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1 Sorbonne Université, CNRS, LIP6, 4 place Jussieu, 75005 Paris
2 Heuritech, 248 rue du Faubourg Saint-Antoine, 75012 Paris

3 Conservatoire National des Arts et Métiers, 75003 Paris
remi.cadene@lip6.fr, hedi.ben-younes@lip6.fr, matthieu.cord@lip6.fr, nicolas.thome@cnam.fr

Abstract

Multimodal attentional networks are currently state-of-
the-art models for Visual Question Answering (VQA) tasks
involving real images. Although attention allows to focus
on the visual content relevant to the question, this simple
mechanism is arguably insufficient to model complex rea-
soning features required for VQA or other high-level tasks.

In this paper, we propose MuRel, a multimodal relational
network which is learned end-to-end to reason over real im-
ages. Our first contribution is the introduction of the MuRel
cell, an atomic reasoning primitive representing interac-
tions between question and image regions by a rich vec-
torial representation, and modeling region relations with
pairwise combinations. Secondly, we incorporate the cell
into a full MuRel network, which progressively refines vi-
sual and question interactions, and can be leveraged to de-
fine visualization schemes finer than mere attention maps.

We validate the relevance of our approach with vari-
ous ablation studies, and show its superiority to attention-
based methods on three datasets: VQA 2.0, VQA-CP v2 and
TDIUC. Our final MuRel network is competitive to or out-
performs state-of-the-art results in this challenging context.

Our code is available: github.com/Cadene/
murel.bootstrap.pytorch

1. Introduction
Since the success of Convolutional Neural Networks

(ConvNets) at the ILSVRC 2012 challenge [24], Deep
Learning has become the baseline approach for any com-
puter vision problem. Beyond their outstanding perfor-
mances for perception tasks, e.g. classification or detection,
deep ConvNets have also been successfully used for new
artificial intelligence tasks like Visual Question Answering
(VQA) [4, 12, 18]. VQA requires a high level understand-
ing of images and questions, and is often considered to be a
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Figure 1. Visualization of the MuRel approach. Our MuRel
network for VQA is an iterative process based on a rich vectorial
representation between the question and visual information explic-
itly modeling pairwise region relations. MuRel is thus able to ex-
press complex analysis primitives beyond attention maps: here the
two regions corresponding to the head and the donuts are selected
based on their visual cues and semantic relations to properly an-
swer the question ”what is she eating?”

good proxy for visual reasoning. However, it is not straight-
forward to use ConvNets in a context where a high level of
reasoning is required. The question of leveraging the per-
ception power of deep CNNs for reasoning tasks is crucial if
we want to go further in visual scene understanding [16, 9].

It is also not trivial to define nor evaluate a model’s
capacity to reason about the visual modality in VQA. To
fill this need, synthetic datasets have been released, e.g.
CLEVR [16], which specific structure controls the exact
reasoning primitives required to give the answer [17, 14,
29]. However, methods that tackle the VQA problem on
real data struggle to integrate this explicit reasoning pro-
cedure. Instead, state-of-the-art methods often rely on the
much simpler attentional framework [11, 8, 20, 10]. Despite
its effectiveness, this mechanism restricts visual reasoning
to a soft selection of regions that are relevant to answer the
question. This arguably limits the modeling power of such
models to bridge the gap between the perceptual strengths
of ConvNets and the high-level reasoning demand for VQA.

In this paper, we propose MuRel, a multimodal relational
network that goes one step further towards reasoning about
questions and images. Our first contribution is to introduce
the MuRel cell, an atomic reasoning primitive enabling to
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represent rich interactions between question and image re-
gions. It is based on a vectorial representation that explicitly
models relations between regions. Our second contribution
is to embed this MuRel cell into an iterative reasoning pro-
cess, which progressively refines the internal network rep-
resentation to answer the question. The rationale of MuRel
is illustrated in Figure 1: for the question ”what is she eat-
ing”, our model focuses on two main regions (the head and
the donut) with important visual cues and semantic rela-
tions between them to provide the correct answer (”donut”).
The visual reasoning of our MuRel system is formed by this
multi-step relational module that discards useless informa-
tion to focus on the relevant regions.

In the experiments, we show additional results for ex-
plaining the behaviour of MuRel. We also provide various
ablative studies to validate the relevance of the MuRel cell
and the iterative reasoning process, and show that MuRel is
highly competitive or even outperforms state-of-the-art re-
sults on three of the most common VQA datasets: the VQA
2.0 dataset [12], VQA-CP v2 [1] and TDIUC [18].

2. Related work and contributions

Recently, the deep learning community started to tackle
complex visual reasoning problems such as relationship de-
tection [26], object recognition [9], abstract reasoning [33]
or visual causality [25], while more theoretical work at-
tempt to formalize relational reasoning [7].

But the most popular image reasoning task is certainly
Visual Question Answering (VQA), which has been a hot
research topic for the last five years [28, 4, 12, 18]. Since
the seminal work of [28], different sub-problems have been
identified for the resolution of VQA. In particular, explicit
reasoning techniques have been developed relying on the
synthetic CLEVR dataset [16]. Meanwhile, real-data VQA
systems are the test bed for more practical approaches based
on high quality visual representations or multimodal fusion
schemes.

Visual reasoning The research efforts towards VQA
models that are able to reason about a visual scene is mainly
conducted using the CLEVR dataset [16]. This artificial
dataset provides questions that require spatial and relational
reasoning on simple images coming from a visual world
with low variability. An important line of work attempts
to solve this task through explicit reasoning. In such meth-
ods [17, 14, 29], a neural network reads the question and
generates a program, corresponding to a graph of elemen-
tary neural operations that process the image. However,
there are two major downsides to these techniques. First,
their performance strongly depends on whether or not pro-
gram annotations are used to learn the program generator;
and second, they can be matched or surpassed by simpler

models that implicitly learn to reason without requiring pro-
gram annotation. In particular, FiLM [32] modulates the
visual feature map with an affine transformation whose pa-
rameters depend on the question. In more recent work, the
MAC network [15] draws inspiration from the Model-View-
Controller paradigm to design the trainable MAC cell on
which the network iterates. Finally, in [34], they reason over
all the possible pairs of objects in the picture, thus introduc-
ing relationship modeling in visual question answering.

VQA on real data An important part of the research
in VQA is focused on designing functions that can rep-
resent high-level correlations between two vector spaces.
Among these multimodal fusion algorithms, the most ef-
fective ones use second order (or higher [39]) interactions,
made tractable through sketching methods [11], or with
more success using the tensor decomposition framework
[20, 8, 38].

This line of work is often considered orthogonal to vi-
sual reasoning contributions. In a setup involving real data,
complex methods such as explicit or relational reasoning
are much more challenging to implement than with artifi-
cial images and questions. This is certainly why the most
widely used reasoning framework involves soft attention
mechanisms [5, 36]. Given a question, these models as-
sign an importance score to each region, and use them to
weight-sum pool the visual representations. Multiple atten-
tion maps (also called glimpses) can even be computed in
parallel [20, 8, 38, 39] or sequentially [37]. More complex
attention strategies have been explored, such as the Struc-
tured Attention [10], where a locally-connected graphical
structure is considered to infer the region saliency scores.
[41] also leverages a graphical structure between regions
to address weaknesses of the soft-attention mechanism, im-
proving the VQA model’s ability to count. In [31], the im-
age representation is computed using pairwise semantic at-
tention and spatial graph convolutions. The soft attention
framework is questioned in [27], where regions are hardly
selected based on the norm of their feature. Finally, recent
work of [19] simultaneously attends over regions and word
tokens through a bilinear attention network.

Importantly, the type of visual features used to feed
the VQA system has an large impact on performance.
While early work have been using fixed-grid representation
given by a fully-convolutional network (such as ResNet-152
[13]), performance can be improved using predictions from
an object detector [3]. Recently, a crucial component in the
VQA Challenge 2018 winning entry was the mix of multi-
ple types of visual features [40].

MuRel contributions In this work, we move away from
the classical attention framework [20, 11, 8, 39] widely used
in real-data VQA systems. Instead, we use a vectorial rep-



resentation, more expressive than scalar attention maps, to
model the semantic interaction between each region’s vi-
sual content and the question. In addition, we include a no-
tion of spatial and semantic context in the representations by
representing pairs of image regions through interactions be-
tween their visual embeddings and spatial coordinates. Dif-
ferently than the approach followed in [31] where a locally
connected graph structure is built, we use the relations be-
tween all possible pairs of regions.

Our MuRel network embodies an iterative process with
inspiration from works driven by the synthetic reasoning
CLEVR dataset, e.g., MAC [15] or FiLM [32], which we
adapt to the real data VQA purpose. In particular, we im-
prove the interactions between image regions and questions
by using richer bilinear fusion models and by explicitly in-
corporating relations between regions.

3. MuRel approach

Our VQA approach is depicted in Figure 3. Given an
image v ∈ I and a question q ∈ Q about this image, we
want to predict an answer â ∈ A that matches the ground
truth answer a?. As very common in VQA, the prediction â
is given by classification scores:

â = argmax
a∈A

pθ(a|v, q) (1)

where pθ is our trainable model. In our system, the im-
age is represented by a set of vectors {vi}i∈[1,N ], where
each vi ∈ Rdv corresponds to an object detected in the
picture. We also use the spatial coordinates of each region
bi = [x, y, w, h], where (x, y) are the coordinates of the
top-left point of the box, and h and w correspond to the
height and the width of the box. Note that x and w (respec-
tively y and h) are normalized by the width (resp. height) of
the image. For the question, we use a gated recurrent unit
network to provide a sentence embedding q ∈ Rdq .

In Section 3.1, we present the MuRel cell, a neural mod-
ule that learns to perform elementary reasoning operations
by blending question information into the set of spatially-
grounded visual representations. Next, in Section 3.2, we
leverage the power of this cell using the MuRel network, a
VQA architecture that iterates through a MuRel cell to rea-
son about the scene with respect to a question.

3.1. MuRel cell

The MuRel cell takes as input a bag of N visual features
si ∈ Rdv , along with their bounding box coordinates bi.
As shown in Figure 2, it is a residual function consisting
of two modules. First, an efficient bilinear fusion module
merges question and region feature vectors to provide a lo-
cal multimodal embedding. This fusion is directly followed
by a pairwise modeling component, designed to update each

Bilinear 
Fusion

Pairwise 
Relational 
Modeling 

+

skip-connection 
 si

 ŝ i

 q
 xi

 mi

Figure 2. MuRel cell. In the MuRel cell, the bilinear fusion
represents rich and fine-grained interactions between question and
region vectors q and si. All the resulting multimodal vectors mi

pass through a pairwise modeling block to provide a context-aware
embedding xi per region. The cell’s output ŝi is finally computed
as a sum between si and xi, acting as residual function of si.

multimodal representation with respect to its own spatial
and visual context.

Multimodal fusion We want to include question infor-
mation within each visual representation si. Multiple
multimodal fusion strategies have been recently proposed
[20, 11, 8, 38, 39] to model the relevant interactions be-
tween two modalities. One of the most efficient technique
is the one proposed by [8], based on the Tucker decomposi-
tion of third-order tensors. This bilinear fusion model learns
to focus on the relevant correlations between input dimen-
sions. It models rich and fine-grained multimodal interac-
tions, while keeping a relatively low number of parameters.
Each input vector si is fused with the question embedding
q using the same bilinear fusion:

mi = B (si, q; Θ) (2)

where Θ are the trainable parameters of the fusion module.
Each dimension m of mi can be written as a bilinear func-
tion in the form

∑
s,q w

s,q,mssiq
q . Thanks to the Tucker de-

composition, the tensor {ws,q,m} is factorized into the list
of parameters Θ. We set the number of dimensions in mi

to dv to facilitate the use of residual connections throughout
our architecture.

In classical attention models, the fusion between image
region and question features s and q only learns to encode
whether a region is relevant. In the MuRel cell, the local
multimodal information is represented within a richer vec-
torial form mi which can encode more complex correla-
tions between both modalities. This allows to store more
specific information about what precise characteristic of a
particular region is important in a given textual context.

Pairwise interactions To answer certain types of ques-
tion, it can be necessary to reason over multiple object that
interact together. More generally, we want each representa-
tion to be aware of the spatial and semantic context around
it. Given that our features are structured as a bag of local-
ized vectors [3], modeling the visual context of each region



is not straightforward. Similarly to the recent work of [31],
we opt for a pairwise relationship modeling where each re-
gion receives a message based on its relations to its neigh-
bours. In their work, a region’s neighbours correspond to
the K most similar regions, whereas in the MuRel cell the
neighbourhood is composed of every region in the image.
Besides, instead of using scalar pairwise attention and graph
convolutions with Gaussian kernels as they do, we merge
spatial and semantic representations to build relationship
vectors. In particular, we compute a context vector ěi for
every region. It consists in an aggregation of all the pairwise
links ri,j coming into i. We define it as ěi = maxj ri,j ,
where ri,j is a vector containing information about the con-
tent of both regions, but also about their relative spatial po-
sitioning. We use the max operator in the aggregation func-
tion to reduce the noise that can be induced by average or
sum poolings, which oblige all the regions to interact with
each other. To encode the relationship vector, we use the
following formulation:

ri,j = B (bi, bj ; Θb) + B (mi,mj ; Θm) (3)

Through the B(., .; Θb) operator, the cell is free to learn
spatial concepts such as on top of, left, right, etc. In par-
allel, B(., .; Θs) encodes correlations between multimodal
vectors (si, sj), corresponding to semantic visual concepts
conditionned on the question representation. By summing
up both spatial and semantic fusions, the network can learn
high-level relational concepts such as wear, hold, etc.

The context representation ěi that contains an aggrega-
tion of the messages ri,j provided by its neighbours updates
the multimodal vector mi in an additive manner:

xi = mi + ěi (4)

This formulation of the pairwise modelling is actually
closer to the Graph Networks [7], where the notion of re-
lational inductive biases is formalized.

Finally, the MuREL cell’s output is computed as a resid-
ual function of its input, to avoid the vanishing gradient
problem. Each visual feature si is updated as: ŝi = si+xi.

The chain of operations that updates the set of localized
region embeddings {si}i∈[1,N ] using the multimodal fusion
with q and the pairwise modeling operator is noted:

{ŝi} = MurelCell ({si}; {bi}, q) (5)

3.2. MuRel network

Mimicking a simple form of progressive reasoning, our
model leverages the power of bilinear fusions to iteratively
merge visual information into context-aware visual embed-
dings. As we can see in Figure 3, a MuRel cell iteratively
updates the region state vectors {si}, each time refining the
representations with contextual and question information.

More specifically, for each step t = 1..T where T is the
total number of steps, a MuRel cell processes and updates
the state vectors following Equation (6):

{sti} = MurelCell
(
{st−1
i }; {bi}, q

)
(6)

The state vectors are initialized with the features out-
putted by the object detector; for each region i, s0

i = vi.
The MuRel network represents each region regarding the

question, but also using its own visual context. This rep-
resentation is done iteratively, through multiple steps of a
MuRel cell. The residual nature of this module makes it
possible to align multiple cells without being subject to gra-
dient vanishing. Moreover, the weights of our model are
shared across the cells, which enables compact parametriza-
tion and good generalization.

At step t = T , the representations {sTi } are aggregated
with a global max pooling operation to provide a single vec-
tor s ∈ Rdv . This scene representation contains information
about the objects, the spatial and semantic relations between
them, with respect to a particular question.

The scene representation s is merged with the question
embedding q to compute a score for every possible answer
ŷ = B (s, q; Θy). Finally, â is the answer with maximum
score in ŷ.

Visualizing MuRel network Our model can also be
leveraged to define visualization schemes finer than mere
attention maps. Especially, we can highlight important rela-
tions between image regions for answering a specific ques-
tion. At the end of the MuRel network, the visual fea-
tures {sTi } are aggregated using a max operation, yield-
ing a dv−dimensional vector s. Thus, we can compute a
contribution map by measuring to what extent each region
contributes to the final vector. To do so, we compute the
point-wise c = argmaxi{sTi } ∈ [1, N ]dv , and measure the
occurrence frequency of each region in this vector c. This
provides a value for each region that estimates its contri-
bution to the final vector. Interestingly, this process can be
done after each cell, and not exclusively at the last one. In-
tuitively, it measures what the contribution map would have
been if the iterative process had stopped at this point. As
we can see in Figures 1,3,5, these relevance scores match
human intuition and can be used to explain the model’s de-
cision, even if the network has not been trained with any
selection mechanism.

Similarly, we are able to visualize the pairwise relation-
ships involved in the prediction of the MuRel cell. The first
step is to find i?, which is the region that is the most im-
pacted by the pairwise modeling. It is the region such that
‖ ěi

xi
‖2 is maximal (cf. Equation (4)). This bounding box is

shown in green in all our visualizations. We then measure
the contribution of every other region to i? using the oc-
currence frequencies in argmaxj ri,j . We show in red the
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Figure 3. MuRel network. The MuRel network merges the question embedding q into spatially-grounded visual representations {vi} by
iterating through a single MuRel cell. This module takes as input a set of localized vectors {si} and updates their representation using a
multimodal fusion component. Moreover, it models all the possible pairwise relations between regions by combining spatial and semantic
information. To construct the importance map at step t, we count the number of time each region provides the maximal value of maxi{st

i}
(over the 2048 dimensions).

regions whose contribution to i? is above a certain thresh-
old (0.2 in our visualizations). If there is no such region, the
green box is not shown.

Connection to previous work We can draw a comparison
between our MuRel network and the FiLM network pro-
posed in [32]. Beyond the fact that their model is built for
the synthetic CLEVR dataset [16] and ours processes real
data, some connections can be found between both models.
In their work, the image passes through multiple residual
cells, whereas we only have one cell through which we it-
erate. In FiLM, the multimodal interaction is modeled with
a feature-wise affine modulation, while we use a bilinear
fusion strategy [8] which seems better suited to real world
data. Finally, both MuRel and FiLM leverage the spatial
structure of the image representation to model the relations
between regions. In FiLM, the image is represented with
a fully-convolutional network which outputs a feature map
disposed in a fixed spatial grid. With this structure on image
features, the relations between regions are modeled with a
3× 3 convolution inside each residual block. Thus, the rep-
resentation of each region depends on its neighbours in the
locally-connected graph induced by the fixed grid structure.
In our MuRel network, the image is represented as a set of
localized features. This makes the relational modeling non
trivial. As we want to model relations between regions that
are potentially far apart, we consider that the set of regions
forms a complete graph, where each region is connected to
all the others.

4. Experiments
4.1. Experimental setup

Datasets: We validate the benefits of the MuRel cell
and the MuRel network on three recent datasets. VQA 2.0
[12] is the most used dataset. It comes with a training set,

Model VQA 2.0 VQA CP v2 TDIUC

Attention baseline 63.44 38.04 86.96
MuRel 65.14 39.54 88.20

Table 1. Comparing MuRel to Attention. Comparison of the
MuRel strategy against a strong Attention-based model on the
VQA 2.0 val, VQA-CP v2 and TDIUC datasets. Both models have
an equivalent number of parameters (∼60 million) and are trained
on the same features following the same experimental setup.

a validation set and an online testing set. We provide a
fine grained analysis on the validation set, while we com-
pare MuRel to the state-of-the-art models on the testing set.
Then, we use VQA Changing Priors v2 [2] to demonstrate
the generalization capacity of MuRel. VQA-CP v2 uses the
same data as in VQA 2.0, but proposes different distribu-
tion of answers per question between training and valida-
tion splits. Finally, we use the TDIUC dataset [18] to con-
struct a more detailed analysis of our model’s performance
on 12 well-defined types of question. TDIUC is currently
the biggest dataset for visual question answering.

Hyper-parameters: We use standard features extrac-
tion, preprocessings and loss function [11]. We use the re-
cent Bottom-up features provided by [3] to represent our
image as a set of 36 localized regions. For the question em-
bedding, we use the pretrained Skip-thought encoder from
[22]. Inspired by recent works, we use Adam as optimizer
[21] with a learning scheduler [40]. More details about the
experimental setup are given in appendix.

4.2. Model validation

We compare MuRel against models trained on the same
Bottom-up features [3] which are required to reach the best
performances.



Pairwise Iter. VQA 2.0 VQA CP v2 TDIUC

7 7 64.13 38.88 87.50
3 7 64.57 39.12 87.86
7 3 64.72 39.37 87.92
3 3 65.14 39.54 88.20

Table 2. Ablation study of MuRel. Experimental validation of
the pairwise module and the iterative processing on the VQA 2.0
val, VQA-CP v2 and TDIUC datasets.

Comparison to Attention-based model In Table 1, we
compare MuRel against a strong attentional model based on
bilinear fusions [8], which encompasses a multi-glimpses
attentional process [11]. The goal of this experiments is to
compare our approach with strong baselines for real VQA in
controlled conditions. In addition to using the same bottom-
up features, which are crucial for fair comparisons, we also
dimension the attention-based baseline to have an equiva-
lent amount of learned parameters than MuRel (∼60 mil-
lions including those from the GRU encoder). Also, we
train it following the same experimental setup to insure
competitiveness. MuRel reaches a higher accuracy on the
three datasets. We report a significant gain of +1.70 on
VQA 2.0 and +1.50 on VQA CP v2. Not only these results
validate the ability of MuRel to better model interactions
between the question and the image, but also to generalize
when the distribution of the answers per question are com-
pletely different between the training and validation set as in
VQA CP v2. A gain of +1.24 on TDIUC demonstrates the
richer modeling capacity of MuRel in a fine-grained context
of 12 well delimited question types.

Ablation study In Table 2, we compare three ablated in-
stances of MuRel to its complete form. First, we validate
the benefits of the pairwise module. Adding it to a vanilla
MuRel without iterative process leads to higher accuracy
on every datasets. In fact, between line 1 and 2, we report a
gain of +0.44 on VQA 2.0, +0.24 on VQA CP v2 and +0.36
on TDIUC. Secondly, we validate the interest of the itera-
tive process. Between line 1 et 3, we report a gain of +0.59
on VQA 2.0, +0.49 on VQA CP v2 and +0.42 on TDIUC.
Notably, this modification does not add any parameters, be-
cause we iterate over a single MuRel cell. Unsharing the
weights by using a different MuRel cell for each step gives
similar results. Finally, the pairwise module and the iter-
ative process are added to create the complete MuRel net-
work. This instance (in line 4) reaches the highest accuracy
on the three datasets. Interestingly, the gains provided by
the combination of the two methods are sometimes larger
than those of each one separately. For instance, we report a
gain of +1.01 on VQA 2.0 between line 1 and 4. This attests
to the complementary of the two modules.

Figure 4. Number of iterations. Impact of the number of steps
in the iterative process on the different question types of VQA 2.0
val.

Number of reasoning steps In Figure 4, we perform an
analysis of the iterative process. We train four different
MuRel networks on the VQA 2.0 train split, each with a
different number of iterations over the MuRel cell. Per-
formance is reported on val split. Networks with two and
three steps respectively provides a gain of +0.30 and +0.57
in overall accuracy on VQA 2.0 over the network with a
single step. An interesting aspect of the iterative process
of MuRel is that the four networks have exactly the same
amount of parameters, but the accuracy significantly varies
with respect to the number of steps. While the accuracy for
the answer type involving numbers keeps increasing, we re-
port a decrease in overall accuracy at four reasoning steps.
Counting is a challenging task: not only does the model
need to detect every occurrence of the desired object, but
also the representation computed after the final aggregation
must keep the information of the number of detected in-
stances. The complexity of this question may require deeper
relational modeling, and thus benefit from a higher number
of iterations over the MuRel cell.

4.3. State of the art comparison

VQA 2.0 In Table 3, we compare MuRel to the most re-
cent contributions on the VQA 2.0 dataset. For fairness con-
siderations, all the scores correspond to models trained on
the VQA 2.0 train+val split, using the Bottom-up visual
features [3]. Interestingly, our model surpasses both MU-
TAN [8] and MLB [20], which correspond to some of the
latest development in visual attention and bilinear models.
This tends to indicate that VQA models can benefit from
retaining local information in mulitmodal vectors instead of
scalar coefficients. Moreover, our model greatly improves
over the recent method proposed in [31] where the regions
are structured using pairwise attention scores, which are
leveraged through spatial graph convolutions. This shows
the interest of our spatial-semantic pairwise modeling be-
tween all possible pairs of regions. Finally, even though we



test-dev test-std
Model Yes/No Num. Other All All

Bottom-up 81.82 44.21 56.05 65.32 65.67[3]
Graph Att. - - - - 66.18[31]
MUTAN† 82.88 44.54 56.50 66.01 66.38[8]

MLB† 83.58 44.92 56.34 66.27 66.62[20]
DA-NTN 84.29 47.14 57.92 67.56 67.94[6]

Pythia - - - 68.05 -[40]
Counter 83.14 51.62 58.97 68.09 68.41[41]

MuRel 84.77 49.84 57.85 68.03 68.41

Table 3. State-of-the-art comparison on the VQA 2.0 dataset.
Results on test-dev and test-std splits. All these models were
trained on the same training set (VQA 2.0 train+val), using the
Bottom-up features provided by [3]. No ensembling methods have
been used. † have been trained by [6].

did not extensively tune the hyperparameters of our model,
our overall score on the test-dev split is highly competitive
with state-of-the-art methods. In particular, we are compa-
rable to Pythia [40] who won the VQA Challenge 2018.
Please note that they improve their overall scores up to
70.01% when they include multiple types of visual features
and more training data. Also, we did not report the score of
69.52% obtained by BAN [19] as they train their model on
extra data from the Visual Genome dataset [23].

TDIUC One of the core aspect of VQA models lies in
their ability to address different tasks. The TDIUC dataset
enables a detailed analysis of the strengths and limitations
of a model by evaluating its performance on different types
of question. We show in Table 4 a detailed comparison of
recent models to our MuRel. We obtain state-of-the-art re-
sults on the Overall Accuracy and the arithmetic mean of
per-type accuracies (A-MPT), and surpass by a significant
margin the second best model proposed by [35]. Interest-
ingly, we improve over this model even though it uses a
combination of Bottom-up and fixed-grid features, as well
as a supervision on the question types (hence its 100% re-
sult on the Absurd task). MuRel notably surpasses all previ-
ous methods on the Positional reasoning (+5.9 over MCB),
Counting (+8.53 over QTA) questions. These improve-
ments are likely due to the pairwise structure induced within
the MuRel cell, which makes the answer prediction depend
on the spatial and semantic relations between regions. The

RAU* MCB* QTA MuRel[30] [11] [35]

Bottom-up 7 7 3 3

Scene Reco. 93.96 93.06 93.80 96.11
Sport Reco. 93.47 92.77 95.55 96.20
Color Attr. 66.86 68.54 60.16 74.43
Other Attr. 56.49 56.72 54.36 58.19

Activity Reco. 51.60 52.35 60.10 63.83
Pos. Reasoning 35.26 35.40 34.71 41.19

Object Reco. 86.11 85.54 86.98 89.41
Absurd 96.08 84.82 100.00 99.8

Util. and Afford. 31.58 35.09 31.48 21.43
Object Presence 94.38 93.64 94.55 95.75

Counting 48.43 51.01 53.25 61.78
Sentiment 60.09 66.25 64.38 60.65

Overall (A-MPT) 67.81 67.90 69.11 71.56
Overall (H-MPT) 59.00 60.47 60.08 59.30

Overall Accuracy 84.26 81.86 85.03 88.20

Table 4. State-of-the-art comparison on the TDIUC dataset.
* trained by [18].

effectiveness of our per-region context modelling is also
demonstrated by our the improvement on Scene recogni-
tion questions. For these questions, representing the image
as a collection of independent objects shows lower perfor-
mance than replacing each of them in its spatial and se-
mantic context. Interestingly, our results on the harmonic
mean of per-type accuracies (H-MPT) are lower than state-
of-the-art. For MuRel, this harmonic metric is significantly
harmed by our low score of 21.43% on the Utility and Af-
fordances task. As these questions concern the possible us-
ages of objects present in the scene (such as Can you eat
the yellow object?), and are not directly related to the visual
understanding of the scene.

VQA-CP v2 This dataset has been proposed to evaluate
and reduce the question-oriented bias in VQA models. In
particular, the distributions of answers with respect to ques-
tion types differ from train to val splits. In Table 5, we
report the scores of two recent baselines [1, 27], on which
we improve significantly. In particular, we demonstrate an
important gain over GVQA [1], whose architecture is de-
signed to focus on Yes/No questions. However, since both
methods do not use the Bottom-up features, the fairness of
the comparison can be questioned. So we also train an at-
tention model similar to [8] using these Bottom-up region
representation. We observe that MuRel provides a substan-
tial gain over this strong attention baseline. Given the distri-
bution mismatch between train and val splits, models that
only focus on linguistic biases to answer the question are



Step #1

What game are they
playing on the WII? bowling   

Step #2 Step #3Original image

What is the 
man holding? kite  

What position is 
the front dog in? sitting  

✔

✔

✔

What is on the top 
of her head? hat  ✔

Figure 5. Qualitative evaluation of MuRel. Visualization of the importance maps with colored regions related to the relational mechanism.
As in Figure 3, the most selected regions by the implicit attentional mechanism are shown in brighter. The green region is the most impacted
by the pairwise modeling, while the red regions impact the green regions the most. These colored regions are only represented if they are
greater than a certain threshold.

Model Bottom Yes/No Num. Other Allup

HAN [27] 7 52.25 13.79 20.33 28.65
GVQA [1] 7 57.99 13.68 22.14 31.30
Attention 3 41.56 12.19 43.29 38.04

MuRel 3 42.85 13.17 45.04 39.54

Table 5. State-of-the-art comparison on the VQA-CP v2
dataset. The Attention model was trained by us using the Bottom-
up features.

systematically penalized on their val scores. This property
of VQA-CP v2 implies that the pairwise iterative structure
of MuRel is less prone to question-based overfitting than
classical attention architectures.

4.4. Qualitative results

In Figure 5 we illustrate the behaviour of a MuRel net-
work with three shared cells. Iterations through the MuRel
cell tend to gradually discard regions, keeping only the most
relevant ones. As explained in Section 3.2, the regions
that are most involved in the pairwise modeling process are
shown in green and red. Both region contributions and pair-

wise links match human intuition. In the first row, the most
relevant relations according to our model are between the
player’s hand, containing the WII controller, and the screen,
which explains the prediction bowling. In the third row, the
model answers kite using the relation between the man’s
hand and the kite he is holding. Finally, in the last row, our
model is able to address a third question on the same image
than in Figure 1 and 3. Here, the relation between the head
of the woman and her hat is used to provide the right answer.
As VQA models are often subject to linguistic bias [12, 1],
this type of visualization shows that the MuRel network ac-
tually relies on the visual information to answer questions.

5. Conclusion

In this paper, we introduced MuRel, a multimodal rela-
tional network for Visual Question Answering task. Our
system is based on rich representations of visual image re-
gions that are progressively merged with the question repre-
sentation. We also included region relations with pairwise
combinations in our fusion, and the whole system can be
leveraged to define visualization schemes helping to inter-
pret the decision process of MuRel.

We validated our approach on three challenging datasets:
VQA 2.0, VQA-CP v2 and TDIUC. We exhibited vari-



ous ablation studies, clearly demonstrating the gain of our
vectorial representation to model the attention, the use of
pairwise combination, and the multi-step iterations in the
whole process. Our final MuRel network is very compet-
itive and outperforms state-of-the-art results on two of the
most widely used datasets.
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