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Abstract
This paper studies the complexity of π -calculus processes with res-
pect to the quantity of transitions caused by an incoming message.
First we propose a typing system for integrating Bellantoni and
Cook’s characterisation of polynomially-bound recursive functions
into Deng and Sangiorgi’s typing system for termination. We then
define computational complexity of distributed messages based on
Degano and Priami’s causal semantics, which identifies the depen-
dency between interleaved transitions. Next we apply a syntactic
flow analysis to typable processes to ensure the computational bound
of distributed messages. We prove that our analysis is decidable for
a given process; sound in the sense that it guarantees that the total
number of messages causally dependent of an input request received
from the outside is bounded by a polynomial of the content of this
request; and complete which means that each polynomial recursive
function can be computed by a typable process.
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1 Introduction
Complexity of Distributed Services. A common requirement for
large distributed systems, such as web applications involving a se-
ries of HTTP requests and Remote Procedure Calls, is to ensure the
answer to a request arrives within a certain amount of time. Effi-
ciency analyses for such systems separate communication complex-
ity, which studies the quantity of information exchanged between
the remote components of the service, from sequential complexity,
which handles the way each component of a service is implemented
in a given location. Since in most distributed services the time spent
in local computations is negligible compared to the time cost of send-
ing messages over networks, we aim in this paper to study message
complexity by giving a bound on the message overhead triggered
by incoming requests. Specifically we define complexity over the
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!add(x ,y, r ).[x = 0] r ⟨y⟩+
[x , 0] (νc) (add⟨x − 1,y, c⟩ | c(z).r ⟨z + 1⟩)

| !mult(x ,y, r ).[x = 0] r ⟨0⟩ + [x , 0] (νd1,d2) (mult⟨x − 1,y,d1⟩
| d1(res).add⟨y, res,d2⟩ | d2(z).r ⟨z⟩)

| !fact(x , r ).[x = 0] r ⟨1⟩ + [x , 0] (νd1,d2) (fact⟨x − 1,d1⟩
| d1(res).mult⟨x , res,d2⟩ | d2(z).r ⟨z⟩)

Figure 1. Example of Arithmetic Services.

amount of messages directly dependent of an initial request, disre-
garding messages which are not contributing to that computation,
such as communications caused by concurrent requests.

To develop this theory, we use the π -calculus [22] and define a
sound notion of complexity for processes. Previous works [3, 19,
20] have defined complexity analyses for π -calculi based on the
number of reductions a process performs w.r.t. its size. Our analysis
differs from theirs, using a more lax version of causality for the
π -calculus [11] which identifies dependency links between service
invocations. This introduction of causality is not a precondition
for soundness: our analysis guarantees polynomial bounds for a
reduction semantics. Causality is required in order to define a notion
of computational complexity we can apply to open systems modeling
service interactions thanks to a transition semantics.

Implicit Computational Complexity (ICC) for Processes. ICC is
an area which studies the design of a priori complexity analyses
based on type systems and syntactical characterisations [4, 5, 18,
21]: constraints guarantee that any accepted program belongs to
a given complexity class. A classical ICC analysis introduced by
Bellantoni and Cook [5] gives a simple syntactical characterisation
of the polytime functions by dividing their parameters into two sorts
(safe and unsafe) and by restricting the recursion and composition
schemes to predicative recursion: preventing recursive usage of the
result of a recursive call. We adapt this framework into one for the
asynchronous π -calculus where a combination of name creation and
channel passing makes establishing such an analysis challenging.
When encoding services, usage of names in the service code has to be
controlled in order to prevent interferences. Our analysis guarantees
that, in all (finite or infinite) computations starting from a sound
process, the set of transitions causally dependent from an external
input !f (ṽ) is finite and bounded by a polynomial in the integer
components of ṽ. To be able to state such a result for an open system,
we propose a way to count transitions depending from an initial
request. We introduce a relation of service causality on computations,
which identifies causally dependent pairs of interactions.

In order to illustrate which "safe" polynomial behaviours we guar-
antee, we introduce an example modelling three arithmetic services
in Figure 1. This process can receive requests on channel add and
performs recursively the addition of the two integer parameters of
the request. A single request add(n,m, c) spawns Θ(n) transitions.
Requests mult(n,m, c) are also accepted, triggering a recursive com-
putation of the multiplication n ∗m, using add as auxiliary service.
A single request mult(n,m, c) spawns Θ(n ∗m) transitions. Service

https://doi.org/10.1145/3209108.3209122
https://doi.org/10.1145/3209108.3209122
https://doi.org/10.1145/3209108.3209122


LICS ’18, July 9–12, 2018, Oxford, United Kingdom Romain Demangeon and Nobuko Yoshida

fact computes the factorial function n!, using mult an as auxiliary
service. A single request fact(n, c) spawns Θ(n!) transitions.

Our aim is to reject service fact and to guarantee that add and
mult are polynomially bounded w.r.t. a causal definition of complex-
ity (defined in § 4): if service mult receives two different requests
mult(2, 3, r1) and mult(102, 103, r2), transitions caused by the second
request do not count in the complexity bound of the first one.

Our analysis is divided into two steps. First, we propose a type
system (§ 3) which checks that these services are terminating (using
techniques from [15]) and enforces the predicativity of recursion [5]:
it detects that a result of recursive call res inside service fact is used
in another recursion in an auxiliary call to service mult and rules
out fact. However, this type system alone is not enough to ensure a
polynomial bound. As the second step, we introduce a flow analysis
(§ 5) which guarantees that no integer received from the outside is
used inside recursion: if name c were free inside service add instead
of being restricted, the whole service would be rejected: an external
input c(103) received during a computation caused by add(1, 3, r3)
would let the service give a wrong answer which could be used by
another service to generate a large number of transitions, breaking
expected complexity bounds. These service examples are detailed in
§ 5 (A, P and F of Figure 4).

Contributions. (i) a type system (§ 3) for the asynchronous π -
calculus (§ 2); (ii) a notion of service causality (§ 4) inspired from [9–
11] which identifies the messages dependent from service calls; (iii)
a static flow analysis (§ 5) enforcing predicative recursion in repli-
cated processes and controlling information flow; (iv) the theorems
(§ 6) stating type soundness (every accepted process is polynomial)
and completeness (every polytime recursive function can be com-
puted by an accepted process); and (v) decidability results of the
analyses. Related works and possible extensions are discussed in § 7.
A long version1, with proofs and further examples, and a prototype
for inference2, written in OCaml, are available.

2 The π -Calculus and Labelled Transition System
Syntax. We introduce a variant of the asynchronous π -calculus [16]
used for our analysis. We consider infinite sets of channels a,b, c, ...;
natural numbers 0, 1, ...; variables x ,y, ... (for both channels and
numbers); identifiers for numbers n,m and identifiers for channels
(names) u,w . We also use N ,M for natural numbers; and ṽ for a
tuple vi , . . . ,vk for some k (similarly for other sets). The syntax of
our calculus is given by the following grammar:

u,w ::= x ,y, z, ... | a,b, c, ...
n,m ::= x ,y, z, ... | 0, 1, 2, ...

v ::= n | u e ::= v | e + 1 | e − 1
P ,Q ::= 0 | u(x̃).P | u⟨ẽ⟩ | !u(ỹ).P | P |P | (νc)P

| [e = 0]P + [e , 0]P

v describes a value which is either a number or a channel. Expres-
sions e are either values or integer expressions built from natural
numbers, integer variables and successor and predecessor operations.
An ordering on integer expressions used by the type system is given
by e − 1 < e, e < e + 1 and the usual ordering on N. We use |ṽ |
for the sum of the integer values of ṽ. Process 0 is inactive; prefix
u(x̃).P is a non-replicated (linear) input on name u, receiving mes-
sages x̃ and guarding continuation P ; prefix u⟨ẽ⟩ is an output on

1https://www-apr.lip6.fr/ demangeon/Recherche/lics18.pdf
2https://www-apr.lip6.fr/ demangeon/Recherche/protolics.ml

name u sending expressions ẽ (and has no continuation); and prefix
!u(ỹ).P is a replicated input on name u. When the object tuple of
a prefix is empty we simply write u, !u and u and we omit trailing
occurrences of 0. Process P1 |P2 is a parallel composition and (νc)P
is the creation of a fresh channel c whose scope is P . Limited match-
ing is introduced together with choice; matching is only possible
on integers and a branching condition is always an equality test
with 0; it is equivalent to conditional "ifzero e then P else Q"
branching structure. We sometimes write [e , 0]P as a shortcut to
[e , 0]P + [e = 0]0. We say that a process has well-formed integer
expressions if the subexpression x − 1 only appears in a subprocess
guarded by [x , 0]. Hereafter we suppose all processes to have
well-formed integer expressions.

We denote fn(P)/bn(P) for the set of free/bound names in P and
≡α denotes α-conversion. P[ṽ/x̃] denotes substitution of variables
x̃ by values ṽ in P . We write P ∈ Q when P is a subprocess of Q .

Labelled Transition System with Paths. Transition labels contains
paths θ as in [11] (a standard definition to identify where in processes
actions are played). We define the grammar of actions (α , β, ...),
paths (θ ,θ ′, ...) and labels (l , l ′, ...) as follows:

α ::= a(ṽ) | !a(ṽ) | (νc̃) a⟨ṽ⟩
θ ::= ϵ | 0.θ | 1.θ l ::= θ .α | θ .⟨θ .α ,θ .α⟩

The set of names of label l , denoted by n(l), is the set of all
names appearing in l if l is an input or an output and ∅ if l is a
communication. The set of bound names of label l , denoted by
bn(l) is the elements of c̃ if l = (νc̃) a⟨ṽ⟩ and ∅ otherwise. Actions
α consist of non-replicated inputs, replicated inputs and outputs.
The objects of actions (messages) carry values. An output action is
written (νc̃) a⟨ṽ⟩ with c̃ ⊆ ṽ, which denotes restricted channels c̃
from the message ṽ are extruded. We write a⟨v⟩ when c̃ is empty.
Paths θ are either empty; or the left side 0.θ or the right side 1.θ
of a parallel. Labels l are either composed of a path θ leading to
an action; or to a communication, consisting itself of two paths
θ1 and θ2, leading to the matching actions. We write θ .τ for any
θ .⟨θ1.α ,θ2.α⟩ when the matching actions are of no importance; and
α ∈ l whenever l = θ .α or l = θ .⟨θ1.β1,θ2.β2⟩ and α is β1 or β2.

The Labelled Transition System (LTS) is defined in Figure 2. We
use e ⇓ v to denote that expression e evaluates to value v (evaluation
is identity on names and integer evaluation on integer expressions).
Rule (Out) describes the asynchronous output action. Parallel com-
position is handled by rules (Par0) and (Par1), memorising in path
θ the side the action takes place. Rules (RCom) and (Com) describe
(respectively replicated and linear) communications between two
matching actions, at positions in the process given by paths θ1 and
θ2. Other rules are standard.

3 Types and Typing Sytem
Types. To control potential computational explosions and infinite
behaviours, we decorate the types of names used in replicated inputs
with integer levels N ,M , similar to the ones from [15], and we
use the standard ordering of N to compare them. We also divide
the integer expressions appearing in messages into two categories,
reminiscent of the ones in [5]: nat is the type of safe integers; typing
rules prevent recursions to be performed on them, as they can contain
results of recursive calls. nat⋆ is the type of unsafe integers on which
recursions can be performed. We use ◦nat to denote integers of any
kind. The syntax of channel types is given by (N ≥ 0):
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(Alpha)
P ′

l
−→ Q P ≡α P ′

P
l
−→ Q

(Rep)

!a(ỹ).P
!a(ṽ)
−−−−→ (!a(ỹ).P | P[ṽ/ỹ])

(In)

a(x̃).P
a(ṽ)
−−−−→ P[ṽ/x̃]

(Out)
∀i, ei ⇓ vi

a⟨ẽ⟩
a ⟨ṽ ⟩
−−−−→ 0

(Par0)
P

l
−→ P ′ bn(l) ∩ fn(Q) = ∅

P | Q
0.l
−−→ P ′ | Q

(Par1)
P

l
−→ P ′ bn(l) ∩ fn(Q) = ∅

Q | P
1.l
−−→ Q | P ′

(RCom)
P

θ1 .!a(ṽ)
−−−−−−−→ P ′ Q

θ2 .(ν c̃)a ⟨ṽ ⟩
−−−−−−−−−−→ Q ′ ∀i, ci < fn(P)

P | Q
⟨θ1 .!a(ṽ),θ2 .(ν c̃)a ⟨ṽ ⟩⟩
−−−−−−−−−−−−−−−−−−−→ (νc̃)(P ′ | Q ′)

(Com)
P

θ1 .a(ṽ)
−−−−−−→ P ′ Q

θ2 .(ν c̃) a ⟨ṽ ⟩
−−−−−−−−−−−→ Q ′ ∀i, ci < fn(P)

P | Q
⟨θ1 .a(ṽ),θ2 .(ν c̃) a ⟨ṽ ⟩⟩
−−−−−−−−−−−−−−−−−−−−→ (νc̃) (P ′ | Q ′)

(Res)
P

l
−→ P ′ a < n(l)

(νa) P
l
−→ (νa) P ′

(Open)
P

θ .(ν c̃) a ⟨ṽ ⟩
−−−−−−−−−−→ P ′ b ∈ ṽ − c̃ b , a

(νb) P
θ .(νb, c̃) a ⟨ṽ ⟩
−−−−−−−−−−−−→ P ′

(Cho0)
P

l
−→ P ′ e ⇓ 0

[e = 0]P + [e , 0]Q
l
−→ P ′

(Cho1)
Q

l
−→ Q ′ e ⇓ N , 0

[e = 0]P + [e , 0]Q
l
−→ Q ′

Figure 2. Labelled Transition System.

T , S ::= nat | nat⋆ | (T̃ )N | (T̃ )
Types divide names into two sets which cannot interact with each

other: (1) Replicated names of types (T̃ )N are used for the design
and usage of persistent services. Reception on replicated names can
only be done by replicated inputs. (2) Linear names of types (T̃ ) are
used to carry other messages. Reception on linear names can only
be done by non-replicated input.

In the following, we use terms which give insight on the compu-
tational aspect of the processes we analyse, identifying the subpro-
cesses playing the role of computing services.

Definition 3.1 (Terminology). In a process P typed with environ-
ment Γ, a service is a name of P given replicated type (T̃ )N by Γ,
a service definition of a is a replication !a(x̃).Q in P when a is a
service, a call (resp. a request) is an output prefix or an output action
a⟨ṽ⟩ (resp. a replicated input action !a(ṽ)) on a service a.

In service definition !a(x̃).Q of P : (1) a call a⟨ṽ⟩ for some ṽ
is called a recursive call. If Γ(vi ) = nat⋆, and vi is the integer
expression xi −1, the i-th argument is a recursion position of service
a; and (2) a call b⟨ṽ⟩ for some ṽ, with b , a is called an auxiliary
call and b an auxiliary service of a. In both cases, if Γ(vi ) = (T̃ ), vi
is an answer channel; in this case, if prefix vi (z̃) appears in Q , and
Γ(zj ) = ◦nat, then zj is a result of the recursive call.

Multiset calls(P ; Γ) of calls of typable process P , w.r.t. a context
Γ, is defined as follows (we use ⊎ for multiset union):

calls(0; Γ) = calls(!a(x̃).P ; Γ) = ∅

calls(a⟨ṽ⟩; Γ) =
{

{a⟨ṽ⟩} if Γ(a) , (T̃ )N
∅ otherwise

calls(a(x̃).P ; Γ) = calls(!a(x̃).P ; Γ) = calls((νc) P ; Γ) = calls(P ; Γ)
calls(P1 | P2; Γ) = calls(P1; Γ) ⊎ calls(P2; Γ)
calls([e = 0]P1 + [e , 0]P2; Γ) = calls(P1; Γ) ⊎ calls(P2; Γ)

Using this terminology gives insight about the relation between
our concurrent system and sequential computation: services are
functions and a composition is performed through the exchange of
calls and answers. In the definition of a service, some outputs are
identified as recursive calls, triggering recursive computations of the
service. Other calls send information to existing services, along some
answer channels, used to get back the results of the computations
done by these auxiliary services.

Well-formedness of Types. We define two predicates on linear types:
a type (T̃ ) is safe (resp. unsafe), whenever nat⋆ < T̃ (resp. nat < T̃ ).
That is, safe channels only carry safe integers (and possibly any type
of channels) (and reciprocally for unsafe channels). Note that safety
of types does not descend recursively inside the carried channel
types, the property only describes the carried integer types.

We say that a type T is well-formed if either: (1) T = nat or
T = nat⋆; (2) T = (S̃), all S̃ are well-formed and T is either safe or
unsafe; or (3) T = (S̃)N , all S̃ are well-formed and all linear types
Sj are safe. Intuitively, a well-formed type is such that i) there is no
mixing of integer kinds inside the carried types of a linear type and
such that ii) linear channels passed on replicated channels are safe.
Hereafter we suppose all types are well-formed. Condition i) enables
the type system to treat reception on linear channels: names received
are either all safe or all unsafe. Condition ii) prevents results of
recursive calls to be given unsafe types: when opening the result of a
call inside a computation, by default, the integers received are given
safe types.

For instance T1 = (nat⋆,nat⋆, (nat))3 is well-formed as the in-
side channel type is safe. The typing rules for output (in Figure 3
below) ensures that, in a recursive call mult⟨x − 1,y, r ⟩ on mult of
type T1, channel r is a safe linear channel, and in a further reception
r (z), z will be given safe type nat.

TypeT2 = (nat⋆,nat⋆, (nat⋆))3 is not well-formed, as it violates
condition ii). A recursive call mult⟨x − 1,y, r ⟩ on mult of type T2
is dangerous, as a further reception r (z) would give type nat⋆ to
the result of the recursive call, allowing it to be used in a recursion
position, and breaking the predicativity of recursion.

Typing Judgements. We denote by Γ the typing environments, con-
sidered as oracles, as in [12, § 2], associating all identifiers present
in a process, bound and free, with a type. We write Γ ⊢ e : T for
the judgement associating type T to expression e w.r.t. environment
Γ. Judgement Γ ⊢N P states that under the typing environment Γ,
process P is typable at level N . Associating typing judgements to
levels allows one to control message loops arising from replications:
the system ensures a process P typable at level N can only perform
outputs on levels ≤ N . Top-level (not under replication) processes
can be typed with level ∞, which never appears inside types.
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Output Multiset. Whenever Γ ⊢M P for some M , we denote by
outN (P ; Γ) the multiset of all outputs of P which are given level N
by Γ, reminiscent of the output set os(P) from rule (T − Rep) in [15].
We use ⊎ to denote multiset union:

outN (0; Γ) = outN (!a(x̃).P ; Γ) = ∅

outN (a⟨ṽ⟩; Γ) =
{

∅ if Γ(a) , (T̃ )N
{a⟨ṽ⟩} otherwise

outN ((νc) P ; Γ) = outN (P ; Γ) = outN (a(x̃).P ; Γ)
outN (P1 |P2; Γ) = outN (P1 + P2; Γ) = outN (P1; Γ) ⊎ outN (P2; Γ)

Operator outN (P ; Γ) recursively goes down inside the structure of
a typed process and collect the multiset of all outputs at level N . It
is used, as in [15], in rule (Serv) for service definitions, in order to
compare the replicated input with the outputs inside the replication.
For instance, if P =!a(x).(νc) (c | b | a⟨x − 1⟩ | b .c) is typed with
Γ = a : (nat⋆)3,b : (), c : ()1,x : nat⋆, then out3(P ; Γ) = {a⟨x − 1⟩},
out1(P ; Γ) = {c, c} and out2(P ; Γ) = ∅.

Lifting and Argument Partition. In the judgements, we use two
operations. The unsafe lifting, denoted by [T ]⋆, casts a safe linear
type into an unsafe one, a safe integer type into an unsafe one, and
is the identity on other well-formed types. Unsafe lifting is used to
allow "unsafe calls" (rule (UOut)) to be passed. It is defined as: (1)
if T = nat then [T ]⋆ = nat⋆; (2) if T = (S̃) then [T ]⋆ = (S̃ ′) with
S ′j = nat⋆ if Sj = nat and S ′j = Sj ; otherwise [T ]⋆ = T .

If T̃ = T1, . . . ,Tk is a tuple of types and ẽ = e1, . . . , ek is a tuple
of expressions of the same length, we define (ẽ ◁ T̃ ) = (ẽr ; ẽs ) as
the partition of the integer expressions of ẽ into unsafe arguments
ei s.t. Ti = nat⋆ and safe arguments ej s.t. Tj = nat. Comparisons
between tuples of integer expressions use the product composition
of the ordering given in § 2: ẽ < ẽ ′ whenever for all i, ei ≤ e ′i
and there exists one j s.t. ej < e ′j . Comparison between separated
arguments is done with (ẽ1r ; ẽ1s ) < (ẽ2r ; ẽ2s ) whenever ẽ1r < ẽ2r and
ẽ1s = ẽ2s , that is when the unsafe arguments are strictly smaller and
the safe arguments are equal.

These comparisons are used in the type system to identify de-
creasing among the arguments. Suppose we have a replication
!a(x ,y, z, r ).P and a context Γ s.t. Γ(a) = (nat⋆,nat,nat⋆, (nat))3.
And suppose that in P we have a⟨x − 1,y, z,d⟩ ∈ P . We have,
(x ,y, z, r ◁ T̃ ) = (x , z;y) and (x − 1,y, z,d ◁ T̃ ) = (x − 1, z;y). When
comparing the content of messages, we can assert a "decreasing"
exists by stating that (x , z;y) < (x − 1, z;y).

Typing Rules The typing of values is defined in the first line of
Figure 3. Subtyping for integers is treated by the last rule which
states that any unsafe integer value can be given a safe integer type
(our control of predicativity of recursion relies on the fact that the
opposite is not sound).

The typing system for processes is given in Figure 3. (Nil) states
that 0 is typable at any level. Then rules (In, Out, Res, Cond, Res) are
standard, with (In, Out) only applying to linear prefixes.

Typing for non-linear outputs is divided into two rules, following
the way these outputs are used inside a service definition: we distin-
guish between i) recursive calls and safe calls to auxiliary services
and ii) unsafe auxiliary calls. Rule (SOut) types, at level N , a safe
call: an output inside a replication s.t. the channels passed in the
messages are all safe. An output is performed either on a name of
level M < N (an auxiliary call) or on a name of level N (a recursive
call). Well-formedness of types forces the passed channels to be safe

(so the result will not be use inside recursion). Rule (UOut) types, at
level N , an unsafe auxiliary call on a name of level M strictly lower
than N . Every passed channel has to be unsafe, and every passed
integer has to be unsafe (no recursion result is used and the result
can be used in recursion again): this condition is enforced thanks to
the lifting operator []⋆.

The crux of our system is rule (Serv) which types replicated inputs,
seen as services. It checks that continuation P is typable at the level N
of name u: this ensures that no output on level strictly greater than N
is present in the continuation. It also checks that there is at most one
output on N in the continuation, captured by outN (P ; Γ) and that this
output is sent with strictly smaller unsafe arguments and identical
safe arguments (condition with (ẽ ◁ T̃ ) < (ỹ ◁ T̃ )). Replicated inputs
are always typed as level ∞ (Example 4.1 explains the reason).

For instance, consider the example above P =!a(x).(νc) (c | b |

a⟨x − 1⟩ | b .c) with Γ = a : (nat⋆)3,b : (), c : ()1,x : nat⋆. We
obtain directly premises Γ ⊢ u : (nat⋆)3 and Γ ⊢ x : nat⋆. All
replicated outputs inside the continuation have levels smaller than
3, which allows it to be typed at level 3 and we obtain premise
Γ ⊢3 (νc) (c | b | a⟨x − 1⟩ | b .c). We have computed above
outP (Γ; 3) = {a⟨x − 1⟩}, hence we need to check Γ(a) = Γ(a) and
(x − 1 ◁ nat⋆) < (x ◁ nat⋆), which holds by definition of < on
integer expressions. As a result we deduce Γ ⊢∞!a(x).(νc) (c | b |

a⟨x − 1⟩ | b .c); any process containing P will be typed at level ∞,
preventing it to occur inside another replication, as replicated names
have finite levels.

Example 3.2. We explain here how the type system validates pred-
icativity of recursion on distributed services using the examples of
Figure 4.

(1) Simple recursive service. Process A performs the addition of
the integer values received on add. To type it, we use the following
environment Γ1:

Γ1(add) = (nat⋆,nat, (nat))1 Γ1(x) = nat⋆
Γ1(y) = nat Γ1(r ) = (nat)
Γ1(c) = (nat) Γ1(z) = nat

The typing derivation is presented in Figure 5. The main process
is typed at level ∞, as it contains a replication. As add is of level
1, the continuation of the replication has to be typed at this level.
Premises ensure there is at most one output on level 1: in this case,
it is a recursive call and the side conditions ensure there is a strict
decreasing on unsafe integer argument x − 1 < x (and that safe
argument y is untouched). Rule (Cond) allows to type the two sides of
the +. On the left-hand side, we type the output on r as a linear output,
and on the right-hand side, we type the recursive call with (Serv), the
input on c and the final output with (In) and (Out), checking that
arguments have appropriate types.

(2) Recursive service using an auxiliary service. Process P per-
forms the multiplication of its first two parameters via the use of the
addition performed by A. To type P, we α -convert its subprocess A
(because of bound name collisions) and define Γ2 as the α conversion
of Γ1 together with:

Γ2(r ) = (nat) Γ2(mult) = (nat⋆,nat⋆, (nat))2
Γ2(x) = nat⋆ Γ2(y) = nat⋆
Γ2(d1) = (nat) Γ2(d2) = (nat)
Γ2(res) = nat Γ2(z) = nat

The mult service definition is typed with rule (Serv), checking that
there is only one call at level 2, and that it is done on strictly smaller
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Value Typing
Γ(v) = T

Γ ⊢ v : T
e ∈ N

Γ ⊢ e : ◦nat

Γ ⊢ e : ◦nat

Γ ⊢ e − 1 : ◦nat

Γ ⊢ e : ◦nat

Γ ⊢ e + 1 : ◦nat

Γ ⊢ e : nat⋆
Γ ⊢ e : nat

Process Typing

(Nil)
Γ ⊢N 0

(In)
Γ ⊢N P Γ ⊢ u : (T̃ ) Γ ⊢ x̃ : T̃

Γ ⊢N u(x̃).P
(Out)

Γ ⊢ u : (T̃ ) Γ ⊢ ẽ : T̃
Γ ⊢N u⟨ẽ⟩

(Par)
Γ ⊢N Pi (i = 1, 2)

Γ ⊢N P1 | P2
(Res)

Γ ⊢N P

Γ ⊢N (νc) P

(Cond)
Γ ⊢N Pi (i = 1, 2) Γ ⊢ e : ◦nat

Γ ⊢N [e = 0]P1 + [e , 0]P2
(SOut)

Γ ⊢ u : (T̃ )M Γ ⊢ ẽ : T̃ M ≤ N

Γ ⊢N u⟨ẽ⟩
(UOut)

Γ ⊢ u : (T̃ )M Γ ⊢ ẽ : [T̃ ]⋆ M < N

Γ ⊢N u⟨ẽ⟩

(Serv)
Γ ⊢N P Γ ⊢ u : (T̃ )N Γ ⊢ ỹ : T̃ (1) outN (P ; Γ) = ∅ or; (2) outN (P ; Γ) = {b⟨ẽ⟩} with Γ(b) = Γ(u) and (ẽ ◁ T̃ ) < (ỹ ◁ T̃ )

Γ ⊢∞!u(ỹ).P
Figure 3. Typing Rules.

A = !add(x ,y, r ).[x = 0] r ⟨y⟩ + [x , 0] (νc) (add⟨x − 1,y, c⟩ | c(z).r ⟨z + 1⟩)
P = A | !mult(x ,y, r ).[x = 0] r ⟨0⟩ + [x , 0] (νd1,d2) (mult⟨x − 1,y,d1⟩ | d1(res).add⟨y, res,d2⟩ | d2(z).r ⟨z⟩)

F = P | !fact(x , r ).[x = 0] r ⟨1⟩ + [x , 0] (νd1,d2) (fact⟨x − 1,d1⟩ | d1(res).mult⟨x , res,d2⟩ | d2(z).r ⟨z⟩)

C = P | !cube(x , r ).(νc,d) (mult⟨x ,x , c⟩ | c(y).mult⟨x ,y,d⟩ | d(z).r ⟨z⟩)

L = !a.b | !b .a E = !a(z).[z , 0](a⟨z − 1⟩ | u(x).x ⟨z − 1⟩ | u⟨a⟩)

P ′ = A | !mult(x ,y, r ).[x = 0] r ⟨0⟩ + [x , 0] (νd2) (mult⟨x − 1,y,d1⟩ | d1(res).add⟨y, res,d2⟩ | d2(z).r ⟨z⟩)

H = A | !sum(f ,x , r ) [x = 0] r ⟨0⟩ + [x , 0] (νd1,d2,d3) (sum⟨f ,x − 1,d1⟩ | f ⟨x ,d2⟩ | d1(y1).d2(y2).add⟨y2,y1,d3⟩ | d3(y3).r ⟨y3⟩)

Figure 4. Examples of Services.

(Serv)

(Choice)

(Out)

Γ1 ⊢ r : (nat)
Γ1 ⊢ y : nat

Γ1 ⊢1 r ⟨y ⟩
Γ1 ⊢ x : nat⋆ (Res)

(Par)

(SOut)

Γ1 ⊢ add : (nat⋆, nat, (nat))1
Γ1 ⊢ x − 1, y, c : nat⋆, nat, (nat)

Γ1 ⊢1 add⟨x − 1, y, c ⟩
(In)

(Out)
Γ1 ⊢ r, z + 1 : (nat), nat

Γ1 ⊢1 r ⟨z + 1⟩ Γ1 ⊢ c, z : (nat), nat

Γ1 ⊢1 c(z).r ⟨z + 1⟩

Γ1 ⊢1 add⟨x − 1, y, c ⟩) | c(z).r ⟨z + 1⟩

Γ1 ⊢1 (νc) (add⟨x − 1, y, c ⟩) | c(z).r ⟨z + 1⟩)

Γ1 ⊢1 [x = 0] r ⟨y ⟩ + [x , 0] (νc) (add⟨x − 1, y, c ⟩ | c(z).r ⟨z + 1⟩)
Γ1 ⊢ add : (nat⋆, nat, (nat))1 Γ1 ⊢ x, y, r : nat⋆, nat, (nat) out1(. . . ; Γ1) = {add⟨x − 1, y, c ⟩ } ∧ (x − 1 |y) < (x |y)

Γ1 ⊢∞!add(x, y, r ).[x = 0] r ⟨y ⟩ + [x , 0] (νc) (add⟨x − 1, y, c ⟩ | c(z).r ⟨z + 1⟩)

Figure 5. Typing Derivation for A.

arguments: (x − 1,y; ) < (x ,y; ). The continuation is typed at level
2 (the level of mult). The auxiliary call to add, of level 1, is typable
using rule (SOut) (as the call is passed to a service at a strictly lower
level). The remaining of the typing derivation is similar to the one
of A. The interesting point is that y has type nat⋆ as it is used in
a recursion position in the auxiliary call add⟨y, res,d2⟩. Rule (SOut)

and well-formedness of types force d1, sent on a recursive call, to
be a safe channel, thus res has type nat. Hence a call add⟨res,y,d2⟩
(which would yield the same result, as the operation is commutative)
is untypable: in this case, the recursion in add would be done on the
result of the recursive call of mult, which is unpredicative recursion.

(3) Exponential service. Process F computes the factorial func-
tion and is not typable: for the same reason as the one invoked
above, d1 has to be a safe channel and res has to be of type nat.
As a consequence, res cannot be used as any argument in output
mult⟨x , res,d2⟩ (or mult⟨res,x ,d2⟩) which requires two arguments
typed by nat⋆. Hence we reject F .

(4) Unsafe calls in a polynomial service. Process C computes
the cubic exponent of its argument. It is typable with a context con-
taining {cube : (nat⋆, (nat))3}. The service itself is not recursive but
uses twice the channel mult to compute multiplications. Rule (Res),
when typing the continuation at level 3, gives unsafe linear types to
c and d , used in an unsafe auxiliary call to mult, typed by rule (UOut),
thanks to level comparison 3 > 2. Our system gives to x type nat⋆
and to d type (nat⋆), which implies that y’s type is nat⋆, allowing to
apply the rule (UOut). Note that d can be typed either (nat) or (nat⋆)
leading to the use of either rule (UOut) or (SOut) for the second call
to mult. In the latter case, a cast from nat⋆ to nat is applied when
typing r ⟨z⟩.

(5) Diverging behaviour Process L describes a diverging be-
haviour between two services a and b. When trying to typecheck it,
these names have to be given recursive channel types. It is not ty-
pable with any environment Γ = {a : ()N1 ,b : ()N2 } because the two
applications of rule (Serv) are forcing both N1 > N2 and N2 > N1.
Our type system enforces termination as in [15].
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(6) Multiple recursive calls. Process E performs an exponential
number of transitions on a since each call a⟨N ⟩ spawns two recursive
calls on a⟨N − 1⟩. One call is directly visible and the other one
is hidden under an interaction on u. Our type system rejects this
process: if Γ(a) = (nat⋆)N for some l , then the outputu⟨a⟩ is typable
only if Γ(u) = ((nat⋆)N ), and the input u(x) forces x to be given
same type (nat⋆)N . When typing the replicated input, predicates in
rule (Serv) require that outN (P ; Γ) is a singleton or the empty set; as
it is a pair (a⟨z − 1⟩,x ⟨z − 1⟩) here, we reject E .

(7) Uncontrolled expression. Process P ′ is a copy of P except
name d1 is not private. It is typable, using a typing derivation close
to the one for P (minus the (Res) rule, as there is one less restriction).
Yet, the information flow analysis introduced later in § 5 rejects this
process.

(8) Higher-order service. Process H offers a higher-order ser-
vice on channel sum accepting requests containing name f and inte-
ger x . If service f computes function F : N→ N, then !sum(f ,N , r )
eventually produces output r ⟨

∑
1≤k≤N F (k)⟩. Process H is typable

by our typing system.

Limitation of the Typing System. Our type system enforces termi-
nation and predicativity of recursion: the result obtained from a
recursive call is never used in a recursion position, in the spirit of [5].
Therefore, one would expect that our system guarantees polynomial
bounds for services, just as [5] characterises polytime functions. The
following process CE is a counterexample:

incr = d(z).d ⟨z + 1⟩
CE = !add(x ,y, r ).[x = 0]r ⟨y⟩ + [x , 0](νc) (add⟨x − 1,y, c⟩

| c(z).r ⟨z + 1⟩ | incr )

|!mult(x ,y, r ).[x = 0]r ⟨0⟩ + [x , 0](νc1, c2) (mult⟨x − 1,y, c1⟩
| c1(z1).add⟨y, z1, c2⟩ | c2(z2).r ⟨z2⟩ | incr )

|!fact(x).[x = 0]r ⟨1⟩ + [x , 0](νc) (fact⟨x − 1⟩
| d(z).(mult⟨z,x − 1, c⟩ | d ⟨z + 1⟩ | d ⟨1⟩))

This process is similar to the one of Figure 1: the main difference
is that addition and multiplication services include an incrementer
module incr which receives value z on channel d and immediately
sends z + 1 on d . The factorial service from CE is different from the
factorial service of Figure 1: it calls itself recursively, but instead of
obtaining the result of the recursive call on a private answer channel
sent along the call (which would be detected by the type system),
it listens on free channel d and uses the value obtained to carry
on computation. We can prove by recurrence that a single output
fact(N ) can produce N recursive calls to fact, spawn N ! copies of
incr and thus generate more than N ! reductions. Yet, CE is typable
by the typing system in Figure 3 and predicativity of recursion is
not violated: the process is not using the result of a recursive call in
a recursion position. Here integer z received on d can be given an
unsafe type (and d type (nat⋆)), as it is not linked to the recursive
call fact⟨x − 1⟩.

In CE , the message-passing power of the π -calculus is interfering
with the type system: free name d is used to transfer information
from different independent computations of services mult and add
and to carry it to a fact computation. Indeed, it is not enough to
actually enforce constraints on recursive calls; one needs to control
the information flow between computations in order to ensure the
origin of the values received inside computations is known, and
to prevent usage of uncontrolled information. In order to achieve
this goal, we introduce an information flow analysis in § 5 which

S0 =!a(x).[x , 0]a⟨x − 1⟩
S1 =!a(x).([x , 0]a⟨x − 1⟩ + [x = 0]c)
S2 = c .!b(x).([x , 0]b⟨x − 1⟩)
S3 =!a(x).[x , 0] (c .a⟨x − 1⟩ | d)

S4 =!b(x).[x , 0] (d .b⟨x − 1⟩ | c)
S5 =!a(x).[x , 0] (c2.a⟨x − 1⟩ | c1⟨d2⟩)

S6 =!b(x).[x , 0] (d2.a⟨x − 1⟩ | d1⟨c2⟩)

S7 =!a(x).!b(y).[y , 0].b⟨y − 1⟩
Figure 6. Examples Guiding the Causality Definition.

supplements the type system and guarantees a polynomial bound
on the number of reductions. In addition, it allows us to state a
complexity result for open systems. To this end, we define a notion
of service causality in § 4.

4 Causal Dependency
Instead of counting the number of reductions or the size of the evolv-
ing processes, our objective is to control the number of transitions
caused by a request to a service. For this, we define a causality
relation which is able to remember, for each action, the previous
transitions which make it happened. The frameworks developed in
[9–11] propose two kinds of causal dependencies in a computation
(a sequence of transitions): structural dependency relates a transi-
tion to a previous transition which prefixed (guarded) it; and binding
dependency [11] relates a transition to a previous output transition
that extrudes one of its names. Since our analysis focuses on ser-
vices (implemented through replications) [9], and we need to cut
undesirable causality links.

Example 4.1. (1) Independence of replications. In [9], subsequent
firings of the same replicated input are causally related. Consider an
invocation !a(10) to S0 of Figure 6 which spawns 10 messages. A
subsequent independent invocation 0.!a(100) will produce another
chain of 100 transitions that should be considered unrelated to the
previous one, from a service usage perspective. Yet, first rule of
Definition 2 in [9] makes 0.!a(100) causally dependent from a(10).
(2) Guarded replications. In (S1 | S2), the services proposed
on a and b can be considered polynomial, as the number of tran-
sitions caused by initial request 0.!a(N ) or 1.!b(N ) is linear w.r.t.
N . However if we build a definition of causal complexity based on
[9], service b is of linear complexity but a is not: an input 0.!a(N )

eventually produces an output c, which is able to react with the guard
c of S2 and makes b available. All further calls to b will be causally
related to the initial request !a(N ) through this synchronisation on c,
preventing service a to be bound. Messages fired from usages of b
are indirectly related to the first request on a: they require additional
inputs b(M) to happen.

(3) Independent requests. The causality in [9] relates chains of
transitions produced by independent requests. In (S3 | S4), the two
processes are blocking each other recursion, but overall behaviour
of a and b can be considered linear. There exists an infinite compu-
tation from (S3 | S4) containing an infinite sequence of external
inputs 0.!a(5), 1.!b(10), θ2.!a(10), θ3.!b(10), . . . In this computation,
according to causality in [10], the transitions depending of request
0.!a(5) are interleaved with those depending of request 1.!b(10), lin-
ear communications on d and c unlocking further transitions. As a
result, all requests of the sequence produce transitions related to the
initial one and the set of transitions causally dependent from the first
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request is infinite.

(4) Binding. The causality in [11] relates transitions through binding.
Consider S5 and S6 which are variants of S3 and S4. In (νc2,d2)(S5 |

S6), an external output (νd2)c1⟨d2⟩ can extrude name d2, allowing
an external linear input d2 to be performed later. Causality in [11]
includes binding causality and relates both transitions, linking inter-
leaved computations performed on a and b, as in the example in (3).
(5) Nested replications. The causality in [9] relates transitions from
nested replications. Process S7 receives requests on a, but does not
do anything except freeing new replications on b implementing a
linear service. There is no guarantee on the number of transitions
dependent from an external input !a(10), because all usages of the
freed replications on b are causally related to this input. Our type
system introduced in § 3 prohibits nested replications.

In summary, if we do not propagate causality through linear com-
munications and channel binding, and if we do not link different
requests to the same replicated input, we obtain a causality relation
relevant for our analysis: we can compute, for each transition, to
which previous external request θ .!a(ṽ) is related (as formalised in
Theorem 4.4). Informally, the definitions in [9–11] represent upward
causality (li causes lj when li is necessary for lj to happen) whereas
our causality goes downward (li causes lj when lj is a consequence
of li alone).

Service Causality. Service causality defines the causality links be-
tween transitions of the same computation (Definition 4.2). As ex-
plained above, it weakens the structural causality of [9] and ignores
binding causality of [11] to define a dependency relation (⊆d below):
we do not relate two different requests to the same replicated input;
and ignore messages caused by external outputs and causality links
from linear transition.

Definition 4.2 (Service Causality). 1. A causality relation be-
tween labels (l ⊆ l ′) is defined by the following rules:
(1) a(ṽ) ⊆d l (r1) !a(ṽ) ⊆d 1.l
(2) i .l ⊆d i .l ′ if l ⊆d l

′

(3) ⟨l0, l1⟩ ⊆d ⟨l ′0, l
′
1⟩ if li ⊆d l

′
j for some i, j

and !a(ṽ) ∈ ⟨l0, l1⟩
(4) ⟨l0, l1⟩ ⊆d l ′ if li ⊆d l

′ for some i and !a(ṽ) ∈ ⟨l0, l1⟩
(5) l ⊆d ⟨l ′0, l

′
1⟩ if l ⊆d l

′
j for some j

2. A computation C from process P0 is a finite or infinite se-
quence of transitions and processes (lk , Pk )k ∈I ⊆N∗ s.t. for

all i, Pi
li
−→ Pi+1. Transitions in a computation are uniquely

identified by their labels.
3. Let C be a computation and i, j ∈ {0, ..,n} with i < j. We say

that transition li depends on lj in C, written by li ⊆C lj iff
li ⊆d lj . We call the reflexive and transitive closure of ⊆C
causal dependency and write it ⊆.

Rule (1) states transitions fired from the continuation of a standard
input depend on this input, and rule (r1) defines transitions fired from
a spawned replicated process depend on the input that created a copy
of the replicated process. Different triggers of the same replicated in-
puts are not related. Rule (2) navigates through parallel compositions
when computing dependencies. Rules (3) and (4) state that a repli-
cated communication is responsible for the transitions depending of
its matching actions (but linear communications do not propagate
causality). Rule (5) relates an external input (as our calculus is asyn-
chronous l cannot be an output) to any communications involving a

prefix it guarded. The service causality does not include (i) relations
where the left-hand side is an external output (since our calculus
is asynchronous); and (ii) relations where a linear communication
appears in the left-hand side.

Example 4.3. S =!a(x ,y).[x , 0](νd) (a⟨x − 1,y⟩ | d | d .b | b .y)
From S, input !a(10, r ) can produce, in total, 10 recursive calls on a,
10 synchronisations on d , 10 outputs on r and 10 inputs/outputs/com-
munications on b. If this initial input is followed by two other inputs
θ .!a(10, r1) and θ ′.!a(5, r2), we can distinguish, in the subsequent τ
transitions on names d , between the ones caused by the first input and
the ones caused by another input. Even if communications on name
b can happen between two of these interleaved computations, their
interferences are not taken into account when propagating causality
by rules (3, 4) in Definition 4.2. Each replicated input θ .!a(N , r ) will
cause a number of transitions linear in N .

Theorem 4.4 characterises the effect of the transformations we
apply to the causality definition from [9]: we ensure that, in a com-
putation from a process without nested replications, any transition
which is not a local communication is caused by at most one external
replicated input. Thus, when considering the usage of a service we
can identify the particular request that causes it (if it exists). Local
communications are excluded because each side of a communication
can be caused by a different replicated input, even if causality is not
propagated further.

Theorem 4.4 (Unicity of Cause). Let P be a process which does
not contain nested replications, S a computation from P and li1 ,
li2 , lj three transitions of S s.t. li1 ⊆ lj and li2 ⊆ lj . Then if (a)
li1 = θ1.!a1(ṽ1) for some a1, ṽ1, and (b) li2 = θ2.!a2(ṽ2) for some a2,
ṽ2, and (c) lj is not a linear communication, then we have i1 = i2.

5 Information Flow Analysis
This section introduces a set of constraints which guarantee polyno-
mial bounds for typed processes which abide to them. In order to
rule out process CE from § 3, our analysis needs to detect that some
information is passed through different recursive calls, using channel
d. Indeed, the main culprit in the case of CE not being polynomial
is integer z received on d, which is able to act as if it was the result
of recursive call fact⟨x − 1⟩. As our type system is unable to identify
z as a safe integer – as there is nothing which would force d to be
a safe channel (such as d being carried on a replicated channel), it
does not prevent its usage in a recursion position in mult⟨z,x − 1, c⟩.

The goal of our information flow analysis is to identify the inte-
gers used in critical positions (arguments of recursive or auxiliary
calls inside service definitions and results of computation sent on
answer channels) and to check that their origin is controlled, i.e. in-
tegers have been received in a reliable way.

We first define controlled expressions as integer expressions that
can be used trustfully: they are either (1) closed; or (2) they contain
a single integer variable that has either be received from a request to
a service; or (3) have been received on a linear name, but such linear
names are local and have been extruded at most once inside calls.
We denote the set of input and output prefixes of P whose subject
(resp. object) is a by sub(a, P) (resp. obj(a, P)).

Definition 5.1 (Controlled). Let P be a typable process, Q a subpro-
cess of P , and e an integer expression occurring in Q . We say that e
is controlled in Q of P , denoted by ok(e,Q ∈ P), whenever either:

1. e does not contain any variable;
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S =!a(x , r ).(νc) (a⟨x − 1, c⟩ | c(z).r ⟨z⟩ | d(y).s ⟨y⟩ | s ⟨8⟩)
U1 =!a(x , r ).(νc1, c2) (a⟨x − 1, c1⟩ | c1(z).r ⟨z⟩ | d(y).b⟨y, c2⟩)
U2 =!a(x , r ).(νc) (a⟨x − 1, c⟩ | c(z).r ⟨z⟩ | s ⟨r ⟩)
U3 =!a(x , r ).(νc) (a⟨x − 1, c⟩ | c(z).r ⟨z⟩ | d(y).r ⟨y⟩)

Figure 7. Examples of sound and unsound processes.

2. e contains variable xi , bound in !a(x̃).R ∈ Q; or
3. e contains variable yi , bound in b(ỹ).R ∈ Q with: (a) b is

bound by restriction (νb) R′ ∈ Q; (b) sub(b,R′) = {b(ỹ)};
and (c) obj(b,R′) ⊆ {d ⟨. . . ,b, . . .⟩}

We recall that integer expressions contain at most one variable.
Definition 5.2 ensures that there exists a flow of controlled integers
inside services: (1) all integers passed inside auxiliary and recursive
calls are controlled; (2) all channels received with the initial call to
the service ("answer channels") are (a) not passed as arguments and
(b) outputs on them only contain controlled integers.
Consider process S from Figure 7 where x , z,y are integers, a is a
replicated channel and r , c,d are linear channels. Integer expression
x − 1 is controlled, because it contains variable x which is bound
in the replicated input (2). Expression z is controlled because it is
bound by input c(z) (3); c is bound by restriction (νc) inside the
replication (3.a); there is only one prefix in which c appears as an
subject of an input c(z) (3.b); and there is only one prefix where c
appears as an object, which is an output a⟨x − 1, c⟩ (3.c). Expression
y is not controlled because it is received from d(y) (3) but d is
not bound inside the replication continuation (3.1). Expression 8 is
controlled, as it contains no variable.

Definition 5.2 (Sound Process). Let P be a process s.t. Γ ⊢N P
for some Γ, N . We write sound(P) whenever, for each subprocess
!a(x̃).Q ∈ P :

1. in all c ⟨ẽ⟩ ∈ calls(Q ; Γ), for all ei , if Γ ⊢ ei : ◦nat, then
ok(ei , !a(x̃).Q ∈ P).

2. for all z ∈ x̃ , (a) obj(z,Q) = ∅; and (b) if z⟨ẽ⟩ ∈ Q , then for
all ei s.t. Γ ⊢ ei : ◦nat, ok(ei , !a(x̃).Q ∈ P).

Example 5.3 (Control and Soundness). We can check that S is
sound; first all integer expressions inside calls are controlled (1);
moreover, for the channel r , received in the replicated input, there
is no prefix in the continuation where r appears as an object; and in
all prefixes where it appears as an output the integers expression are
controlled (there is only one, r ⟨z⟩ and z is controlled) (2).

Process U1 similar to S with replicated channel b and linear
channels c1, c2 is unsound as call b⟨y, c2⟩ carries an uncontrolled
integer y, which violates (1). Process U2 is unsound as there is an
output s ⟨r ⟩ which carries name r , received via the replicated input,
which violates (2.a). Finally, process U3 is unsound as there is an
output r ⟨y⟩ on a name r received on the replicated input which
contains an uncontrolled integer y, which violates (2.b).

We show that process CE is unsound: expression z used in the
call to mult must be controlled in fact service definition, according
to rule (1) of Definition 5.2. By Definition 5.1, z is either received
on fact, which is not the case, or received on a linear channel d . Yet
d is not bound by a restriction inside the service definition. Hence it
does not meet Definition 5.1(3.a), which forbids a usage in a critical
position for integers received on free channels free inside the service
definitions.

Example 5.4 (Services from Figure 4). As explained in § 3.2, pro-
cesses A, P, C and P ′ are typable. Process A is sound: notice that
expressions x − 1 and y in the recursive call are controlled because
they use variables bound in the replicated input. An external input of
!add(N ,M,d) spawns Θ(N ) transitions. Process P is sound. Indeed,
integer expressions res and z are controlled because they are received
on d1 and d2 which are created locally and abide to conditions (3.a)
and (3.b) of Definition 5.1. An external input mult(N ,M, c) spawns
Θ(N ∗ M) transitions. Process C is sound: all integer expressions
are controlled: x is bound by the replicated input and y and z are
bound by c and d which abides to condition (3) of Definition 5.1. An
external input !cube(N , c) spawns Θ(N 3) transitions. H is sound and
exhibits a polynomial behaviour, provided service f is implemented
by sound process. Processes L and E are rejected by the type system.
An external input a(N ) from process E spawns Θ(2N ) transitions.

P ′ is typable. Yet, consider a request !mult(3, 3, r ) which causes
a recursive subrequest mult⟨2, 3,d1⟩; an input d1(1000) can happen
on free name d1 and make the computation carrying on with number
1000 and produce a final output result r ⟨1003⟩. Interestingly, P ′ it-
self is polynomial w.r.t. service causality: a request !mult⟨N ,M, r ⟩
causes Θ(N ×M) transitions, even with the interferences. However,
if we replace P by P ′ in C, the service offered on channel cube
is no longer polynomial: a request !cube(3, r ) causes a subrequest
mult⟨3, 3,d⟩ which can return result 1003 on d , because of the inter-
ference invoked above. The second subrequest mult⟨3, 1000,d⟩ will
cause more than 3000 transitions. There is no longer a bound of the
number of transitions a request !cube(3, r ) causes, as an arbitrary
large integer can be received on d1. P ′ is unsound since constraints
from Definitions 5.2 and 5.1 require expression res, received on d1
and passed on a call to add, to be controlled, meaning that d1 has to
be restricted locally. P ′ can be seen as an open environment version
of CE . If arbitrary external inputs from an environment are allowed,
no incr module is needed in order to build typable processes which
are not polynomial as dangerous integers can be directly received
from the outside.

6 Soundness, Completeness and Decidability
Our framework is composed of a type system, which enforces ter-
mination and predicativity of service recursion in the asynchronous
π -calculus and a flow analysis, which prevents the message-passing
layer from interfering with the type system. The structure of the
soundness proof is reminiscent of the one of [5]. One noticeable
change is that information flow constraints are used inside the proofs
to guarantee the link between answers and requests, introducing
additional technicalities.

The induction on the function term from [5] is replaced by an
induction on levels: indeed, levels are used to stratify service usage;
a service can only call auxiliary services of lower level, mimicking
the tree structure of the recursive function terms. The main lemma
of [5], which gives a bound on the result of a function call has its
counterpart in Lemma 6.6, which bounds the contents of messages
emitted by a service w.r.t its parameters. Flow analysis is crucial
there, as it allows to relate the content of a message with either the
parameters, or a result of a recursive or auxiliary call. As a single
process can host many different service definitions (but only a finite
number of them), the polynomial bound of a process is given as an
upper bound of all polynomial bounds of the service definition it
contains. We start from several definitions. We first restrict the valid
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transitions in Definition 6.1 for two reasons: the inputs performed
by the system must abide to the typing discipline; and controlled
names should not be extruded.

Definition 6.1 (Typable Transition). When Γ ⊢N P , we say that

P
l
−→ P ′ is a typable transition whenever (1) If a(ṽ) ∈ l , Γ ⊢N ′ a⟨ṽ⟩

for some N ′; and (2) If (νc̃) a⟨ṽ⟩ ∈ l , and c̃ is not empty, then
Γ(a) , (T̃ )N ′ .

(2) prevents the system to send calls containing restricted names
to the outside. For example, if a call a⟨3, r ⟩ is sent to the environ-
ment, extruding r , any answer carrying an arbitrarily large value, for
example r (1010), would be accepted and its usage in remaining com-
putations would breaks complexity bounds. An extrusion through
linear outputs is permitted, though.

Lemma 6.2. 1. (Substitution Lemma) If Γ ⊢N P , sound(P),
and Γ(x̃) = Γ(ṽ), then Γ ⊢N P[ṽ/x̃] and sound(P[ṽ/x̃]).

2. (Subject Transition) If Γ ⊢N P , sound(P) and P
l
−→ P ′ with a

typable transition, then Γ′ ⊢N P ′ for some Γ′ and sound(P ′).

Definition 6.3 (Typable Computation). A typable computation (some-
times referred to as a typable computation from P0) (Γk , Pk , lk )k ∈I ⊆N
is a sequence s.t. (i) ∀k, Γk ⊢Nk Pk for some Nk ; (ii) ∀k, sound(Pk );
and (iii) ∀k, Pk

lk
−−→ Pk+1 is a typable transition.

In a computation, the depending set of transition li is the set of all
transitions which depend on li . It allows us to define complexity
bounds (Definition 6.5), as bounds on the depending sets of all
external inputs in all computations from a given process.

Definition 6.4 (Depending Set). Let S be a typable computation
(Γk , Pk , lk )k ∈I ⊆N. The depending set of lm in S , denoted by D(lm )S ,
is the set {lk |lm ⊆ lk }.

Definition 6.5 (Complexity Bound). We say that a process P is
bounded by function F : N→ N whenever for every typable com-
putation S = (Γk , Pk , lk )k ∈I ⊆N from P , for any m, if lm = θ .!a(ṽ)
then |D(lm )S | ≤ F (|ṽ |). We say that P is bounded by a polynomial
when there exists a polynomial F such that P is bounded by F .

For instance, process A from Figure 4 is bounded by F1 : n 7→ 3 ∗ n.
In any typable computation from A, for each transition θ .a(x ,y, r )
there is at most 3 ∗ (x + y) other transitions which depends from it.
Similarly, P is bounded by F2 : n 7→ 3 ∗ n .(n+1)

2 + 5 ∗ n and F is
bounded by a function asymptotically equivalent to n 7→ n!.

Lemma 6.6, a crucial prerequisite of Theorem 6.7, bounds the
content of messages inside outputs directly depending of a service
request by an expression composed of a polynomial of its recursive
arguments and the sum of its safe arguments. It is the process coun-
terpart to Lemma 4.1 in [5]. Case 3.(i) treats auxiliary calls and Case
3.(ii) treats answers from the service. Lemma 6.6 is used for proving
Theorem 6.7 to ensure that calls to auxiliary services are performed
on arguments polynomial in |ṽ |.

Lemma 6.6 (Output Control). Assume sound(P) and N ∈ N. Then
there exists a monotone polynomial FN such that for all typable
computations S = (Γk , Pk , lk )k ∈I ⊆N from P and for all pairs of
transitions li and lj of S satisfying: (1) li ⊆d lj ; (2) li contains !a(ṽ)
with Γi (a) = (T̃ )N and (ṽ ◁ T̃ ) = (ṽr , ṽs ); and (3) lj contains b⟨ṽ ′⟩

with either (i) Γj (b) = (Ũ )N ′ for some N ′; or (ii) b ∈ ṽ, we have
v ′
j ≤ FN (|ṽr |) + |ṽs |.

Theorem 6.7 (Soundness). If sound(P) then P is bounded by a
polynomial.

Completeness (Theorem 6.9) is stated w.r.t the set of recursive poly-
time functions (see [5] for instance): we can compute all recursive
polytime functions with typable processes. It is proved by building a
process from the polytime characterisation of [5].

Definition 6.8 (Computing Function). We say that typable process P

computes function F : Nk → N at address a, whenever P
θ .a(ñ,c)
−−−−−−−→

P ′, there is a typable computation (Γk , lk , Pk )k≤m from P ′ such that
lm = θ

′.c ⟨F (ñ)⟩. We say P computes F if there exists a name a s.t.
P computes function F at address a.

For instance, process A of Figure 4 computes (n,m) 7→ n +m on
add. Indeed, process A is able to perform input add(n,m, r ) and later
produce output r ⟨n +m⟩. Similarly, P computes (n,m) 7→ n ∗m on
mult and F computes n 7→ n! on fact.

Theorem 6.9 (Completeness). If F is a function computable in poly-
nomial time, then there exists P which computes F s.t. sound(P).

Below the size of P is defined as the number of prefixes in P .
Complexity for the type inference is similar to the one in [13].

Proposition 6.10 (Deciding Typability and Soundness).
1. Deciding whether there exist Γ, N for a process P such that

Γ ⊢N P can be done in time polynomial w.r.t the size of P .
2. Deciding if a typable process P is such that sound(P) is qua-

dratic in the size of P .

We define a constrained shape of processes which structurally
enforces information flow constraints from Definition 5.2. The use
of simple processes is an alternative to the information flow analysis.

Definition 6.11 (Simple Process). We say typable P is simple when-
ever every replication in P has the form:
!a(x̃ ,y).[n = 0]y⟨e(x̃)⟩ + [n , 0]
(νd1, . . . ,dm ) (a1⟨e1(x̃), . . . , ek1 (x̃),d1⟩
| d1(z1).(a2⟨e1(x̃ , z1), . . . , ek2 (x̃ , z1),d2⟩ | d2(z2).(. . .
| dm (zm )(am ⟨e1(x̃ , z1, . . . , zm ), . . . , ekm (x̃ , z1, . . . , zm ),dm+1⟩
| dm+1(zm+1).y⟨e(x̃ , z̃)⟩)) . . . ))

where e(ỹ) are expressions with no variable or one variable from ỹ.

Simple processes organise their auxiliary calls in a chain a1, . . . ,am
and integer expressions inside calls can only refer to values received
by the initial replicated inputs, or to values received by channels
d1, . . . ,dm+1, restricted locally. Moreover, channel y is only used
once, in subject of the final output. By structure, simple processes
abide to Definition 5.2. Notice that processes A, P, F and C are
equivalent to simple processes. Indeed, A is simple and P can be
rewritten as simple process Ps by replacing its second branch with
d1(res).(add⟨y, res,d2⟩ | d2(z).r ⟨z⟩)). Theorem 6.12 states that the
flow analysis is not needed on simple processes.

Theorem 6.12 (Simple Soundness and Completeness). (1) If P is
simple and typable, then sound(P); and (2) If F is a function com-
putable in polynomial time, then there exists a simple P which com-
putes F such that sound(P).

7 Related Works
Implicit Computational Complexity. ICC has been developed in
many different contexts, e.g. using structural constraints [5, 21] and
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type systems based on linear logics [4, 18]. Our system develops
ICC into a process algebra framework inspired by one of the clas-
sical systems [5]. The latter gives a characterisation of polytime
recursive function through control of predicative recursion in a recur-
sive framework. Instead of recursive function definitions, our system
controls replications in the π -calculus but has to handle interleaving
of computations, mobility and hidden name passing. Because sev-
eral different computations can be interleaved, we define complexity
relying on causal relations extended from [11]: instead of counting
the computation steps as in [5], we introduce an involved notion
of service causality to identify messages which depend on a given
external input. Translating the characterisation of polytime recur-
sive functions into processes is challenging because mobility allows
parametrisation of functions, arbitrary interferences on free names,
interferences between different instances of function calls and diverg-
ing behaviours by fresh name-passing. Our flow analysis handles
these issues by ordering channels with levels and statically checking
different usages of bound names to prevent spurious exponential or
infinite causal chains.

Complexity in Process Algebra. We use a level system inspired
by [14, 15] and by regions from [2]. These systems decorate types
with integer levels (or abstract regions), and checks that no loop
arises between them (inside π -replications for [14, 15] or λ-references
for [2]), ensuring termination. Ours aims to guarantee a bound on
complexity on recursive functions and thus allows controlled recur-
sive calls. Our proof technique, based on analysis of causality chains,
is different from the logical relations used in [2]. The second type
system presented in [15] allows recursive calls in the same region
while controlling their payloads w.r.t. the initial parameters. Yet, it
only considers termination and not complexity. The work by [3]
studies complexity in a synchronous π -calculus, reminiscent of the
Esterel model [6]: multiple processes engage during an instant in
interleaved computations until all reach an explicit state of coop-
eration; then the instant is terminated, and a computation resumes
in a new instant. The target applications (synchronous programs)
differ from distributed services studied in this paper. In addition,
their definition of complexity is different: they count the number of
reductions between two instants w.r.t. the size of the whole process
at the first instant. Our work counts the number of transitions caused
by an external input. Our analysis relies on a type system controlling
replications as opposed to a usage of annotations to control recursive
π -expression in [3]. The work in [20] defines a type system based on
soft linear logics [18] to control the reduction complexity of HOπ
processes. Complexity is defined by the number of reductions made
by a process w.r.t. its size. The calculus does not include name pass-
ing: the function-passing structure of HOπ straightforwardly allows
a direct transposition of the initial system from [18]. This differs
from our treatment of the π -calculus with full constructs, i.e. mo-
bility, channel-passing and replications. The work in [19] presents
a session type system which controls complexity of π -processes,
defined as the number of reductions w.r.t. the initial size of the pro-
cess. Because of the close correspondence between sessions and
linear λ-calculi [7, 23], they are able to lightly modify the session
system in [7] in order to capture polynomial behaviours. However,
the expressiveness of the typable processes is heavily constrained
by the linear logic based session types. Our technique of making
explicit decreasings in recursive calls can be related to the use of
sized types [1, 17] which use size annotation for control of recursion.

In our case, the use of levels and expression comparison is more
tailored for process verification.

Causality. The existing works about complexity of processes rely
on counting the number of reductions a process performs w.r.t. its
size [3, 19, 20]. These coarse-grained approaches make difficult any
attempt at an interesting completeness result whereas our framework,
which focuses on the counting of actions causally dependent from
an initial request w.r.t. the content of this request, allows the defi-
nition of recursive polynomial function as input-output behaviours,
bringing completeness result Theorem 6.9. We restrict Degano and
Priami’s definition of causality [11], defining causally dependent
paths from processes via the standard LTS. This makes the definition
of complexity bounds clear and straightforward and simplifies the
presentation of the proofs, as transitions are compared thanks to
their labels. Our analysis works with other definitions of causality,
such as the ones in [8], as long as one weakens them to break the
causality links from linear communications, as explained in § 4.
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