with a huge number of parameters and the availability
of large-scale datasets such as ImageNet. When dealing with smaller datasets,
however, the need for proper regularization methods becomes more crucial to
control overfitting [11,12,13,14]. An appealing direction to tackle this issue is
to take advantage of the huge number of unlabeled data by developing semi-
supervised learning techniques.

Many approaches attempt at designing semi-supervised techniques where the
unsupervised cost produces encoders that have high data-likelihood or small
reconstruction error [15]. This strategy has been followed by historical deep
learning approaches [16], but also in some promising recent results with modern
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Fig. 1. Illustration of HybridNet behavior: the input image is processed by two network
paths of weights Wc and Wu; each path produces a partial reconstruction, and both are
summed to produce the final reconstruction, while only one path is used to produce a
classification prediction. Thanks to a joint training of both tasks, the weights Wc and
Wu influence each other to cooperate

ConvNets [17,18]. However, the unsupervised term in reconstruction-based ap-
proaches arguably conflicts with the supervised loss, which requires intra-class
invariant representations. This is the motivation for designing auto-encoders that
are able to discard information, such as the Ladder Networks [19].

Another interesting regularization criterion relies on stability. Prediction
functions which are stable under small input variations are likely to generalize
well, especially when training with small amounts of data. Theoretical works have
shown the stability properties of some deep models, e.g. by using harmonic anal-
ysis for scattering transforms [20,21] or for Convolution Kernel Machines [22]. In
addition, recent semi-supervised models incorporate a stability-based regularizer
on the prediction [23,24,25].

In this paper, we propose a new approach for regularizing ConvNets using
unlabeled data. The behavior of our model, called HybridNet, is illustrated in
Fig. 1. It consists in a “hybrid” auto-encoder with the feature extraction path
decomposed into two branches.

The top branch encoder, of parameters Wc, is connected to a classification
layer that produces class predictions while the decoder from this branch is used
to partly reconstruct the input image from the discriminative features, leading to
x̂c. Since those features are expected to extract invariant class-specific patterns,
information is lost and exact reconstruction is not possible. To complement it, a
second encoder-decoder branch of parameters Wu is added to produce a comple-
mentary reconstruction x̂u such that the sum x̂ = x̂c + x̂u is the final complete
reconstruction.

During training, the supervised classification cost impact Wc while an un-
supervised reconstruction cost is applied to both Wc and Wu to properly re-
construct the input image. The main assumption behind HybridNet is that the
two-path architecture helps in making classification and reconstruction cooper-
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ate. To encourage this, we use additional costs and training techniques, namely
a stability regularization in the discriminative branch and a branch complemen-
tarity training method.

2 Related Work

Training deep models with relatively small annotated datasets is a crucial issue
nowadays. To this end, the design of proper regularization techniques plays a
central role. In this paper, we address the problem of taking advantage of un-
labeled data for improving generalization performances of deep ConvNets with
semi-supervised learning [26].

One standard goal followed when training deep models with unlabeled data
consists in designing models which fit input data well. Reconstruction error is
the standard criterion used in (possibly denoising) Auto-Encoders [15,27,28,29],
while maximum likelihood is used with generative models, e.g. Restricted Boltz-
mann Machines, Deep Belief Networks or Deep Generative Models [16,30,31,32].
This unsupervised training framework was generally used as a pre-training before
supervised learning with back-propagation [33], potentially with an intermediate
step [34]. The currently very popular Generative Adversarial Networks [35] also
falls into this category. With modern ConvNets, regularization with unlabeled
data is generally formulated as a multi-task learning problem, where reconstruc-
tion and classification objectives are combined during training [17,18,36]. In these
architectures, the encoder used for classification is regularized by a decoder ded-
icated to reconstruction.

This strategy of classification and reconstruction with an Auto-Encoder is
however questionable, since classification and reconstruction may play contra-
dictory roles in terms of feature extraction. Classification arguably aims at ex-
tracting invariant class-specific features, improving sample complexity of the
learned model [37], therefore inducing an information loss which prevents exact
reconstruction. Ladder Networks [19] have historically been designed to overcome
the previously mentioned conflict between reconstruction and classification, by
designing Auto-Encoders capable of discarding information. Reconstruction is
produced using higher-layer representation and a noisy version of the recon-
struction target. However, it is not obvious that providing a noisy version of the
target and training the network to remove the noise allows the encoder to lose
some information since it must be able to correct low-level errors that require
details.

Another interesting regularization criterion relies on stability or smoothness
of the prediction function, which is at the basis of interesting unsupervised train-
ing methods, e.g. Slow Feature Analysis [38]. Adding stability to the prediction
function was studied in Adversarial Training [39] for supervised learning and fur-
ther extended to semi-supervised learning in the Virtual Adversarial Training
method [40]. Other recent semi-supervised models incorporate a stability-based
regularizer on the prediction. The idea was first introduced by [23] and proposes
to make the prediction vector stable toward data augmentation (translation, ro-
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tation, shearing, noise, etc.) and model stochasticity (dropout) for a given input.
Following work [24,25] slightly improves upon it by proposing variants on the
way to compute stability targets to increase their consistency and better adapt
to the model’s evolution over training.

When using large modern ConvNets, the problem of designing decoders able
to invert the encoding still is an open question [41]. The usual solution is to
mirror the architecture of the encoder by using transposed convolutions [42]. This
problem is exacerbated with irreversible pooling operations such as max-pooling
that must be reversed by an upsampling operation. In [17,18], they use unpooling
operations to bring back spatial information from the encoder to the decoder,
reusing pooling switches locations for upsampling. Another interesting option
is to explicitly create models which are reversible by design. This is the option
followed by recent works such as RevNet [43] and i-RevNet [44], being inspired
by second generation of bi-orthogonal multi-resolution analysis and wavelets [45]
from the signal processing literature.

To sum up, using reconstruction as a regularization cost added to classifica-
tion is an appealing idea but the best way to efficiently use it as a regularizer
is still an open question. As we have seen, when applied to an auto-encoding
architecture [17,18], reconstruction and classification would compete. To over-
come the aforementioned issues, we propose HybridNet, a new framework for
semi-supervised learning. Presented on Fig. 2, this framework can be seen as
an extension of the popular auto-encoding architecture. In HybridNet, the usual
auto-encoder that does both classification and reconstruction is assisted by an
additional auto-encoder so that the first one is allowed to discard information in
order to produce intra-class invariant features while the second one retains the
lost information. The combination of both branches then produces the recon-
struction. This way, our architecture prevents the conflict between classification
and reconstruction and allows the two branches to cooperate and accomplish
both classification and reconstruction tasks.

Compared to Ladder Networks [19], our two-branch approach without direct
skip connection allows for a finer and learned information separation and is thus
expected to have a more favorable impact in terms of discriminative encoder reg-
ularization. Our HybridNet model also has conceptual connections with wavelet
decomposition [46]: the first branch can be seen as extracting discriminative low-
pass features from input images, and the second branch acting as a high-pass
filter to restore the lost information. HybridNet also differs from reversible mod-
els [43,44] by the explicit decomposition between supervised and unsupervised
signals, enabling the discriminative encoder to have fewer parameters and better
sample complexity.

In this paper, our contributions with the HybridNet framework are twofold:
first, in Section 3.1, we propose an architecture designed to efficiently allow both
reconstruction and classification losses to cooperate; second, in Section 3.2, we
design a training loss adapted to it that includes reconstruction, stability in the
discriminative branch and a branch complementarity technique. In Section 4,
we perform experiments to show that HybridNet is able to outperform state-
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Fig. 2. General description of the HybridNet framework. Ec and C correspond to a
classifier, Ec and Dc form an autoencoder that we call discriminative path, and Eu

and Du form a second autoencoder called unsupervised path. The various loss functions
used to train HybridNet are also represented in yellow

of-the-art results in various semi-supervised settings on CIFAR-10, SVHN and
STL-10. We also provide ablation studies validating the favorable impact of our
contributions. Finally, we show several visualizations on CIFAR-10 and STL-10
datasets analogous to Fig. 1 to validate the behavior of both branches, with
a discriminative branch that loses information that is restored by the second
branch.

3 HybridNet: a semi-supervised learning framework

In this section, we detail the proposed HybridNet model: the chosen architecture
to mix supervised and unsupervised information efficiently in Section 3.1, and
the semi-supervised training method adapted to this particular architecture in
Section 3.2.

3.1 Designing the HybridNet architecture

General architecture. As we have seen, classification requires intra-class in-
variant features while reconstruction needs to retain all the information. To
circumvent this issue, HybridNet is composed of two auto-encoding paths, the
discriminative path (Ec and Dc) and the unsupervised path (Eu and Du). Both
encoders Ec and Eu take an input image x and produce representations hc and
hu, while decoders Dc and Du take respectively hc and hu as input to pro-
duce two partial reconstructions x̂c and x̂u. Finally, a classifier C produces a
class prediction using discriminative features only: ŷ = C(hc). Even if the two
paths can have similar architectures, they should play different and comple-
mentary roles. The discriminative path must extract discriminative features hc

that should eventually be well crafted to perform a classification task effectively,
and produce a purposely partial reconstruction x̂c that should not be perfect
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since preserving all the information is not a behavior we want to encourage.
Consequently, the role of the unsupervised path is to be complementary to the
discriminative branch by retaining in hu the information lost in hc. This way, it
can produce a complementary reconstruction x̂u so that, when merging x̂u and
x̂c, the final reconstruction x̂ is close to x. The HybridNet architecture, visible
on Fig. 2, can be described by the following equations:

hc = Ec(x) x̂c = Dc(hc) ŷ = C(hc)
hu = Eu(x) x̂u = Du(hu) x̂ = x̂c + x̂u

(1)

Note that the end-role of reconstruction is just to act as a regularizer for the
discriminative encoder. The main challenge and contribution of this paper is to
find a way to ensure that the two paths will in fact behave in this desired way.
The two main issues that we tackle are the fact that we want the discriminative
branch to focus on discriminative features, and that we want both branches to co-
operate and contribute to the reconstruction. Indeed, with such an architecture,
we could end up with two paths that work independently: a classification path
ŷ = C(Ec(x)) and a reconstruction path x̂ = x̂u = Du(Eu(x)) and x̂c = 0. We
address both those issues through the design of the architecture of the encoders
and decoders as well as an appropriate loss and training procedure.

Branches design. To design the HybridNet architecture, we start with a con-
volutional architecture adapted to the targeted dataset, for example a state-of-
the-art ResNet architecture for CIFAR-10. This architecture is split into two
modules: the discriminative encoder Ec and the classifier C. On top of this
model, we add the discriminative decoder Dc. The location of the splitting point
in the original network is free, but C will not be directly affected by the re-
construction loss. In our experiments, we choose hc (Ec’s output) to be the
last intermediate representation before the final pooling that aggregates all the
spatial information, leaving in C a global average pooling followed by one or
more fully-connected layers. The decoder Dc is designed to be a “mirror” of the
encoder’s architecture, as commonly done in the literature, e.g. [17,19,47].

After constructing the discriminative branch, we add an unsupervised com-
plementary branch. To ensure that both branches are “balanced” and behave in
a similar way, the internal architecture of Eu and Du is mostly the same as for
Ec and Dc. The only difference remains in the mirroring of pooling layers, that
can be reversed either by upsampling or unpooling. An upsampling will increase
the spatial size of a feature map without any additional information while an
unpooling, used in [17,18], will use spatial information (pooling switches) from
the corresponding max-pooling layer to do the upsampling. In our architecture,
we propose to use upsampling in the discriminative branch because we want
to encourage spatial invariance, and use unpooling in the unsupervised branch
to compensate this information loss and favor the learning of spatial-dependent
low-level information. An example of HybridNet architecture is presented in
Fig. 3.
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As mentioned previously, one key problem to tackle is to ensure that this
model will behave as expected, i.e. by learning discriminative features in the
discriminative encoder and non-discriminative features in the unsupervised one.
This is encouraged in different ways by the design of the architecture. First,
the fact that only hc is used for classification means that Ec will be pushed by
the classification loss to produce discriminative features. Thus, the unsupervised
branch will naturally focus on information lost by Ec. Using upsampling in Dc

and unpooling in Du also encourages the unsupervised branch to focus on low-
level information. In addition to this, the design of an adapted loss and training
protocol is a major contribution to the efficient training of HybridNet.

3.2 Training HybridNet

The HybridNet architecture has two information paths with only one producing
a class prediction and both producing partial reconstructions that should be
combined. In this section, we will address the question of training this architec-
ture efficiently. The complete loss is composed of various terms as illustrated on
Fig. 2. It comprises terms for classification with Lcls; final reconstruction with
Lrec; intermediate reconstructions with Lrec-interb,l (for layer l and branch b);
and stability with Ωstability. It is also accompanied by a branch complementarity
training method. Each term is weighted by a corresponding parameter λ:

L = λcLcls + λrLrec +
∑

b∈{c,u},l λrb,lLrec-interb,l + λsΩstability . (2)

HybridNet can be trained on a partially labeled dataset, i.e. that is composed
of labeled pairs Dsup = {(x(k), y(k))}k=1..Ns

and unlabeled images Dunsup =
{x(k)}k=1..Nu . Each batch is composed of n samples, divided into ns image-label
pairs from Dsup and nu unlabeled images from Dunsup.

Classification. The classification term is a regular cross-entropy term, that is
applied only on the ns labeled samples of the batch and averaged over them:

`cls = `CE(ŷ,y) = −
∑
i

yi log ŷi , Lcls =
1

ns

∑
k

`cls(ŷ
(k),y(k)) . (3)

Reconstruction losses. In HybridNet, we chose to keep discriminative and
unsupervised paths separate so that they produce two complementary recon-
structions (x̂u, x̂c) that we combine with an addition into x̂ = x̂u + x̂c. Keeping
the two paths independent until the reconstruction in pixel space, as well as the
merge-by-addition strategy allows us to apply different treatments to them and
influence their behavior efficiently. The merge by addition in pixel space is also
analogous to wavelet decomposition where the signal is decomposed into low-
and high-pass branches that are then decoded and summed in pixel space. The
reconstruction loss that we use is a simple mean-squared error between the input
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and the sum of the partial reconstructions:

`rec = ||x̂− x||22 = ||x̂u + x̂c − x||22 , Lrec =
1

n

∑
k

`rec(x̂
(k),x(k)) . (4)

In addition to the final reconstruction loss, we also add reconstruction costs
between intermediate representations in the encoders and the decoders which is
possible since encoders and decoders have mirrored structure. We apply these
costs to the representations hb,l (for branch b and layer l) produced just after

pooling layers in the encoders and reconstructions ĥb,l produced just before the
corresponding upsampling or unpooling layers in the decoders. This is common
in the literature [17,18,19] but is particularly important in our case: in addition
to guiding the model to produce the right final reconstruction, it pushes the dis-
criminative branch to produce a reconstruction and avoid the undesired situation
where only the unsupervised branch would contribute to the final reconstruction.
This is applied in both branches (b ∈ {c, u}):

Lrec-interb,l =
1

n

∑
k

||ĥ(k)
b,l − h

(k)
b,l ||

2
2 . (5)

Branch cooperation. As described previously, we want to ensure that both
branches contribute to the final reconstruction, otherwise this would mean that
the reconstruction is not helping to regularize Ec, which is our end-goal. Having
both branches produce a partial reconstruction and using intermediate recon-
structions already help with this goal. In addition, to balance their training even
more, we propose a training technique such that the reconstruction loss is only
backpropagated to the branch that contributes less to the final reconstruction
of each sample. This is done by comparing ||x̂c − x||22 and ||x̂u − x||22 and only
applying the final reconstruction loss to the branch with the higher error.

This can be implemented either in the gradient descent or simply by pre-
venting gradient propagation in one branch or the other using features like
tf.stop gradient in Tensorflow or .detach() in PyTorch:

`rec-balanced =

{
||x̂u + stopgrad(x̂c)− x||22 if ||x̂u − x||22 ≥ ||x̂c − x||22
||stopgrad(x̂u) + x̂c − x||22 otherwise

. (6)

Encouraging invariance in the discriminative branch. We have seen that
an important issue that needs to be addressed when training this model is to
ensure that the discriminative branch will filter out information and learn in-
variant features. For now, the only signal that pushes the model to do so is
the classification loss. However, in a semi-supervised context, when only a small
portion of our dataset is labeled, this signal can be fairly weak and might not
be sufficient to make the discriminative encoder focus on invariant features.

In order to further encourage this behavior, we propose to use a stabil-
ity regularizer. Such a regularizer is currently at the core of the models that
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Fig. 3. Example of HybridNet architecture where an original classifier (ConvLarge)
constitutes Ec and has been mirrored to create Dc and duplicated for Eu and Du, with
the addition of unpooling in the discriminative branch

give state-of-the-art results in semi-supervised setting on the most common
datasets [23,24,25]. The principle is to encourage the classifier’s output predic-
tion ŷ(k) for sample k to be invariant to different sources of randomness applied
on the input (translation, horizontal flip, random noise, etc.) and in the network
(e.g. dropout). This is done by minimizing the squared euclidean distance be-
tween the output ŷ(k) and a “stability” target z(k). Multiple methods have been
proposed to compute such a target [23,24,25], for example by using a second
pass of the sample in the network with a different draw of random factors that
will therefore produce a different output. We have:

Ωstability =
1

n

∑
k

||ŷ(k) − z(k)||22 . (7)

By applying this loss on ŷ, we encourage Ec to find invariant patterns in
the data, patterns that have more chances of being discriminative and useful for
classification. Furthermore, this loss has the advantage of being applicable to
both labeled and unlabeled images.

In the experiments, we tried both Temporal Ensembling [24] and Mean
Teacher [25] methods and did not see a major difference. In Temporal Ensem-
bling, the target z(k) is a moving average of the ŷ(k) over the previous pass of
x(k) in the network during training; while in Mean Teacher, z(k) is the output
of a secondary model where weights are a moving average of the weights of the
model being trained.

4 Experiments

In this section, we will study and validate the behavior of our novel framework.
We first perform ablation studies to validate the architecture and loss terms of
the model. We also propose visualizations of the behavior of the model in various
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configurations, before demonstrating the capability of HybridNet to obtain state-
of-the-art results.

In these experiments, we use three image datasets: SVHN [48], CIFAR-10 [49]
and STL-10 [50]. Both SVHN and CIFAR-10 are 10-classes datasets of 32 ×
32 pixels images. SVHN has 73,257 images for training, 26,032 for testing and
531,131 extra images used only as unlabeled data. CIFAR-10 has 50,000 training
images and 10,000 testing images. For our semi-supervised experiments, we only
keep N labeled training samples (with N/10 samples per class) while the rest
of the data is kept unlabeled, as is commonly done. STL-10 have the same
10 classes as CIFAR-10 with 96 × 96 pixels images. It is designed for semi-
supervised learning since it contains 10 folds of 1,000 labeled training images,
100,000 unlabeled training images and 8,000 test images with labels.

4.1 HybridNet framework validation

First, we propose a thorough analysis of the behavior of our model at two dif-
ferent levels: first by comparing it to baselines that we obtain when disabling
parts of the architecture, and second by analyzing the contribution of the dif-
ferent terms of the training loss of HybridNet both quantitatively and through
visualizations.

This study was mainly performed using the ConvLarge architecture [19] on
CIFAR-10 since it’s a very common setup used in recent semi-supervised ex-
periments [23,24,25]. The design of the HybridNet version of this architecture
follows Section 3 (illustrated in Fig. 3) and uses Temporal Ensembling to pro-
duce stability targets z. Additional results are provided using an adapted version
of ConvLarge for STL-10 with added blocks of convolutions and pooling.

Models are trained with Adam with a learning rate of 0.003 for 600 epochs
with batches of 20 labeled images and 80 unlabeled ones. The various loss-
weighting terms λ of the general loss (Eq. (2)) could have been optimized on a
validation set but for these experiments they were simply set so that the different
loss terms have values of the same order of magnitude. Thus, all λ were set to
either 0 or 1 if activated or not, except λs set to 0 or 100. All the details of
the experiments – exact architecture, hyperparameters, optimization, etc. – are
provided in the appendix.

Ablation study of the architecture. We start this analysis by validating
our architecture with an ablation study on CIFAR-10 with various number of
labeled samples. By disabling parts of the model and training terms, we compare
HybridNet to different baselines and validate the importance of combining both
contributions of the paper: the architecture and the training method.

Results are presented in Table 1. The classification and auto-encoder results
are obtained with the same code and hyperparameters by simply disabling dif-
ferent losses and parts of the model: the classifier only use Ec and C; and the
auto-encoder (similar to [17]) only Ec, Dc and C. For both, we can add the
stability loss. The HybridNet architecture only uses the classification and recon-
structions loss terms while the second result uses the full training loss.
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Table 1. Ablation study performed on CIFAR-10 with ConvLarge architecture

Labeled samples

Model 1000 2000 4000

Classification 63.4 71.5 79.0
Classification and stability 65.6 74.6 81.3

Auto-encoder 65.0 73.6 79.8
Auto-encoder and stability 71.8 80.4 84.9

HybridNet architecture 63.2 74.0 80.3
HybridNet architecture and full training loss 74.1 81.6 86.6

First, we can see that the HybridNet architecture alone already yields an
improvement over the baseline and the auto-encoder, except at 1000 labels. This
could be explained by the fact that with very few labels, the model fails to
correctly separate the information between the two branches because of the
faint classification signal, and the additional loss terms that control the training
of HybridNet are even more necessary. Overall, the architecture alone does not
provide an important gain since it is not guided to efficiently take advantage of
the two branches, indeed, we see that the addition of the complete HybridNet
loss allows the model to provide much stronger results, with an improvement
of 6-7 pts over the architecture alone, around 5-6 pts better than the stability
or auto-encoding baseline, and 7-10 pts more than the supervised baseline. The
most challenging baseline is the stabilized auto-encoder that manages to take
advantage of the stability loss but from which we still improve by 1.2-2.8 pts.

This ablation study demonstrates the capability of the HybridNet framework
to surpass the different architectural baselines, and shows the importance of the
complementarity between the two-branch architecture and the complete training
loss.

Importance of the various loss terms. We now propose a more fine-grain
study to look at the importance of each loss term of the HybridNet training
described in Section 3.2, both through classification results and visualizations.

First, in Table 2a we show classification accuracy on CIFAR-10 with 2000
labels and STL-10 with 1000 labels for numerous combinations of loss terms.
These results demonstrates that each loss term has it’s importance and that all
of them cooperate in order to reach the final best result of the full HybridNet
model. In particular the stability loss is an important element of the training
but is not sufficient as shown by lines b and f-h, while the other terms bring an
equivalent gain as shown by lines c-e. Both those ∼5 pts gains can be combined
to work in concert and reach the final score line i of a ∼10 pts gain.

Second, to interpret how the branches behave we propose to visualizing the
different reconstructions x̂c, x̂u and x̂ for different combinations of loss terms in
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Table 2. Detailed ablation studies when activating different terms and techniques of
the HybridNet learning. These results are obtained with ConvLarge on CIFAR-10 with
2000 labeled samples and ConvLarge-like on STL-10 with 1000 labeled samples

(a) Test accuracy (%)

L c
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a 3 71.5 65.6

b 3 3 74.6 69.8

c 3 3 72.4 67.8

d 3 3 3 74.0 –

e 3 3 3 3 75.2 –

f 3 3 3 77.7 71.5

g 3 3 3 3 77.4 –

h 3 3 3 3 80.8 72.2

i 3 3 3 3 3 81.6 74.1

(b) Visualization of partial and combined reconstructions
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c 3

d 3 3

e 3 3 3

i 3 3 3 3

c 3

d 3 3

e 3 3 3

i 3 3 3 3

Table 2b. With only the final reconstruction term (lines c), the discriminative
branch does not contribute to the reconstruction and is thus barely regularized
by the reconstruction loss, showing little gain over the classification baseline.
The addition of the intermediate reconstruction terms helps the discriminative
branch to produce a weak reconstruction (lines d) and is complemented by the
branch balancing technique (lines e) to produce balanced reconstructions in both
branch. The stability loss (lines i) adds little visual impact on x̂c, it has probably
more impact on the quality of the latent representation hc and seems to help
in making the discriminative features and classifier more robust with a large
improvement of the accuracy.

Visualization of information separation on CIFAR-10 and STL-10.
Overall, we can see in Table 2b lines i that thanks to the full HybridNet train-
ing loss, the information is correctly separated between x̂c and x̂u than both
contribute somewhat equally while specializing on different type of information.
For example, for the blue car, x̂c produces a blurry car with approximate col-
ors, while x̂u provides both shape details and exact color information. For nicer
visualizations, we also show reconstructions of the full HybridNet model trained
on STL-10 which has larger images in Fig. 4. These confirm the observations
on CIFAR-10 with a very good final reconstruction composed of a rough recon-
struction that lacks texture and color details from the discriminative branch,
completed by low-level details of shape, texture, writings, color correction and
background information from the unsupervised branch.
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Fig. 4. Visualizations of input, partial and final reconstructions of STL-10 images using
a HybridNet model derived from a ConvLarge-like architecture

4.2 State-of-the-art comparison

After studying the behavior of this novel architecture, we propose to demon-
strate its effectiveness and capability to produce state-of-the-art results for semi-
supervised learning on three datasets: SVHN, CIFAR-10 and STL-10.

We use ResNet architectures to constitute the supervised encoder Ec and
classifier C; and augment them with a mirror decoder Dc and an unsupervised
second branch containing an encoder Eu and a decoder Du using the same
architecture. For SVHN and CIFAR-10, we use the small ResNet from [51], which
is used in Mean Teacher [25] and currently achieves state-of-the-art results on
CIFAR-10. For STL-10, we upscale the images to 224×224 px and use a regular
ResNet-50 pretrained on the Places dataset.

We trained HybridNet with the training method described in Section 3.2,
including Mean Teacher to produce stability targets z(k). The training protocol
follow exactly the protocol of Mean Teacher [25] for CIFAR-10 and a similar
one for SVHN and STL-10 for which [25] does not report results with ResNet.
The hyperparameters added in HybridNet, i.e. the weights of the reconstruction
terms (final and intermediate), were coarsely adjusted on a validation set (we
tried values 0.25, 0.5 and 1.0 for both of them). Details are in the appendix.

The results of these experiments are presented in Table 3. We can see the huge
performance boost obtained by HybridNet compared to the ResNet baselines, in
particular with CIFAR-10 with 1000 labels where the error rate goes from 45.2%
to 8.81%, which demonstrates the large benefit of our regularizer. HybridNet also
improves over the strong Mean Teacher baseline [25], with an improvement of
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Table 3. Results on CIFAR-10, STL-10 and SVHN using a ResNet-based HybridNet.
“Mean Teacher ResNet” is our classification & stability baseline; results marked with
∗ are not reported in the original paper and were obtained ourselves

Dataset CIFAR-10 SVHN STL-10

Nb. labeled images 1000 2000 4000 500 1000 1000

SWWAE [17] 23.56 25.67
Ladder Network [19] 20.40
Improved GAN [53] 21.83 19.61 18.63 18.44 8.11
CatGAN [52] 19.58
Stability regularization [23] 11.29 6.03
Temporal Ensembling [24] 12.16 5.12 4.42
Mean Teacher ConvLarge [25] 21.55 15.73 12.31 4.18 3.95
Mean Teacher ResNet [25] 10.10 6.28 ∗2.33 ∗2.05 ∗16.8

ResNet baseline [51] 45.2 24.3 15.45 12.27 9.56 18.0
HybridNet [ours] 8.81 7.87 6.09 1.85 1.80 15.9

1.29 pt with 1000 labeled samples on CIFAR-10, and 0.9 pt on STL-10. We also
significantly improve over other stability-based approaches [23,24], and over the
Ladder Networks [19] and GAN-based techniques [52,53].

These results demonstrate the capability of HybridNet to apply to large
residual architecture – that are very common nowadays – and to improve over
baselines that already provided very good performance.

5 Conclusion

In this paper, we described a novel semi-supervised framework called Hybrid-
Net that proposes an auto-encoder-based architecture with two distinct paths
that separate the discriminative information useful for classification from the
remaining information that is only useful for reconstruction. This architecture
is accompanied by a loss and training technique that allows the architecture to
behave in the desired way. In the experiments, we validate the significant perfor-
mance boost brought by HybridNet in comparison with several other common
architectures that use reconstruction losses and stability. We also show that
HybridNet is able to produce state-of-the-art results on multiple datasets.

With two latent representations that explicitly encode classification informa-
tion on one side and the remaining information on the other side, our model
may be seen as a competitor to the fully reversible RevNets models recently
proposed, that implicitly encode both types of information. We plan to further
explore the relationships between these approaches.
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8. Engilberge, M., Chevallier, L., Pérez, P., Cord, M.: Finding beans in burgers:
Deep semantic-visual embedding with localization. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

9. Carvalho, M., Cadène, R., Picard, D., Soulier, L., Thome, N., Cord, M.: Cross-
modal retrieval in the cooking context: Learning semantic text-image embeddings.
Special Interest Group on Information Retrieval (SIGIR) (2018)

10. Ben-Younes, H., Cadène, R., Thome, N., Cord, M.: Mutan: Multimodal tucker
fusion for visual question answering. IEEE International Conference on Computer
Vision (ICCV) (2017)

11. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Advances in Neural Information Processing Systems (NIPS). (1992)

12. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. Journal of Machine Learning Research (JMLR)
(2016)

13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research (JMLR) (2014)

14. Blot, M., Robert, T., Thome, N., Cord, M.: Shade: Information-based regulariza-
tion for deep learning. In: IEEE International Conference on Image Processing
(ICIP). (2018)

15. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Advances in Neural Information Processing Systems (NIPS).
(2007)

16. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science (2006)



16 Thomas Robert, Nicolas Thome and Matthieu Cord

17. Zhao, J., Mathieu, M., Goroshin, R., LeCun, Y.: Stacked What-Where Auto-
encoders. In: International Conference on Learning Representations Workshop
(ICLR-W). (2016)

18. Zhang, Y., Lee, K., Lee, H.: Augmenting supervised neural networks with unsuper-
vised objectives for large-scale image classification. In: International Conference
on Machine Learning (ICML). (2016)

19. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: Advances in Neural Information Processing
Systems (NIPS). (2015)

20. Mallat, S.: Group invariant scattering. Communications on Pure and Applied
Mathematics (CPAM) (2012)

21. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI) (2013)

22. Bietti, A., Mairal, J.: Group Invariance, Stability to Deformations, and Complex-
ity of Deep Convolutional Representations. In: Advances in Neural Information
Processing Systems (NIPS). (2017)

23. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In: Advances in
Neural Information Processing Systems (NIPS). (2016)

24. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: Inter-
national Conference on Learning Representations (ICLR). (2017)

25. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In: Advances in
Neural Information Processing Systems (NIPS). (2017)

26. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Com-
puter Sciences, University of Wisconsin-Madison (2005)

27. Ranzato, M., Szummer, M.: Semi-supervised learning of compact document repre-
sentations with deep networks. In: International Conference on Machine Learning
(ICML). (2008)

28. Ranzato, M., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (June 2007)

29. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and compos-
ing robust features with denoising autoencoders. In: International Conference on
Machine Learning (ICML). (2008)

30. Ranzato, M., Poultney, C., Chopra, S., Lecun, Y.: Efficient learning of sparse
representations with an energy-based model. In: Advances in Neural Information
Processing Systems (NIPS). (2007)

31. Larochelle, H., Bengio, Y.: Classification using discriminative restricted boltzmann
machines. In: International Conference on Machine Learning (ICML). (2008)

32. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learn-
ing with deep generative models. In: Advances in Neural Information Processing
Systems (NIPS). (2014)

33. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? Journal of Machine Learning
Research (JMLR) (2010)

34. Goh, H., Thome, N., Cord, M., Lim, J.H.: Top-down regularization of deep belief
networks. In: Advances in Neural Information Processing Systems (NIPS). (2013)

35. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems (NIPS). (2014)



HybridNet: Classification and Reconstruction Cooperation for SSL 17

36. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In:
International Conference on Learning Representations (ICLR). (2016)

37. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2009)

38. Thériault, C., Thome, N., Cord, M.: Dynamic Scene Classification: Learning Mo-
tion Descriptors with Slow Features Analysis. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2013)

39. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial ex-
amples. In: International Conference on Learning Representations (ICLR). (2015)

40. Miyato, T., Maeda, S.i., Koyama, M., Nakae, K., Ishii, S.: Distributional smooth-
ing with virtual adversarial training. In: International Conference on Learning
Representations (ICLR). (2016)

41. Wojna, Z., Ferrari, V., Guadarrama, S., Silberman, N., Chen, L.C., Fathi, A.,
Uijlings, J.: The devil is in the decoder. In: British Machine Vision Conference
(BMVC). (2017)

42. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning.
Technical Report (2016)

43. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network:
Backpropagation without storing activations. In: Advances in Neural Information
Processing Systems (NIPS). (2017)

44. Jacobsen, J.H., Smeulders, A., Oyallon, E.: i-RevNet: Deep Invertible Networks.
In: International Conference on Learning Representations (ICLR). (2018)

45. Sweldens, W.: The lifting scheme: A new philosophy in biorthogonal wavelet con-
structions. In: Wavelet Applications in Signal and Image Processing III. (1995)
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A Additional visualizations of HybridNet

Additional visualizations of HybridNet behavior are presented on Fig. 5 for
CIFAR-10 and Fig. 6 for STL-10.

Fig. 5. Example of visualizations for a ConvLarge-based HybridNet (complete training
loss) on CIFAR-10. For each input image, there is block of 4 images on the figure with

the following organization:

[
x x̂
x̂c x̂u

]
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Fig. 6. Example of visualizations for a ConvLarge-like-based HybridNet (complete
training loss) on STL-10. For each input image, there is block of 4 images on the figure

with the following organization:

[
x x̂
x̂c x̂u

]
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B Experimental setup for ConvLarge on CIFAR-10

B.1 Data preprocessing and model architecture

Input images are data-augmented with a random translation of a maximum of
2 pixels with mirror padding to fill-in the missing pixels, and randomly flipped.
This constitutes the input x. We also add a Gaussian noise on x (σ = 0.15) to
obtain x̃ that is fed into the model. The model’s architecture is described on
Table 4.

B.2 Training details

The training method is similar to the one presented in recent paper using Conv-
Large [23,24,25].

The model is optimized with Adam during 60,000 batches (which corresponds
to various number of epochs depending on the number of labeled images), with
batches of 80 unlabeled samples and 20 labeled samples.

The weights of the various loss terms and the optimizer’s parameters have
base values and are varied over the training similarly to previous work using this
model. The parameters’ values and variations are summarized in Table 5. For
the ablation study, parts of the model are removed and/or some weights are set
to 0.

C Experimental setup for ConvLarge-like on STL-10

C.1 Model architecture

Input images are data-augmented with a random translation of a maximum of
12 pixels with mirror padding to fill-in the missing pixels, and randomly flipped.
This constitutes the input x. We also add a Gaussian noise on x (σ = 0.15)
to obtain x̃ that is fed into the model. The model’s architecture is detailed in
Table 6.

C.2 Training details

The model is optimized with Adam during 150,000 batches (corresponding to
300 epochs over the labeled images, 48 epochs over the unlabeled images), with
batches of 30 unlabeled samples and 2 labeled samples. Hyperparameters’ values
and scheduling over training are detailed in Table 7.

D Experimental setup for ResNet on CIFAR-10 and
SVHN

The experimental setup described below follows the one described in [25] for a
fair comparison.
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Fig. 7. Shake-Shake building block

D.1 Model architecture

The data preprocessing simply consists in a classic per-color-channel mean-
variance standardization. Images are data-augmented using random translation
of a maximum of 4 pixels with mirror padding to fill-in the missing pixels and
random flip. For SVHN, we disable image mirroring for obvious reasons.

We use the ResNet architecture with Shake-Shake building blocks described
in [51]. A Shake-Shake building block consists of 2 similar branches each con-
taining 2 convolutions, with the first one possibly having a stride greater that 1.
The two branches are averaged with a weight α (see Fig. 7 for illustration and
the original paper for details) before being added to the result of a residual
connection.

A “layer” is constituted of 4 blocks with possibly the first one having a stride
in its first convolution and all convolutions having the same number of channels.

To reverse a layer, we apply the same strategy as before. This means that only
the last transposed convolution of a decoding layer will have a smaller number
of channels and a “stride” larger than 1 to reverse the first convolution of the
corresponding layer in the encoder.

The architecture of the HybridNet based on this ResNet is described in Ta-
ble 8.

D.2 Training details for CIFAR-10

The model’s training is based on the settings of [25]. It is trained with Nesterov
SGD with a base learning rate of 0.04 with a momentum of 0.9 over 300 epochs
(one epoch correspond to one pass over the unlabeled images) with batches of 61
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unlabeled images and 19 labeled images. Hyperparameters values and scheduling
over training are detailed in Table 9.

D.3 Training details for SVHN

The model is trained with Nesterov SGD with a base learning rate of 0.04 with
a momentum of 0.9 over 150 epochs (one epoch correspond to one pass over the
unlabeled images) with batches of 265 unlabeled images and 15 labeled images.
Hyperparameters values and scheduling over training are detailed in Table 10
for SVHN.

E Experimental setup for ResNet on STL-10

E.1 Model architecture

The model is a ResNet-50 pretraind on the Places dataset available at https:

//github.com/CSAILVision/places365. We did not use a model trained on
ImageNet since the images of STL-10 have been extracted from ImageNet.

The data preprocessing simply consists in a classic per-color-channel mean-
variance standardization. Images are data-augmented using random translation
of a maximum of 30 pixels with mirror padding to fill-in the missing pixels and
random flip.

E.2 Training details

The model is trained with Nesterov SGD with a base learning rate of 0.01 with
a momentum of 0.9 over 350 epochs (one epoch correspond to one pass over the
unlabeled images) with batches of 11 unlabeled images and 5 labeled images.
Hyperparameters values and scheduling over training are detailed in Table 11.

https://github.com/CSAILVision/places365
https://github.com/CSAILVision/places365
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Table 4. Architecture of the HybridNet ConvLarge architecture for CIFAR-10

Encoders Ec and Eu

Input x̃ 32× 32× 3
Convolution 128 filters, 3× 3, same padding 32× 32× 128
Convolution 128 filters, 3× 3, same padding 32× 32× 128
Convolution 128 filters, 3× 3, same padding 32× 32× 128
Pooling Maxpool 2× 2 16× 16× 128
Dropout p = 0.5 16× 16× 128
Convolution 256 filters, 3× 3, same padding 16× 16× 256
Convolution 256 filters, 3× 3, same padding 16× 16× 256
Convolution 256 filters, 3× 3, same padding 16× 16× 256
Pooling Maxpool 2× 2 8× 8× 256
Dropout p = 0.5 8× 8× 256
Convolution 512 filters, 3× 3, valid padding 6× 6× 512
Convolution 256 filters, 1× 1, same padding 6× 6× 256
Convolution 128 filters, 1× 1, same padding 6× 6× 128
Output hc or hu 6× 6× 128

Classifier C

Input hc 6× 6× 128
Pooling Global average pool 1× 1× 128
Fully connected with Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 6× 6× 128
TConvolution 256 filters, 1× 1, same padding 6× 6× 256
TConvolution 512 filters, 1× 1, same padding 6× 6× 512
TConvolution 256 filters, 3× 3, valid padding 8× 8× 256
Upsampling 2× 2 (unpooling in Du) 16× 16× 256
TConvolution 256 filters, 3× 3, same padding 16× 16× 256
TConvolution 256 filters, 3× 3, same padding 16× 16× 256
TConvolution 128 filters, 3× 3, same padding 16× 16× 128
Upsampling 2× 2 (unpooling in Du) 32× 32× 128
TConvolution 128 filters, 3× 3, same padding 32× 32× 128
TConvolution 128 filters, 3× 3, same padding 32× 32× 128
TConvolution 3 filters, 3× 3, same padding 32× 32× 3
Output x̂c or x̂u 32× 32× 3

TConvolution stands for “transposed convolution”.
Each Convolution or TConvolution is followed by a Batch Normal-
ization layer and a LeakyRELU of parameter α = 0.1
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Table 5. Evolution of weights for ConvLarge on CIFAR-10

Value Scheduling

η 0.003 Linear decrease to 0 over the last 1/3 of the training
β1 0.9 Exponential decrease to 0.5 over the last 1/5 of the training
λc 1 Exponential increase from 0 over 800 first batches
λs 100 Exponential increase from 0 over first 1/4 of the training

and exponential decrease to 0 over the last 1/5 of the training
λr 1 Exponential decrease over the last 5% of the training

η is the learning rate, β1 the first momentum of Adam, λc the classification
weight, λs the stability weight, λr the reconstructions weights.
Exponential decrease follows the function exp(−5t2) with t ∈ [0, 1] from the
start to the end of the decreasing interval. When increasing, t goes from 1
to 0.
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Table 6. Architecture of the HybridNet ConvLarge-like architecture for STL-10

Encoders Ec and Eu

Input x̃ 96× 96× 3
Convolution 64 filters, 3× 3, same padding 96× 96× 64
Convolution 64 filters, 3× 3, same padding 96× 96× 64
Pooling Maxpool 2× 2 48× 48× 64
Convolution 128 filters, 3× 3, same padding 48× 48× 128
Convolution 128 filters, 3× 3, same padding 48× 48× 128
Pooling Maxpool 2× 2 24× 24× 128
Convolution 256 filters, 3× 3, same padding 24× 24× 256
Convolution 256 filters, 3× 3, same padding 24× 24× 256
Pooling Maxpool 2× 2 12× 12× 256
Convolution 256 filters, 3× 3, same padding 12× 12× 256
Pooling Maxpool 2× 2 6× 6× 256
Output hc or hu 6× 6× 256

Classifier C

Input hc 6× 6× 256
Convolution 512 filters, 4× 4, valid padding 3× 3× 512
Dropout p = 0.5 3× 3× 512
Convolution 512 filters, 1× 1, same padding 3× 3× 512
Dropout p = 0.5 3× 3× 512
Convolution 10 filters, 1× 1, same padding 3× 3× 10
Pooling Global average pool 1× 1× 10
Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 6× 6× 256
Upsampling 2× 2 (unpooling in Du) 12× 12× 256
TConvolution 256 filters, 3× 3, same padding 12× 12× 256
Upsampling 2× 2 (unpooling in Du) 24× 24× 256
TConvolution 256 filters, 3× 3, same padding 24× 24× 256
TConvolution 128 filters, 3× 3, same padding 24× 24× 128
Upsampling 2× 2 (unpooling in Du) 48× 48× 128
TConvolution 128 filters, 3× 3, same padding 48× 48× 128
TConvolution 64 filters, 3× 3, same padding 48× 48× 64
Upsampling 2× 2 (unpooling in Du) 96× 96× 64
TConvolution 64 filters, 3× 3, same padding 96× 96× 64
TConvolution 3 filters, 3× 3, same padding 96× 96× 3
Output x̂c or x̂u 96× 96× 3

TConvolution stands for “transposed convolution”.
Each Convolution or TConvolution is followed by a Batch Nor-
malization layer and a ELU activation.
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Table 7. Evolution of weights for ConvLarge-like on STL-10

Value Scheduling

η 0.001 Linear decrease to 0 over the last 1/10 of the training
β1 0.9 Constant
λc 1 Exponential increase from 0 over 4000 first batches
λs 300 Exponential increase from 0 over first 1/4 of the training

and exponential decrease to 0 over the last 1/4 of the training
λr 1 Exponential decrease over the last 5% of the training

η is the learning rate, β1 the first momentum of Adam, λc the classification
weight, λs the stability weight, λr the reconstructions weights.
Exponential decrease follows the function exp(−5t2) with t ∈ [0, 1] from the
start to the end of the decreasing interval. When increasing, t goes from 1
to 0.

Table 8. Architecture of the HybridNet ResNet architecture for CIFAR-10 and SVHN

Encoders Ec and Eu

Input x̃ 32× 32× 3
Convolution 16 filters, 3× 3, same padding 32× 32× 16
Shake Shake layer 4 blocks, 96 filters, 3× 3, stride 1 32× 32× 96
Shake Shake layer 4 blocks, 192 filters, 3× 3, stride 2 16× 16× 192
Shake Shake layer 4 blocks, 384 filters, 3× 3, stride 2 8× 8× 384
Output hc or hu 8× 8× 384

Classifier C

Input hc 8× 8× 384
Pooling Global average pool 1× 1× 384
Fully connected with Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 8× 8× 384
Shake Shake dec layer 4 blocks, 384 filters, 3× 3, stride 2 8× 8× 192
Shake Shake dec layer 4 blocks, 192 filters, 3× 3, stride 2 16× 16× 96
Shake Shake dec layer 4 blocks, 96 filters, 3× 3, stride 1 32× 32× 16
Output x̂c or x̂u 32× 32× 3
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Table 9. Evolution of weights for HybridNet ResNet architecture for CIFAR-10

Value Scheduling

η 0.04 Cosine decrease over the full training
λc 1 Constant
λs 300 Constant
λr 0.25 Exponential increase over the first 5 epochs
λrb,l 0.5 Exponential increase over the first 2 epochs

η is the learning rate, λc the classification weight, λs the
stability weight, λr the final reconstruction weight, λrb,l the
intermediate reconstructions weights.
Exponential decrease follows the function exp(−5t2) with
t ∈ [0, 1] from the start to the end of the decreasing interval.
When increasing, t goes from 1 to 0.
Cosine decrease follows the function cos(πt)+1 with t ∈ [0, 1]
from the start to the end of the decreasing interval.

Table 10. Evolution of weights for HybridNet ResNet architecture for SVHN

Value Scheduling

η 0.04 Cosine decrease over the full training
λc 1 Constant
λs 100 Exponential increase over the first 5 epochs
λr 0.1 Exponential increase over the first 5 epochs
λrb,l 0.2 Exponential increase over the first 2 epochs

η is the learning rate, λc the classification weight, λs the
stability weight, λr the final reconstruction weight, λrb,l the
intermediate reconstructions weights.
Exponential decrease follows the function exp(−5t2) with
t ∈ [0, 1] from the start to the end of the decreasing interval.
When increasing, t goes from 1 to 0.
Cosine decrease follows the function cos(πt)+1 with t ∈ [0, 1]
from the start to the end of the decreasing interval.
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Table 11. Evolution of weights for HybridNet ResNet architecture for STL-10

Value Scheduling

η 0.01 Exponential decrease during the last 8 epochs
β1 0.9 Exponential increase during the last 80 epochs down to 0.5
λc 0.1 Constant
λs 0.1 Exponential increase over the first 150 epochs
λr 0.01 Exponential decrease during the last 17 epochs
λrb,l 0.01 Exponential decrease during the last 17 epochs

η is the learning rate, β1 the first momentum of Adam, λc the classification
weight, λs the stability weight, λr the final reconstruction weight, λrb,l the
intermediate reconstructions weights.
Exponential decrease follows the function exp(−5t2) with t ∈ [0, 1] from the
start to the end of the decreasing interval. When increasing, t goes from 1
to 0.
Cosine decrease follows the function cos(πt)+1 with t ∈ [0, 1] from the start
to the end of the decreasing interval.


