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Abstract

In astrophysical N-body simulations, O(N) fast multipole methods (FMMs) with dual
tree traversal (DTT) on multi-core CPUs are faster than O(N log N) CPU tree-codes but
can still be outperformed by GPU ones. In this paper, we aim at combining the best al-
gorithm, namely FMM with DTT, with the most powerful hardware currently available,
namely GPUs. In the astrophysical context requiring low accuracies and non-uniform par-
ticle distributions, we show that such combination can be achieved thanks to an hybrid
CPU-GPU algorithm on integrated GPUs: while the DTT is performed on the CPU cores,
the far- and near-field computations are all performed on the GPU cores. We show how
to efficiently expose the interactions resulting from the DTT to the GPU cores, how to
deploy both the far- and near-field computations on GPU and how to overlap the parallel
DTT on CPU with GPU computations. Based on the falcON code and using OpenCL on
AMD Accelerated Processing Units and on Intel integrated GPUs, this first heterogeneous
deployment of DTT for FMM outperforms standard multi-core CPUs, and matches GPU
and high-end CPU performance, being hence more cost- and power-efficient.

Keywords: dual tree traversal, integrated GPU, hybrid CPU-GPU algorithm, fast multipole
method, astrophysics

1 Introduction

The N -body problem describes the computation of all pairwise interactions among N bodies
(or particles). Once computed, the corresponding forces are used to update the body positions
and velocities for the next time-step. In astrophysics, such N -body simulations are essential
and widely used for galactic dynamics studies. The gravitational force computation is the most
time-consuming part and limits in practice the number of bodies, which is currently much
smaller than the number of stars in a real galaxy.

The direct computation of all pairwise interactions among N bodies leads to a prohibitive
O(N2) runtime complexity. Thanks to the mutuality of gravity (or symmetry of Newton’s third
law), which states that the force of a particle A on a particle B is the opposite of the force of B
on A, one can halve the computation cost, but this latter remains too expensive for millions of
particles. Hierarchical methods [Barnes and Hut, 1986, Cheng et al., 1999] have therefore been
introduced to reduce this runtime complexity: thanks to an octree data structure, the force field

1



is decomposed in a near-field part, directly computed, and a far-field part approximated with
various expansions. In astrophysics, the O(N lgN) Barnes-Hut tree-code is one of the most
used parallel algorithms on CPUs [Springel, 2005], and also on GPUs [Bédorf et al., 2012, 2014,
Burtscher and Pingali, 2011] with increased performance compared to CPUs.

Dehnen’s fast multipole method (FMM) [Dehnen, 2002] is one order of magnitude faster
than serial executions of Barnes-Hut tree-codes [Dehnen, 2002, Fortin, P. et al., 2011], thanks
to the O(N) FMM operation count, to the use of cartesian Taylor expansions and to its dual
tree traversal (DTT). Parallel implementations of this DTT-based FMM have been successfully
obtained on multi-core CPUs thanks to task programming [Dehnen, 2014, Lange and Fortin,
2014, Taura et al., 2012]. Along with SIMD processing, these can compete with GPU tree-codes
but usually still lag behind [Lange and Fortin, 2014, Yokota, 2013].

In this paper, we aim at combining the best algorithm, namely FMM with DTT, with the
most powerful hardware currently available, namely GPUs, for astrophysical simulations. This
is achieved thanks to an hybrid CPU-GPU algorithm deployed on integrated GPUs (iGPUs),
such as AMD APUs (Accelerated Processing Units) and Intel iGPUs.

1.1 Related work and positioning

Within fast multipole methods, the dual tree traversal enables a simple and flexible yet very
efficient octree traversal, which naturally adapts to non-uniform distributions of particles [Teng,
1998, Warren and Salmon, 1995, Yokota, 2013]. Such DTT-based FMMs have been first applied
to astrophysics with the serial falcON code (Force ALgorithm with Complexity O(N)) of W.
Dehnen [2002], but then also to molecular dynamics [Coles and Masella, 2015, Lorenzen et al.,
2012].

We rely on the pfalcON code1 where the DTT is performed in parallel on multi-core CPUs
thanks to task synchronizations based on atomic operations [Lange and Fortin, 2014]. Another
task-based DTT parallelization has been achieved thanks to a rewriting of the DTT [Taura
et al., 2012] and implemented in the exaFMM code2. Both codes offer very good scaling on
multi-core CPU architectures, as well as on many-core ones like Intel Xeon Phi processors
[Abduljabbar et al., 2017, Lange and Fortin, 2014]. Since the falcON code is dedicated to
astrophysical simulations, pfalcON is slightly faster than exaFMM for such simulations [Lange
and Fortin, 2014].

While the FMM has already been deployed on GPUs in numerous works [Choi et al., 2014,
Gumerov and Duraiswami, 2008, Hamada et al., 2009, Hu et al., 2011, Lashuk et al., 2009,
Overman et al., 2013, Rahimian et al., 2010, Yokota and Barba, 2011], none of these works
applies to the DTT-based FMM. Indeed due to its double recursion, obtaining an efficient
DTT on many-core architectures like GPUs is difficult. And to our knowledge, no other FMM
variant has been shown to be faster for astrophysical simulations than the DTT-based FMM
with cartesian Taylor expansions.

In Yokota and Barba [2011] the FMM deployment on GPU is performed by concatenating
all source particles and expansions in a large buffer that is then transfered over the PCI bus to
the discrete GPU. This approach is well-suited for moderately or highly accurate FMMs (e.g.
for molecular dynamics), where the average relative error with respect to the forces obtained
by direct summation (i.e. exact computations without FMM approximation) has to be small
enough. However in our astrophysical context, we can rely on a low accuracy FMM where
the average relative force error can be between 10−2 and 10−3. This implies a low number of
expansion terms (6 in the multipole expansions and 20 in the local expansions), as well as a low

1Available at: https://pfalcon.lip6.fr
2See: https://github.com/exafmm/exafmm
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Table 1: Data requirements and estimated transfer time (considering transfers from host to
GPU and from GPU to host) over a PCI-E 3.0 (considering a sustained bandwidth of 12 GB/s)
for a 10M Plummer distribution on a discrete GPU.

Source particles 2.67 GB
Target particles 0.30 GB
Multipole expansions 3.07 GB
Local expansions 0.09 GB

Transfer time 0.53 s

number of particles per cell (up to 32 on CPU). These in turns reduce the compute intensity of
both far- and near-field computations. In the end, as shown in Table 1, following the strategy
described in Yokota and Barba [2011] leads in our case to a too large share of PCI transfer time
in the overall computation: we emphasize indeed that in order to compete with high-end CPU
and GPU implementations, we have to target less than 1s for 10M particles [Lange and Fortin,
2014]. Moreover, the time required on CPU to copy all the source data will also become non
negligible for such low accuracies, and we may also face memory problems on the limited GPU
memory when N increases. In order to overcome these issues, we will thus aim at minimizing
the data volume exchanged by the CPU and the GPU, while relying on integrated GPUs to
reduce the data exchange cost. We are not aware of any previous work regarding the FMM
deployment on integrated GPUs.

1.2 Contributions

In this paper, we present the first CPU-GPU heterogeneous deployment of a fast multipole
method based on dual tree traversal, using integrated GPUs. This is also, to our knowledge,
the first FMM deployment on integrated GPUs. Such deployment requires a new hybrid CPU-
GPU algorithm, where the DTT is performed on the CPU cores, and all the computations are
performed on the iGPU cores.

We propose and discuss different strategies, along with their data-structures, to expose all
interactions resulting from the DTT performed on the CPU cores to the iGPU cores (Sects. 3
& 4). We also show how to efficiently perform the two main computations (the far-field and
near-field ones) on the iGPU in our specific context: due to the low accuracy required in as-
trophysics, we have here numerous independent fine-grain computations, with largely varying
particle numbers for the near-field part (Sects. 3 & 4). We also detail the impact of the archi-
tecture differences between the AMD APU and the Intel iGPU on our optimizations and on
their performance. Relying on the task-based parallelism introduced in pfalcON, we also design
a parallel DTT that can be overlapped with the GPU computations (Sect. 5).

All this is implemented in OpenCL in the pfalcON code (based itself on the falcON code)
as pfalcON-iGPU, and a performance comparison is finally performed between pfalcON-iGPU
on integrated GPUs, pfalcON on multicore CPUs and the Bonsai code (currently one of the
fastest GPU tree-codes [Bédorf et al., 2012, 2014]) on GPU (Sect. 6).

We first start with a description of N -body algorithms, especially Dehnen’s algorithm, in
Sect. 2 where we also present these integrated GPUs.
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2 N-body algorithms and integrated GPUs

2.1 N-body algorithms

We focus here on galactic simulations and on hierarchical N -body algorithms. We do not
consider otherN -body algorithms such as those based on Particle-Mesh methods [Springel, 2005]
for example. In the hierarchical methods, the 3D particle space is hierarchically decomposed
by means of an octree. This octree is built by inserting particles one by one and by subdividing
octree leafs containing more than a given maximum number of particles, denoted by Ncrit.
The optimal Ncrit is usually practically determined and roughly balances the direct (near-field)
computation cost with the approximate (far-field) computation cost.

2.2 Barnes-Hut tree-codes

The Barnes-Hut tree-code algorithm [Barnes and Hut, 1986] computes the gravitational forces
among N particles with a O(N lnN) runtime complexity thanks to monopole (and possibly
quadrupole) moments. For each target body, the octree is here recursively traversed and “body-
cell” or “body-body” interactions are evaluated depending on the multipole acceptance criterion
(MAC):

D

r
< θ ,

where D denotes the octree cell side length, r is the distance from the target body to the cell
center of mass, and θ is an input parameter that balances accuracy and computation cost.
Such expansions are well-suited for the relatively low accuracies required in astrophysical N -
body simulations, where a relative force error of few 10−3 is usually adequate. The loop on
the target bodies is parallel which enables CPU parallel implementations with multi-threading
and/or with MPI [Springel, 2005]. This inherent parallelism has also been efficiently exploited
to develop GPU implementations that run entirely on the GPU [Bédorf et al., 2012, 2014,
Burtscher and Pingali, 2011]. For example, the Bonsai code3, which relies on monopole and
quadrupole moments and on a specific MAC, enables speedups around 20 on GPU compared
to a multi-core CPU implementation [Bédorf et al., 2012].

2.3 Fast multipole methods for astrophysics

Dehnen’s algorithm [Dehnen, 2002] can be considered as a fast multipole method [Cheng
et al., 1999] specific to the relatively low accuracies required in astrophysics. This O(N) algo-
rithm indeed relies on “cell-cell” interactions. This requires specific, low accuracy local expan-
sions based on cartesian Taylor expansions, and a specific MAC that can balance (along with
the expansion order, which is fixed to 3) the accuracy and the computation cost. This MAC is
defined for two cells (A,B) (see Fig. 1(a)) as:

rA,max + rB,max

R
< θ ,

where rC,max denotes an upper limit for the distance of any body within the node C from its
center of mass [Dehnen, 2002]. Once the octree has been built using at most Ncrit particles per
octree leaf, the multipole expansions are calculated during an upward pass in the octree. The
interactions are then computed in the following two steps.

The first step (interaction phase) is presented in Algorithm 1 and relies on the dual tree
traversal (DTT) presented in Fig. 1. If the MAC succeeds between two cells (A,B), their

3See: https://github.com/treecode/Bonsai
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Figure 1: Dual tree traversal in Dehnen’s algorithm.

interactions can be approximated: both local expansions of A and B are updated based on the
multipole expansions of A and B (M2L - multipole-to-local - operation) as shown in Fig. 1(a).
More precisely, once the contribution of the multipole expansion of B on the local expansion of
A has been computed, we can at low cost deduce the opposite contribution (of the multipole
expansion of A on the local expansion of B) using the mutuality of M2L interactions. The DTT
algorithm enables indeed to consider both operations at the same time. If the MAC fails, the
larger cell (B here) is split and the MAC is applied between A and all the children of B (see Fig.
1(b), with 8 children in 3D). This is applied recursively, and A can then be split when the MAC
fails with A as the larger cell (see Fig. 1(c)). This thus leads to a dual recursive traversal of
the octree. When the MAC fails for two octree leafs, or when the number of particles is too low
(depending on empirical thresholds [Dehnen, 2002]), the direct computation (P2P - particle-to-
particle - operation) is used instead of the expansions. Thanks to this DTT, Dehnen’s algorithm
consistently uses the mutuality of the interactions to (approximately) halve the computation
cost in the near-field part as well as in the far-field part. This DTT also enables to better
preserve the total momentum than tree-codes [Dehnen, 2002].

Once the interaction phase has traversed all the cells, the evaluation phase is used to evalu-
ate the local expansion of each cell for each body within this cell. This is performed thanks to
a (simply) recursive downward pass of the octree. The interaction and evaluation steps corre-
spond together to the most time consuming part. The octree construction has a non-negligible
computation time, but does not have to be performed at every time-step. Moreover, the DTT-
based interaction step represents around 95% of the total time for both the interaction and
evaluation steps, which makes it crucial for the overall performance.

2.4 falcON and pfalcON codes

Dehnen’s algorithm has been implemented in the falcON 4 code which offers O(N) computation
times one order of magnitude smaller than serial executions of Barnes-Hut tree-codes [Dehnen,
2002, Fortin, P. et al., 2011]. Moreover, these computation times are much less sensitive to the
distribution of particles: this is very important for astrophysical simulations where the particle
distributions representing galaxies or groups of galaxies are highly non-uniform.

4Available in http://carma.astro.umd.edu/nemo/
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Algorithm 1 Interact(cell A, cell B)

1: if (MAC fails between A and B) then
2: if (A = B) then
3: for all pairs {a, aa} of children of A do
4: Interact(a, aa)
5: end for
6: else if rA,max > rB,max then
7: for all children a of A do
8: Interact(a, B)
9: end for

10: else
11: for all children b of B do
12: Interact(A, b)
13: end for
14: end if
15: else
16: Approximate interaction (A, B)

17: end if

Figure 2: OpenCL compute and memory models.

In Lange and Fortin [2014], falcON has been parallelized in pfalcON on multi-core CPUs
and on Intel Xeon Phi thanks to task-based parallelism (e.g. with OpenMP). The mutuality
of the interactions is here fully preserved, but introduces write conflicts among tasks that are
updating the local expansion of the same cell via different M2L operations. These conflicts are
handled via atomic operations emulating fast locks. Moreover, the near-field part is vectorized
using the SPMD-on-SIMD model of ispc5.

In the rest of the paper, we will target a reference (non-uniform) astrophysical model, the
Plummer distribution [Fortin, P. et al., 2011], with 10M particles. We compute both forces and
potentials, for all particles, with single precision floating point arithmetic. We also use in each
code appropriate softenings for the near-field part of the gravity [Fortin, P. et al., 2011].

2.5 Integrated GPUs

We will target two integrated GPUs with different hardware features. The first is an AMD APU
(A10-7850K) which associates two 2-way SMT CPU cores with eight iGPU compute units based
on the scalar GCN (Graphics Core Next) micro-architecture. On AMD GPU, each compute
unit contains 64 processing elements and work-items are SIMD processed by wave-fronts of 64
work-items. A more detailed presentation of this AMD APU can be found in Said et al. [2018].

The second integrated GPU architecture studied here is an Intel Iris Pro Graphics P6300
(GT3e, Gen8 architecture) within an Intel Xeon E3-1285L v4 processor. The four 2-way SMT
CPU cores are associated with 48 compute units on the iGPU. Each compute unit contains
two SIMD FPUs that can concurrently perform four 32-bit flops each. On the software side
however, the SIMD width can range from 1 to 32; SIMD-8, SIMD-16, and SIMD-32 being the
most common SIMD-widths in OpenCL. More details on this Intel Processor Graphics Gen8
architecture can be found in Intel [2015].

On both architectures, the iGPU shares the same die as the CPU cores and can directly
access the CPU main memory via specific zero-copy buffers where a large fraction of the main
memory can be allocated. This enables to avoid explicit copies between the main memory and
the GPU memory, to alleviate the possible performance bottleneck on discrete GPUs due to

5Intel SPMD Program Compiler, see:
https://ispc.github.io/
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the PCI bus, and to allocate more memory than within a discrete GPU. Moreover, these iGPUs
(along with their CPU) are usually more compute powerful than standard CPUs, but offer lower
compute power and memory bandwidth than discrete GPUs [Said et al., 2018]. The possible
performance gains over discrete GPUs depend thus on the application and algorithm features
(frequency and volume of PCI transfers, proportion of work deported on GPU. . . ).

We will rely on OpenCL programming, whose compute and memory models are presented
in Fig. 2, since OpenCL SDKs and drivers are available on both the AMD and Intel integrated
GPUs. Written with the SPMD (Single Program, Multiple Data) programming model, the
OpenCL kernels are launched by the host (CPU) on the device (here the integrated GPU) within
a command queue, and executed independantly among multiple work-groups. The work-groups
are distributed on the different compute units, each work-group being made of work-items
that are SIMD executed on the processing elements (PEs) of the compute unit. The memory
model of OpenCL allows different levels of sharing between work-items: the global memory
is accessible by all work-items, the local memory is shared within a work-group and register
values are private to each work-item. We refer the reader to AMD [2015a,b], Intel [2017] for
more details on OpenCL programming on these architectures.

Finally, the fine-grain SVM (Shared Virtual Memory) OpenCL 2.x feature supports concur-
rent writes in the same OpenCL buffer from both the host and the iGPU device: this could have
enable some computations to be more efficiently performed on the CPU (e.g. near-field com-
putations with very low number of particles). However, such computations better processed
on CPU are minority and we prefer to avoid possible performance overheads with fine-grain
SVM (e.g. to maintain coherency between CPU and GPU caches). That is why we perform all
computations on the iGPU, and we thus rely here on OpenCL 1.2 only.

3 The far-field part

We start our description of the DTT-based FMM deployment on integrated GPUs with the
far-field part, which translates to numerous independent M2L computations. However, one has
to ensure that two M2L computations will not concurrently update the same local expansion.
Indeed, due to the use of the mutuality of the M2L interactions to save computations in the
far-field part, a M2L operation between cells A and B will update the local expansions of both
cells and can then conflict with a M2L operation between cells A and C. We present here several
strategies to synchronize the M2L computations and avoid such conflicts, considering in this
section only one thread performing a serial DTT on CPU.

3.1 Preserving mutuality

We start with three strategies that preserve the mutuality of M2L interactions, hence saving
M2L computation costs. These strategies are also based on the most simple data structure,
rapidly written by the CPU and read by the GPU, to store the M2L interactions.

The first one, referred to as atomic float, relies on emulating atomic additions on floating-
point variables. Since there is no such atomic operation in OpenCL, we emulate them with a
loop over the OpenCL 1.2 “compare-exchange” atomic operation. Each M2L computation is
then assigned to one work-item, and each local expansion coefficient is updated (in both cells)
thanks to these atomic additions on floating-point variables. Contrary to other works such
as Hamada et al. [2009], Yokota and Barba [2011] where each M2L operation was performed
by a work-group, we use here only one work-item since the expansion orders are lower due
to the low accuracies required in astrophysics. This results in massive, regular and rather
fine-grained parallelism which is well suited for GPU processing, contrary to many GPU-based
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FMMs [Gumerov and Duraiswami, 2008, Hu et al., 2011, Lashuk et al., 2009, Overman et al.,
2013, Rahimian et al., 2010] where the far-field part is not efficiently processed on GPU, and
hence often computed on CPU. In order to expose to the GPU cores all the M2L interactions
that have to be performed, we simply use here a large buffer (named the interaction buffer)
where all pairs of cell indices involved in a M2L operation are consecutively written by the CPU
thread during the DTT. This interaction buffer is created and used as a zero-copy buffer for
fast data accesses by the iGPU. We also use zero-copy buffers for buffers storing the multipole
and local expansions and the octree cells (as well as for the buffer storing the particles).

The second strategy, referred to as atomic bit, aims at reducing the number of atomic
operations performed and is close to our multi-core CPU parallelization of the DTT [Lange and
Fortin, 2014]. We use here atomic operations on a specific bit within the cell data structure to
emulate locks and ensure exclusive access to the cell local expansion. When a work-item needs
to update the local expansion of a given cell, it first has to set this bit to 1 while checking that
the bit was not already set to 1 (by another work-item): this is performed by an atomic or
operation. In case the bit was already set to 1, we use busy waiting (with the required memory
fence) since the cell update is a very fast operation. When the update is over, the bit is reset to
0 by an atomic and operation: such write must be preceded by a memory fence to ensure that
the write is performed after the computation.

During the DTT it is however likely that a given cell will be involved in multiple consecutive,
or very close, M2L operations. As an example if MAC(A,B) fails but MAC(A,Bi) succeeds for
the 8 Bi children of B, we will have to successively perform 8 M2L operations with A. When
considering a work-group with multiple work-items, this implies that multiple work-items within
the same work-group will try to obtain exclusive access to the same cell. Since the work-groups
are (partly) processed in SIMD, this will result in strong contention on our bit locks. We have
therefore proposed a third strategy, extending atomic bit6 and referred to as stridden atomic
bit, where successive M2L operations output by the DTT are written with a given stride in
memory and then in a cyclic way to fill a sub-part of the interaction buffer. On an APU, we
use for example a stride of 256 and cyclically fill an array of size 8*256 before writing further
in memory.

3.2 Forsaking mutuality

We now present two more strategies that forsake the mutuality of M2L interactions: this will
prevent us from saving M2L computation cost, but will enable us to avoid any synchronization
costs.

When considering a M2L operation between cells A and B, the first strategy, referred to as
sort no-mutual, writes in the interaction buffer the two couples (A,B) and (B,A) (where the
first element is the target cell) instead of the pair {A,B} (where both elements were target and
source cells) as in the previous strategies with mutuality. We then sort the interaction buffer
according to the first element of all couples, and compute for each target cell C the offset in
the interaction buffer of the first couple (C, . . .) and the number of such (C, . . .) couples. We
then launch the M2L kernel with one work-item per cell: each work-item processes all M2L
computations (without mutuality) where its corresponding cell is involved as a target cell. No
two work-items are thus writing in the same local expansion.

In order to avoid the sorting as well as the computations of the offsets and of the interaction
numbers, we propose a last strategy, referred to as no-mutual. We use here a specific data
structure to store, for each target cell C, the list of source cell indices involved in a M2L
interaction with C. This data structure is depicted in Fig. 3. The large interaction buffer

6Such extension could also have been applied to atomic float.
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Figure 3: Interaction buffer set for no-mutual and no-mutual WG strategies.

(InterBuf array in Fig. 3) is here divided in blocks of several source cell indices all related
to the same target cell; the block size being chosen as a cache line multiple. Thanks to two
auxiliary arrays (Start and Indexing arrays in Fig. 3), storing respectively the first block index
for each cell and the next block index for each block, these blocks form a linked list for each
target cell C. During the DTT, when encountering a M2L interaction with C as the target cell,
we add the source cell index to the current block in the linked list associated to C. If the block
is full, we reserve a new block in the large interaction buffer and add it to the linked list. Only
three arrays, referred to as interaction buffer set, are hence required and stored as zero-copy
buffers. Our implementation has been designed so that the filling of these interaction buffers
is a fast operation for the CPU. On the GPU, the work-item in charge of the target cell C has
then to browse the corresponding linked list to retrieve all the source cell indices involved in a
M2L interaction with C and to perform all these computations.

3.3 Forsaking mutuality without divergence

As the number of M2L interactions varies from a target cell to another, this introduces compute
divergence among the work-items, hence a possible performance drop due the SIMD processing
of these work-items.

We thus propose a variant for each of the two last strategies (sort no-mutual and no-mutual).
Instead of having one work-item per target cell, we now use one work-group per target cell C:
each work-item within this work-group will process one M2L computation with C as target cell.
The two corresponding strategies are named sort no-mutual WG and no-mutual WG. It can
be noticed that for no-mutual WG, the block size in the large interaction buffer has to be a
work-group size multiple to ease the GPU browsing of the linked list.

One has of course to perform a reduction, thanks to the OpenCL local memory, on the local
expansion terms among all work-items of each work-group. Here distinct implementations are
required for the APU and the Intel iGPU due to architectural differences.

Reductions on AMD APU. Since there are 64 work-items per wave-front on the AMD
APU, and 20 terms in the local expansions used in falcON, our best reduction implementation
on APU is specific to this configuration. Moreover, the GPU local memory of the APU contains
32 banks, each bank being four bytes wide (which corresponds to a local expansion term),
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Figure 4: Performance comparison of the M2L synchronizations on the APU. None indicates
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synchronizations (hence with wrong results).

and bank conflicts being determined by the memory addresses accessed by each half wavefront
of 32 work-items [AMD, 2015a]. Considering a 1D work-group size of 64, we thus split the
wave-front in two subparts of 32 work-items, and within each subpart each of the 20 first work-
items accumulates the contributions of its subpart for a given local expansion term. The loop
is manually unrolled with a factor of 4. A final step enables the 20 first work-items of the
work-group to accumulate the contributions of the two subparts in the local expansion stored in
global memory. Hence, no bank conflict are issued and we keep 62.5% of the work-items busy
for most of the reduction.

In order to assess the efficiency of our reductions we compare the performance of the M2L
kernel with a theoretical lower bound performance where reductions are performed in local
memory without synchronizations (hence leading to wrong results): our specific reduction leads
to an overhead of 28%, which is satisfactory since the M2L kernel time will be minority in the
overall iGPU computation (see Sect. 5.1).

Reductions on Intel iGPU. We implement also specific reductions on Intel iGPU, here
for all 1D work-group sizes equal to power of 2. On such architecture, the local memory is
organized as 16 banks, each bank being four bytes wide (which corresponds to a local expansion
term). Let s be the 1D work-group size, and b be the minimum between s and 16, the 16 first
local expansions terms are processed by blocks of b terms. Each term in this block is reduced
by work-group subparts of at most 16 work-items in a similar way as for our specific APU
reductions. The remaining 4 last terms are also processed in a similar way using subparts of 4
work-items, each work-item partly accumulating a given local expansion term. Loops are also
manually unrolled with a factor of 4.

Compared to the theoretical lower bound performance of (wrong) reductions without syn-
chronizations in local memory, we have on Intel iGPU a low overhead of 8.6%, which validates
the efficiency of our reductions on Intel iGPU.

3.4 Performance results

Figure 4 presents a performance comparison of the different M2L synchronizations. First, the
atomic float synchronizations are too expensive. Then, contrary to the multi-core CPU case
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(see [Lange and Fortin, 2014]) where the atomic bit synchronizations were fast, infrequent and
interleaved with other computations, this strategy implies a too strong overhead on GPU. Using
stridden atomic bit, we can however strongly reduce the bit lock contention. But forsaking the
mutuality of the interactions with the no-mutual strategies leads to better results. Best results
are obtained with sort no-mutual WG and no-mutual WG, where the reduction overhead is
largely offset by the performance gain due to the decrease in compute divergence. In the end,
we prefer no-mutual WG over sort no-mutual WG (on both the APU and the Intel iGPU) since
the latter has extra costs (not shown here) for sorting and for computing the offsets and the
interaction numbers.

With respect to an unreachable performance lower bound exploiting the mutuality of inter-
actions with no synchronization overhead (see the None bar), one can see that the no-mutual
WG strategy is less than twice longer which confirms the relevance of this strategy.

4 The near-field part

The direct computation of the near-field part is a classical HPC kernel, and its efficient GPU
deployment has been extensively studied (e.g. [Nyland et al., 2007]). Numerous implementations
are publicly available: in the CUDA SDK code samples7 (also available in OpenCL in CUDA
SDK 4.1), in the AMD OpenCL SDK 2.8 and in other OpenCL tutorials8. They use local
memory to reduce global memory accesses to the source bodies, as well as loop unrolling. It has
to be noticed that all these HPC implementations do not exploit the mutuality of gravity: it is
indeed more efficient to perform twice the direct computations than to introduce divergence with
the mutuality of gravity. The compute core of our P2P kernel relies on such implementations,
however these are designed for one (very) large P2P operation involving thousands of bodies.
In our case, we rather have to deal with numerous independant P2P operations involving few
bodies (up to 64 in practice). This relates to GPU deployments of adaptive FMMs (without
DTT) such as [Hamada et al., 2009, Lashuk et al., 2009, Overman et al., 2013, Rahimian et al.,
2010, Yokota and Barba, 2011].

We choose to consider one work-group per P2P operation, even with our low number of
particles per cell. Using one work-item per P2P operation as in the M2L strategies, would have
introduced a too coarse computation grain per work-item, which is not best adapted to GPU
computing. This would also have prevented the use of local memory and would have introduced
compute divergence among the work-items (each P2P operation involving different numbers of
source and target bodies).

4.1 P2P synchronization strategies

Following the results obtained for the far-field part, we have implemented only two strategies
for the near-field part. The first one (atomic float) uses a large interaction buffer where all pairs
of cell indices involved in a P2P operation are consecutively (and quickly) written by the CPU
thread during the DTT. We then launch one work-group per {A,B} pair, and this work-group
has to compute the direct interactions between A and B (first A ← B then A → B). Here
emulated atomic additions on floating-point variables (see Sect. 3.1) are used to handle the
write conflicts arising when two work-groups update the same cell.

7http://docs.nvidia.com/cuda/cuda-samples
8See for example:

http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html, or:
https://developer.apple.com/library/content/samplecode/OpenCL_NBody_Simulation/Introduction/

Intro.html
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The second one, named no-mutual WG, is directly based on the M2L no-mutual WG strategy.
The large interaction buffer stores one linked list for each target cell C, containing indices of
all source cells involved in a P2P interaction with C (see Fig. 3). We then launch one work-
group per target cell, and no synchronization is here required among work-groups. This can be
related to the sparse U-List of the kernel-independent adaptive FMM (without DTT) mentioned
in Lashuk et al. [2009].

4.2 P2P specific optimizations

For best performance, our P2P kernel must be able to support various work-group sizes and
various Ncrit values. Since moreover most cells do not have Ncrit particles, one of our main
challenges was to minimize the number of idle work-items.

Let Ntgt (respectively Nsrc) be the number of bodies in the target (resp. source) cell, and
s be the P2P (1D) work-group size. When s ≥ Ncrit, we generalize the technique presented
in Nyland et al. [2007] where multiple work-items contribute to the computation of a given
target body. We refer to this technique as multi-work-item. In our code, this work-item number
is computed dynamically as bs/Ntgtc to best adapt this technique to each P2P computation.
When s < Ncrit, multi-work-item is not used since this leads to worse performance: the extra
number of required registers implies indeed a lower GPU occupancy.

Since Nsrc can be low, and in order to best benefit from the loop unrolling, we prefer to fill
the local memory array (containing s bodies) with bodies from different cells (when considering
no-mutual WG). In Yokota and Barba [2011], this is naturally obtained since the source bodies
of all source cells are stored contiguously in memory. In our case however, we only expose the
source cell indices to the GPU. It is up to the P2P GPU kernel to dynamically concatenate
in local memory the source bodies from multiple source cells scattered in global memory. In
this purpose, each work-item loads in local memory the first particle index and the number
of particles of one source cell. Then each work-item browses these data in order to compute
the source particle index that it will have to load in local memory. Once the work-group has
loaded s bodies in local memory, or when there is no more source body, we proceed with the
computation, with a manual loop unrolling by a factor of 4 (best value according to our tests).

Since source bodies are processed by multiple chunks of s bodies, we also have to loop over
all target bodies when s < Ncrit for each chunk of source bodies. The target bodies are then
also stored in local memory in order to avoid multiple global memory accesses. The s < Ncrit
case also complicates the own computation.

We also tried to better exploit multi-work-item by forcing its usage to further reduce the
number of idle work-items (for example when s/2 < Ntgt < s), but to no avail.

As final remarks, the falcON code does not build cells with one single particle and relies
directly on the body data structure (referred to as leaf in falcON). This leads us to a separate
kernel launch (still using the P2P kernel code) for these target cells stored as leafs. We
refer to this P2P kernel launch as P2PLeafTgt. In practice this applies to few cells and the
corresponding time is negligible (see Sect. 5.1). Besides, we recall that the falcON code also
enables M2P (multipole-to-particle) and P2L (particle-to-local) operations, especially between a
cell and a single particle [Dehnen, 2002]. Since this applies to a low number of interactions, we
have replaced here these M2P and P2L operations by P2P ones in our iGPU deployment.

4.3 Performance results

Figure 5 presents a performance comparison of the P2P synchronizations, using the same
OpenCL code for the compute part of the kernel. The no-mutual WG strategy offers a shorter
time than the atomic float strategy, and also than the None one based on atomic float but
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Figure 6: Performance results of the P2P kernel depending on Ncrit for a 10M Plummer distri-
bution.

without the atomic operation cost (hence with wrong results): this is due to the fact the target
cells are loaded only once from global memory with no-mutual WG. We thus rely hereafter on
this latter for both the APU and the Intel iGPU.

We then fully optimize the P2P kernel as detailed in Sect. 4.2 and present our performance
results in Fig. 6. Despite our P2P optimizations, especially for Ncrit lower than the work-group
size, the P2P kernel does not perform best for cells with low body number. The P2P compute
intensity scales indeed as O(N) and the P2P kernel is thus memory-bound for low Ncrit values.

Moreover the Intel GPU outperforms the APU, which can be explained by the different
SIMD widths. The 64 wide APU wave-front is a too high value for our simulations: even
with Ncrit = 64 or Ncrit = 128, most cells have a particle number around 20 or 25. A non-
negligible share of the work-items are then idle, even with our multi-work-item optimization.
On the contrary, the lower and flexible SIMD width of the Intel iGPU enables (along with the
work-group size) to better adapt to such cells.

In the end, the Intel iGPU reaches 303.1 Gflop/s for our numerous small P2P operations
with very different body numbers, which represents 34% of the single precision peak performance
of this iGPU. This is largely satisfactory when comparing to the CUDA N-body SDK which
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reaches 40% of a NVIDIA K40c GPU peak performance for one single very large (and regular)
P2P computation.

5 Overlapping the parallel traversal

In order to efficiently overlap the DTT on CPU with GPU computations, we rely on our
task-based parallel DTT with OpenMP [Lange and Fortin, 2014]. Since no computations are
performed on the CPU, we do not require here task synchronizations. Instead of filling one single
interaction buffer set with multiple threads in parallel (requiring thread synchronizations), we
prefer to assign one interaction buffer set to each thread: hence each thread processes its part
of the DTT independently. Once one of its interaction buffer is filled, the corresponding kernel
(P2P, P2PLeafTgt or M2L) is launched on the iGPU and the thread waits for its termination
thanks to OpenCL events. We emphasize that the main goal here is to keep the iGPU device
busy as much as possible, and to speed up the DTT enough so that it can be overlapped by the
GPU computations. The smaller the interaction buffers are, the sooner the GPU computations
will start, but the GPU computations must still be large enough to exploit all compute units
and to offset the OpenCL kernel launch overhead.

Concerning the OpenCL command queues, we cannot allow two kernels of the same type
(P2P, P2PLeafTgt, M2L) to run concurrently since this would result in write conflicts for two
kernels updating the same target cell. We however can enable kernels of different types to
run concurrently. The APU iGPU supports indeed concurrent execution of OpenCL kernels,
but this is not the case for current Intel iGPU. Moreover, the scheduling order of multiple
kernels launched concurrently by different threads is free. All this leads us to use three in-order
command queues, one for each kernel type.

Finally, it can be noticed that AMD APUs offer improved GPU memory bandwidth when
using read-only zero-copy buffers [AMD, 2015a]. These however are stored in USWC (Un-
cacheable, Speculative Write Combine) memory which implies slower CPU accesses. We tried
such feature on relevant buffers but, due to intensive usage of these buffers by the CPU, this
resulted overall in increased computation times on the APU.
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Table 2: Architectures considered. PE stands for (OpenCL) Processing Element.

Name Detailed name
Compute
features

Launch
date

TDP
Current
price

APU AMD A10-7850K Radeon R7 APU 2 2-way SMT CPU cores + 512 iGPU PE Q1’14 95W $150
Intel iGPU Intel Xeon E3-1285L v4 - Iris Pro Gr. P6300 4 2-way SMT CPU cores + 384 iGPU PE Q2’15 65W $445
[2x]8C CPU [2x] Intel Xeon E5-2630 v3 [2x] 8 2-wax SMT CPU cores - AVX2 Q3’14 [2x]85W [2x]$667
18C CPU Intel Xeon E5-2695 v4 18 2-way SMT CPU cores - AVX2 Q1’16 120W $2424
K40c NVIDIA K40c GPU 2880 GPU PE Q4’13 235W $2400

5.1 Performance results

We first performed extensive manual tuning of the following parameters: Ncrit, M2L work-
group size (1D work-group) and P2P work-group size (1D work-group, used both in P2P and
P2PLeafTgt kernels). These were performed with one single CPU thread and a large enough
interaction buffer (resulting in one single kernel launch of each type). We were aiming at
minimizing the sum of the M2L, P2P and P2PLeafTgt kernel times, without obtaining a too
long DTT time on CPU (in order to still be able to overlap it). This tuning led on APU to
an optimal Ncrit value of 48, a M2L work-group size of 64 and a P2P work-group size of 64.
On Intel iGPU, the optimal Ncrit value is 32, with a M2L work-group size of 16 and a P2P
work-group size of 48.

Based on these values, we have then determined the best number of CPU threads and the
best size for our interaction buffer. The optimal values for these parameters depend on multiple
factors such as the number of physical CPU cores, the number of hardware threads per CPU
core, and finally the need to keep as much as possible the GPU filled with computations. In the
end, best results were obtained with 6 to 8 CPU threads on the APU, with 8 CPU threads on
the Intel iGPU, and with an interaction buffer size of 107 integer elements on both architectures.

Using these values we present in Fig. 7 the gain obtained in overlapping the DTT with
GPU computations. Based on executions with one CPU thread and one kernel launch for
P2P, P2PLeafTgt and M2L, one can see that the P2P kernel is here the most time consuming
among the three kernels, and that the P2PLeafTgt time is negligible. Using a parallel DTT
with multiple CPU threads and multiple kernel launches, we manage to largely overlap the
DTT on CPU with GPU computations. We hence obtain final DTT times (including the kernel
execution times) of 0.87s on the APU and 0.62s on the Intel iGPU. The remaining non-overlap
part of the DTT represents 25% of these times (0.22s on the APU and 0.16s on the Intel iGPU).

Besides, the evaluation step is performed on the CPU cores like in Lange and Fortin [2014]:
using task parallelism with multiple CPU threads, this step is a minor part in the overall time
as shown in Fig. 7.

In the end, the Intel iGPU performs here better than the APU. This is due to three reasons.
Firstly, the Intel iGPU compute power is 20% higher than the APU iGPU one (883.2 Gflop/s
against 737.3 Gflop/s). Secondly, as shown in Sect. 4.3 the P2P kernel performs better on the
Intel iGPU, the optimal Ncrit values (32 or 48) being best processed by the lower SIMD widths
of the Intel iGPU than by the 64 APU one. Thirdly, the compute power of the CPU part
associated with the Intel iGPU being greater than the APU one (especially thanks to twice
more cores): this eases minimizing the time of the non-overlap part of the DTT, as well as the
evaluation step time.
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Figure 9: Power efficiency (based on the theoretical TDP values of Table 2, and on the compu-
tation times of Fig. 8) for pfalcON, pfalcON-iGPU and Bonsai on various architectures.

6 Comparison with CPUs and discrete GPUs

Finally we now compare pfalcON, our task-based multi-core CPU version of falcON [Lange
and Fortin, 2014]9, with pfalcON-iGPU, which denotes our iGPU deployment of pfalcON, as
well as with the Bonsai GPU code. Table 2 presents the architectures considered in this
comparison. For pfalcON, we are using GCC+OpenMP with all available hardware threads,
and ispc with AVX2 for P2P SIMD processing. Bonsai is built with CUDA. Optimal Ncrit
values are used for pfalcON and pfalcON-iGPU, whereas Bonsai uses its own specific thresholds
(Nleaf = 16 and Ncrit = 64, see Bédorf et al. [2012]). As recommended for astrophysical N -
body simulations [Fortin, P. et al., 2011], we use θ = 0.6 for pfalcON and pfalcON-iGPU, and
θ = 0.75 (default value) for Bonsai whose expansions and MAC are different [Bédorf et al.,
2012]. For pfalcON and pfalcON-iGPU, we consider the interaction and evaluation steps, and
for Bonsai the corresponding “tree-traverse” step described in Bédorf et al. [2012] (GPUgrav
time in the code).

First, one can notice in Fig. 8 that two (standard) 8-core CPUs with pfalcON outperform

9Since 2014, we added the new seq cst clause to our OpenMP atomic operations to ensure memory barriers
for our task synchronizations. This did not affected our performance results.
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here Bonsai. More generally this depends on the exact CPU and GPU models, and better
GPU performance should be obtained on newer Pascal GPUs, but we here show that CPU
DTT-based FMM can match GPU tree-code performance for astrophysical simulations. This
also applies to one single (high-end) 18-core CPU.

As far as pfalcON-iGPU and pfalcON are concerned, both the AMD APU and the Intel
iGPU outperform a standard 8-core CPU. The Intel iGPU performance matches even the two
8-core CPU one or the 18-core CPU one (within a 7.5% margin). With respect to Bonsai on a
K40c GPU, pfalcON-iGPU on the Intel iGPU is also 13% faster. We also emphasize here that
50M distributions can be run with pfalcON and pfalcON-iGPU, but not with Bonsai.

Morover, when considering the power efficiencies in Fig. 9, the Intel iGPU is 1.7x to 2.7x more
power-efficient than the CPUs (based on the theoretical TDP values), and without considering
the CPU associated with the GPU, 4.2x more power-efficient than the K40c.

When considering the cost efficiencies in Fig. 10, the Intel iGPU is 3.0x to 5.0x more cost-
efficient than the CPUs, and still without considering the CPU associated with the GPU, 6.2x
more cost-efficient than the K40c. Due to its very low price, the AMD APU offers here the best
ratio, being 2.0x more cost-efficient than the Intel iGPU.

7 Conclusion and future work

In this paper, we have presented an hybrid CPU-GPU algorithm to deploy a fast multipole
method (FMM) based on a dual tree traversal (DTT) on integrated GPUs (iGPUs) in an as-
trophysical context. In order to obtain the best performance results, we had to forsake the use
of the mutuality of the far-field and near-field interactions in this heterogenous deployment.
However, this deployment offers efficient SIMD processing of both the far- and near-field com-
putations by aggregating multiple computations on the GPU. To our knowledge, this is the first
DTT-based FMM where far-field computations are SIMD processed.

Thanks to its lower SIMD width and its greater compute-power, the Intel iGPU performs
here better than the AMD APU. The Intel iGPU can match the performance of two standard
CPUs, of one high-end CPU, or even of the Bonsai GPU tree-code, being hence up to 4.2x
more power-efficient (based on the theoretical TDP values) and 6.2x more cost-efficient than
these architectures.

The current work focus on one single compute node, but it would be straightforward to
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extend it to multiple compute nodes, using the LET (Local Essential Tree) technique as e.g. in
exaFMM, since all data are stored in the main memory: this is another asset compared to GPU
tree-codes.

In the future, we plan to test pfalcON-iGPU on new integrated GPUs such as the forthcoming
AMD Ryzen APUs. We also believe that our hybrid CPU-GPU algorithm could be efficiently
deployed on other architectures such as integrated FPGA (with OpenCL programming), or even
discrete GPUs, especially those equipped with the NVIDIA NVLink interconnect. Finally, this
work could be extended to other application domains of the FMM where low accuracies are
required, e.g. when using FMM as a preconditioner [Ibeid et al., 2017].
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