
HAL Id: hal-02074840
https://hal.sorbonne-universite.fr/hal-02074840v1

Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable-Threshold Buffer Based Adaptation for DASH
Mobile Video Streaming

Rabee Mustapha Abuteir, Anne Fladenmuller, Olivier Fourmaux, Mostafa
Ammar

To cite this version:
Rabee Mustapha Abuteir, Anne Fladenmuller, Olivier Fourmaux, Mostafa Ammar. Variable-
Threshold Buffer Based Adaptation for DASH Mobile Video Streaming. IWCMC 2017 - 13th In-
ternational Wireless Communications and Mobile Computing Conference, Jun 2017, Valencia, Spain.
�10.1109/IWCMC.2017.7986253�. �hal-02074840�

https://hal.sorbonne-universite.fr/hal-02074840v1
https://hal.archives-ouvertes.fr

Variable-Threshold Buffer Based Adaptation for
DASH Mobile Video Streaming

Rabee Mustapha Abuteir ∗, Anne Fladenmuller ∗, Olivier Fourmaux ∗ and Mostafa Ammar †
∗ Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris

{mustapha.abuteir, anne.fladenmuller, olivier.fourmaux}@lip6.fr
† Georgia Institute of Technology

ammar@cc.gatech.edu

Abstract—Dynamic Adaptive Streaming over HTTP (DASH)
was introduced to enable high video quality streaming over
HTTP. DASH depends on the adaptation logic at the client to
choose which video bitrate to stream from the content server for
each chunk. For clients receiving video over a cellular network,
the cellular first hop tends to be the bandwidth bottleneck and
can exhibit significant swings in available bandwidth. In this
paper we develop and evaluate a Dynamic Adaptation for mobile
Video Streaming (DAVS), a technique that can be used within
DASH adaptation to handle the significant bandwidth variability
experienced by cellular mobile clients. In our scheme the main
innovation is that the client chooses a bitrate based on whether
the playout buffer occupancy (BO) falls below or above a dynamic
threshold. In addition, the scheme attempts to minimize bitrate
switching by again delaying a change of video bitrate selection
by a window of time – that is also dynamically determined. We
evaluate the performance of DAVS over real traces collected from
a mobile network operator. DAVS shows better performance over
different video streaming metrics. Furthermore, It increases the
QoE by a range 15% - 55% compared to benchmark algorithms.

Index Terms—DASH, HTTP, LTE, Mobile Networks, TCP,
Video Streaming.

I. INTRODUCTION

There is significant growth in mobile data traffic in the last
few years. Some predictions expect the mobile data traffic to
account for 19% of total Internet traffic by 2020 [1]. It is also
expected that video traffic will reach 79% of all Internet traffic
by 2020. The bulk of video streaming on the Internet today
(including streaming to mobile devices) uses some version of
the Dynamic Adaptive Streaming over HTTP (DASH) protocol
which aims to deliver video with high Quality of Experience
(QoE) [2].

Figure 1 shows the architecture of a DASH video streaming
system. The video is available at an Over-The-Top (OTT)
video provider and pre-encoded at various bitrates. The result-
ing videos are segmented into chunks (typically with duration
of 2-10 seconds each) and hosted in the OTT content servers
(Content Distribution Network). Initially the DASH player
receives information about the available bitrates among other
video meta-information in a Media Presentation and Descrip-
tion (MPD) file which is downloaded from the content server
before video streaming begins. The DASH player requests

Mostafa Ammars work is supported in part by the National Science
Foundation under Grant Number NETS-1409589.

Fig. 1: The End-to-End architecture of DASH video streaming
system. The video is pre-encoded at various bitrates and
segmented into chunks. The DASH player uses the adaptation
logic to select the streamed chunks bitrates.

the video chunks using HTTP protocol which uses TCP as
transport layer [3].

Adaptive Bit Rate (ABR) adaptation logic is used by the
DASH player to choose which bitrate to request from the
content server for each chunk. A variety of adaptation schemes
have been proposed in the literature and used in commercial
video streaming systems. Some of these are described in
the related work section. In typical adaptation schemes the
decisions are based on measurements of download throughput
and/or playout buffer occupancy. The main objective of the
adaptation is to maximize user engagement by delivering
video with highest QoE [4], [5]. Typically this involves
some combination of maximizing the average video bitrate,
minimizing video stall (or rebuffering) events and minimizing
bitrate switching at the client.

ABR adaptation logic, however, performs best when the
bandwidth from the client to the servers 1 is relatively stable
[7] and its performance degrades in the presence of sig-
nificant bandwidth instability [8], [9]. For clients receiving
video over a cellular network, the cellular first hop tends to
be the bandwidth bottleneck. It can also exhibit significant
swings in available bandwidth. Illustrating this behavior is

1The chunks of the same video could be distributed over multiple content
servers [6].

Figure 2 which shows the throughput observed by a mobile
client accessing content server over a 4G LTE network. This
significant variability in bandwidth is due to the change in
link capacity. In cellular networks, the link capacity depends
on many factors, such as channel fading and the bottleneck
in the radio access network. In previous work it has been
observed that this variability requires changes to traditional
Internet congestion control [10].

0 100 200 300 400 500 600

Time (Seconds)
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
h
ro
u
g
h
p
u
t
(M

b
p
s
)

Fig. 2: The variation of throughput observed by a mo-
bile client. Results from an experiment performed over 4G
LTE cellular network of one of the main telecommunication
provider in France.

In this paper we develop and evaluate a technique that
can be used within DASH ABR adaptation logic to handle
the significant bandwidth variability experienced by cellular
mobile DASH player. In our scheme the adaptation logic
chooses a bitrate based on whether the playout buffer occu-
pancy (BO), measured in seconds of video in the buffer, falls
below or above a dynamic threshold. The main innovation in
the algorithm is the use of a dynamic threshold that enables the
adaptation to deal with highly variable bandwidth profiles. In
addition, the scheme attempts to minimize bitrate switching
by again delaying a change of video bitrate selection by a
window of time – that is also dynamically determined.

The rest of the paper is organized as follows. Related work
is presented in Section II. In Section III we describe and
motivate the proposed adaptation algorithm. The adaptation
scheme performance is evaluated in section IV. The paper is
concluded in Section V.

II. RELATED WORK

The state of art ABR adaptation logic algorithms can be
classified into three categories: (1) Bandwidth estimation
based: the adaptation logic uses the bandwidth estimation to
select the next chunk bitrate. (2) Buffer occupancy based: the
adaptation logic models the next chunk bitrate as a function of
the current buffer occupancy (3) Hybrid: the adaptation logic
uses a mix of both bandwidth estimation and buffer occupancy
techniques.

FESTIVE [11] uses an adaptation logic aims to improve
fairness, stability and efficiency of the DASH player. FESTIVE

uses a harmonic mean, chunk scheduler and delay update
to select the next chunk bitrate. However, FESTIVE does
not take into account buffer occupancy which can lead to
buffer starvation (rebuffering) in mobile networks where the
bandwidth is highly variable and unpredictable.

In [12], the authors proposed a Buffer Based Adaptation
(BBA) scheme. In BBA, the next chunk bitrate is a function of
the buffer occupancy. At the beginning of a streaming session
BBA chooses the lowest bitrate to retrieve from the content
server. As the buffer occupancy increases the player starts to
retrieve chunks at higher bitrates. The authors developed four
buffer-aware ABR algorithms namley BBA-0, BBA-1, BBA-
2 and BBA-O. BBA-2 uses the buffer occupancy mapping in
addition to stream at higher bitrates at the beginning of the
streaming session.

Zahran et al. [13] evaluate the performance of different
adaptation logics with different schedulers over cellular LTE
networks. The results show that proportional fairness is the
most suitable scheduler for video streaming in LTE networks.
Furthermore, the results show that the BBA-2 algorithm is
more suitable for cellular networks compared to FESTIVE. In
their evaluation they found that FESTIVE suffers from high
instability and rebuffering.

Zou et al. [14] asked the question: ”Can Accurate Pre-
dictions Improve Video Streaming in Cellular Networks?”.
The authors assumed the bandwidth for a few seconds in the
future is well known. The results show the prediction for short
time horizon only is insufficient. To the best of the authors
knowledge, there is no available accurate long term prediction
model for last mile mobile access network.

The Open Source Media Framework (OSMF) [15] is an
HTTP video streaming platform developed by Adobe Systems.
OSMF adaption logic uses the chunk duration and download
time as metrics to select the next chunk bitrate. In mobile
networks the chunk download time can vary considerably due
to the variation in network bandwidth which will lead to high
player instability.

Parikshit et al. [16], [17] propose Segment Aware Rate
Adaptation (SARA) algorithm. The authors notice the vari-
ation in chunks size with the same bitrate encoding due to the
change in the content complexity and motion. They propose
to modify the Media Presentation and Description (MPD) file
to include the chunks sizes. This technique was proposed also
by the authors of buffer aware adaptation [12]. SARA uses the
weighted harmonic mean to estimate the throughput. Further,
it selects the next chunk bitrate based on the buffer occupancy
and a set of static thresholds. SARA divides the buffer into
four regions and based on the current buffer occupancy and the
bandwidth weighted harmonic mean it selects the next chunk
bitrate. The threshold values depend on the buffer sizes and
that leads to different behavior between players with different
buffer sizes. Further, SARA shows high player instability
due to the high number of switches which impacts the user
QoE[18].

Post Streaming Quality Analysis (PSQA) is a unified frame-
work proposed to improve the QoE of DASH video streaming

over mobile networks [19]. PSQA uses machine learning
to generate the best adaptation logic parameters from past
throughput traces training. In cellular network, users have
different bandwidth fingerprints with high variability. A unified
framework for video streaming with the same parameters for
different users can potentially lead to poor performance and
impacts the users QoE.

A flow level framework for adaptive video delivery over
mobile networks is proposed in [20]. The framework is de-
signed to work at the gateway level and shapes the traffic
between different mobile clients. The framework was designed
to maximize both (resource utilization and fairness) and min-
imize the DASH player instability. We propose in this work
a new adaptation logic that takes into account the variation
in link quality independently of the DASH player buffer size.
In addition, our proposed adaptation logic can work with any
other framework such as that proposed in [20] to maximize
the overall performance.

III. PROPOSED ADAPTATION LOGIC

In this work we propose a new adaptation logic called
Dynamic Adaptation for mobile Video Streaming (DAVS).
DAVS specifically designed to handle the variability and un-
predictability of bandwidth in the cellular networks. As men-
tioned earlier, DAVS is based on the use of two components
(1) dynamic buffer threshold that enables the adaptation to
deal with highly variable bandwidth profiles (2) dynamic delay
updates that help minimize bitrate switching. We describe
these two components next.

A. Dynamic Buffer-Threshold Adaptation

State of the art adaptation logic came with set of predefined
parameters such as thresholds, which divided the buffer into
areas and based on the buffer occupancy it guides the adapta-
tion logic to choose the next chunk bitrate. DAVS uses buffer
occupancy model like the proposed in [12], where the buffer
is divide into two areas (risky and safe) as shown in Figure3.
Risky area represents the region if the buffer occupancy is
below then rebuffering event is highly possible. On other hand,
if the buffer occupancy is enough to enter the save area then
rebuffering event is lowly possible because there is enough
time to download more chunks. The boundary between the
two areas are determined through threshold. In contrast to
traditional adaptation logic, where the threshold is predefined
parameter, DAVS dynamically determines the threshold based
on the variation in bandwidth available to the mobile client. In
DAVS the threshold is determined dynamically based on the
variation in chunk download time. When the chunk downloads
time increases that lead to decrease the risky area and vice
versa. Next, DAVS selects the next chunk bitrate based on
the new threshold value and the Buffer Occupancy (BO).
As a reminder BO and Th are measured in seconds of
video. Specifically, BO is the number of chunks in the buffer
multiplied by the chunks duration 2.

2OTT service provider use fixed chunk duration, for example Netflix uses
4 seconds chunk duration [21].

Fig. 3: Dynamic threshold for mobile video streaming . The
threshold separates between risky and safe area. In DAVS the
threshold is dynamically determined based on the variation in
chunk download time.

When a video chunk is streamed over mobile network,
it takes time to be delivered to the client. The Download
Duration of Last streamed Chunk (DDLC) and the Chunk Size
(CS) are used to calculate the last streamed chunk Estimated
BandWidth (EBW) as shown below:

EBW =
CS

DDLC
(1)

As shown in Figure 2, in mobile networks the bandwidth
changes over time which causes variation in DDLC. Conse-
quently, the use of single bandwidth estimation technique will
increase the player instability and could lead to buffer star-
vation. To overcome this problem we use another bandwidth
estimation namely, Long term average BandWidth (LBW) and
defined as :

LBW =

N∑
n=1

EBWn

N
(2)

Where N is the number of downloaded chunks and EBWn

is the estimated bandwidth for chunk n and calculated using
equation 1.

DAVS adaptation logic takes as inputs the video Available
Bitrates (ABitrates)3, Buffer Occupancy (BO), DDLC, EBW,
Th, Last streamed chunk bitRate LR, smoothing factor α and
W the delay update Window. The DAVS adaptation logic
pseudo code is shown in algorithm 1.

At the beginning, the algorithm evaluates the value of R1,
which is the highest bitrate from the available bitrates lower
than the EBW. R2 is the highest bitrate from the available
bitrates lower than the LBW.

We use two different bandwidths (short term bandwidth
EBW and long term average bandwidth LBW) because in
mobile networks the bandwidth is unstable and the use of
EBW only can lead to excessive bitrate switching and impacts
the user QoE.

In Line 3, R0 represents the minimum bitrate in ABitrates.
We use a dynamic buffer model with dynamic threshold as
shown in Figure 3. The threshold (Th) changes dynamically
based on the download duration of last chunk which depends

3This is the list of video bitrates available to stream from the server and is
embedded in the MPD file.

Algorithm 1: Dynamic Adaptation for mobile Video
Streaming (DAVS)

Input : ABitrates, BO, DDLC, EBW, LBW, Th, LR and
α,W

Output: Next chunk bitrate
1 R1 = max({bitrate ∈ ABitrates | bitrate ≤ EBW});
/* R1 is the maximum bitrate in

ABitrates and less than EBW */
2 R2 = max({bitrate ∈ ABitrates | bitrate ≤ LBW});
/* R2 is the maximum bitrate in

ABitrates and less than LBW */
3 R0 = the minimum available bitrate;
/* R0 is the minimum bitrate in

ABitrates */
4 LastTh = Th;
5 Th = α× LastTh + (1− α)×DDLC;
/* Dynamic threshold based on last

threshold and and download duration
of the last chunk */

6 if BO < Th then
// DAVS in Risky Area

7 if the cause of enter in the risky area is due to last
increase in the streamed bitrate then
/* Double the window size to

reduce the risk in future */
8 W.setSize(W.getSize()× 2) ;

9 if DDLC > Th then
/* Choose the minimum bitrate in

ABitrates for next chunk */
10 return R0;
11 else

/* Choose the minimum bitrate
between R01,R2 and LR */

12 return min(LR,min(R1, R2));

13 else
// DAVS in Safe Area

14 R= max(LR,max(R1, R2));
/* DelayUpdate will use to minimize

the player instability */
15 return DelayUpdate(LR,R);

on the available bandwidth. Lines 4-5 shows the smoothing
equation that is used to dynamically update the threshold based
on last threshold and DDLC. α is a smooth factor and could
be included in the MPD file or pre-configured in the player.

DAVS uses the BO and Th to decide if it’s in the risky area
when the current BO is less than Th, otherwise the player
buffer is in the safe area. Lines 6-13 represent the DAVS
behavior when the BO is in the risky area. Lines 7-8 show
the player behavior when it enters the risky area due to the
last selected bitrate. In this case, DAVS increases the stability
by doubling the DelayUpdate window length to make sure
the decision next time will not cause the same problem (We

will discuss the stability function in more details in the next
subsection). Lines 9-10 show DAVS behavior when there is a
high possibility for rebuffering. To overcome this it streams
the next chunk at the lowest bitrate R0. Lines 11-12 show
DAVS behaviour when the download duration of last chunk is
greater than the threshold, in which case, it will request the
next chunk with the minimum bitrate from R1,R2 and LR to
avoid rebuffering. Lines 13-16 show the behaviour of DAVS
when the BO is larger than Th, i.e., when the buffer occupancy
is in the safe area. In this case the DASH player should
stream at higher bitrates. Because the bandwidth can vary
significantly, DAVS uses a DelayUpdate method to increase
the player stability. We will discuss DelayUpdate function in
details in the next subsection.

B. Improving Bitrate Stability

Algorithm 2: DelayUpdate
Input : LR, R
Output: bitrate

1 W.append(R);
/* Add the bitrate to the DelayUpdate

window */
2 if W.isFull then

// DelayUpdate window is full
3 R3 = minimumValueIn(W) ;

// Return the minimum value in
DelayUpdate window

4 W.clear();
// Clear the content of DelayUpdate

window
5 return R3;
6 else

/* DelayUpdate window is not full,
delay the bitrate update and
return the last streamed chunk
bitrate */

7 return LR;

We developed a new instability function namely, DelayUp-
date inspired from two techniques (1) window function which
used in signal processing [22] and (2) exponential growth
backoff which widely used in wireless networks [23]. The
objective from the stability function is to prevent excessive
video bitrate switching and to avoid the buffer starvation which
significantly influence user QoE. The DelayUpdate function
will delay the peak increase in bitrate until it make sure its
decision to increase is the right decision. Algorithm 2 shows
the DelayUpdate function, where W is a list used to store the
bitrates that are chosen by DAVS. Each new update will be
appended to W and delayed until W is full. The DASH player
will choose the lowest value in W as the bitrate for the next
chunk to be streamed. On the other hand, if W is not full the
next bitrate will be the same as the last streamed chunk bitrate
(LR). Consequently, this technique delays the bitrate change

to avoid player instability and increases the user QoE. When
the bitrate increasing leads to enter into the risky area , DAVS
will double the W size as shown in algorithm 1 - lines (7-8).

IV. PERFORMANCE EVALUATION

In this section, first we will discuss the evaluation frame-
work. Then, we will discuss the performance metrics that used
to evaluate DAVS. Next, we will discuss the results. Finaly,
we will discuss the QoE utility function.

A. Evaluation Framework

We collected a set contains real traffic traces (30 traces)
reported bandwidth every second over mobile networks. The
traces were collected in the city of Paris over one of the
main 4G LTE provider. The traces were collected in different
locations and at different times to make sure they represent the
heterogeneity in traffic patterns experienced over a cellular
network. In addition, we encoded an open-source film (Big
Buck Bunny [24]) which widely used in streaming algorithms
with similar bitrates and resolutions used by Netflix [25] using
FFmpeg H.264/MPEG-4 AVC codec [26]. We segmented
the videos into chunks using GPAC open-source multimedia
framework [27]. We choose the chunk duration to be 4 seconds
because it is the same as the used by Netflix [21]. We built a
trace-driven simulation to evaluate the performance of DAVS.
We streamed the encoded chunks over the collected traces
and compare the performance of DAVS and four benchmark
algorithms (OSMF [15], BBA2 [12], SARA [16] and PSQA
[19]).

B. Performance Metrics

We consider three video streaming performance metrics
widely used in the literature to evaluate the streaming per-
formance of DASH streaming and reflect the user QoE.

1) Average BitRate (BR): There is a non-linear relation
between the video quality and its bitrate [28]. In general, the
video quality metrics such as the Structural SIMilarity (SSIM)
increases as the bitrate increases [29], [30]. The Average
Bitrate (BR) is defined as:

BR =
1

N

N∑
n=1

Rn (3)

Where N is the number of bitrates used during streaming
session, Rn is the video bitrate streamed by the client at n.
High BR value means better video quality and vice versa.

2) Instability: The QoE of DASH video streaming is im-
pacted by the bitrate switches [31]. The instability of the player
is defined as the number of switches between bitrates over the
streaming session. Less bitrates switches reflect better QoE
and vice versa.

3) Rebuffering Duration (RD): Rebuffering Duration (RD)
is defined as the duration of buffer starvation during a video
streaming session. RD is one of the most important metrics for
video streaming that affects the user QoE [5]. Less rebuffering
duration means better QoE and vice versa.

C. Results

We use two different buffer sizes 240 and 120 seconds.
We evaluate the performance of the algorithms using our
evaluation framework over the collected traces. We compare
the performance of the algorithms using the metrics discussed
in subsection IV-B. We calculate the average value for each
metric over all collected traces and different buffer sizes.

OSMF BBA2 SARA PSQA DAVS
1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

A
v
e
ra
g
e
 B
it
ra
te
 (
M
b
p
s
) Buffer=120

Buffer=240

Fig. 4: Average Bitrate for different algorithms and different
buffer sizes. DAVS shows consistently high average bitrate
for different buffer sizes compared to the other benchmark
algorithms.

Figure 4 shows the average bitrate for different buffer sizes.
Both algorithms OSMF and DAVS are buffer-size independent
algorithms. As shown in the Figure OSMF streams at lower
bitrates compared to other algorithms for small buffer size.
Contrarily, SARA streams at higher bitrates but the behavior
of SARA is buffer size dependent. In addition, SARA is more
suitable for small buffer size but for larger buffer it streams
at lower bitrates. BBA2 adaptation logic selects the bitrate
based on the buffer occupancy. Therefore, has different average
bitrates. Likewise, PSQA uses the buffer occupancy as one
of the metrics to select the next chunk bitrate. Consequently,
BBA2 and PSQA stream at higher bitrate for small buffer
size over mobile networks. Finally, our proposed algorithm
DAVS streams at higher bitrate compared to the benchmark
algorithms. It shows consistent behavior for small and large
buffer sizes because it depends on the traffic behavior rather
the buffer sizes.

Figure 5 shows the average instability for different algo-
rithms and different buffer sizes. As it clear from the Figure,
OSMF has the highest instability (on average 97.43 switches)
because it chooses the next bitrate based on chunk download
duration. In mobile networks, the chunks download durations
varies due the high variation in bandwidth. In addition, PSQA
and BBA2 show better average instability compare to SARA.
BBA2 shows higher stability for larger buffer size due to
its long delay before switching to a new bitrate. Further,
PSQA shows a low number of switches (on average 8.56
switches) due to its attempt to fix the number of switches
over a time period to stabilize the DASH player. Finaly, DAVS

OSMF BBA2 SARA PSQA DAVS
0

20

40

60

80

100
A
v
e
ra
g
e
 I
n
s
ta
b
il
it
y

Buffer=120

Buffer=240

Fig. 5: Average Instability for different algorithms and dif-
ferent buffer sizes. DAVS shows low average instability for
different buffer sizes compared to the other benchmark algo-
rithms.

uses the DelayUpdate function (discussed in subsection III-B)
to enhance the player stability. Consequently, DAVS shows
higher stability (on average 8.43 switches) compared to the
benchmark algorithms.

OSMF BBA2 SARA PSQA DAVS
0

10

20

30

40

50

60

A
v
g
 R
e
b
u
ff
e
ri
n
g
 (
S
e
c
o
n
d
s
)

Buffer=120

Buffer=240

Fig. 6: Average rebuffering duration for different algorithms
and different buffer sizes. Both OSMF and PSQA suffer from
rebuffering.

Figure 6 shows the average rebuffering duration for different
algorithms and different buffer sizes. Both OSMF and PSQA
suffer from rebuffering. On the other hand, BBA2 and SARA
reduce rebuffering by taking into account the buffer occupancy.
As a result, when the buffer is consumed quickly they switch
to lower bitrates. DAVS uses dynamic threshold to separate
between the risky and safe areas. For slow chunk download du-
ration it increases the risky area and for high chunk download
duration it decreases the risky area. This dynamic adaptation
of threshold-based on traffic behavior makes DAVS suitable
for mobile video streaming.

D. QoE Utility Function (QUF)

There are many QoE utility functions proposed in the
literature to reflect the user QoE [32], [33], [34]. In this

paper we used the QoE utility function proposed in [35]
because it is widely used in literature. Further, it considers
different parameters (startup delay, average bitrate, instability
and rebuffering duration) and defined as:

QoE =

K∑
k=1

Rk − λ×
K−1∑
k=1

|RK+1 −RK |−

(µ× Tp)− (µs × Ts)
(4)

Where K is the number of streamed chunks, RK is the
bitrate that is used to stream chunk k, Tp is the rebuffering
duration and Ts is the startup delay. The constants λ, µ and µs

are weighting factors and the values proposed by the authors
are (1, 3000 and 3000) [35]. We evaluate the QoE for DAVS
and the benchmark algorithms for different buffer sizes over
the evaluation framework introduced in subsection IV-A. First
we evaluate the average QoE for every algorithm and for
different buffer sizes. Then, we normalize the average QoE
using the following equation:

NAQoE =
AAQoE

MAAQoE
(5)

Where NAQoE refers to the Normalized Average QoE,
AAQoE refers to the Actual Average QoE and MAAQoE refers
to the Maximum Actual Average QoE. Based on Equation 5
we divide the AAQoE for each algorithm over the maximum
AAQoE between all algorithms. The algorithm with highest
value of NAQoE is the best among the evaluated algorithms.

OSMF BBA2 SARA PSQA DAVS
0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li
z
e
d
 A

v
g
 Q

o
E

Buffer=120

Buffer=240

Fig. 7: Normalized Average QoE for different algorithms
and different buffer sizes. The highest value means the best
between the evaluated algorithm.

Figure 7 shows the Normalized Average QoE for the dif-
ferent algorithms. As is shown in the Figure the NAQoE
for BBA2, SARA and PSQA varies for different buffer
sizes because the algorithms behavior depend on the static
thresholds. On the other hand, OSMF and DAVS behavior
is approximately the same for different buffer sizes. DAVS
has the highest QoE for different buffer sizes because (1)
DAVS behavior depends on the measured bandwidth, (2)
DAVS streams at higher bitrates and it takes into account

the time-varying bandwidth behavior in mobile networks, (3)
DAVS uses a dynamic threshold to avoid rebuffering, and
(4) DAVS uses DelayUpdate stability to reduce the player
switches between bitrates. DAVS increases the QoE between
15% to 55% compared to the benchmark algorithms.

V. CONCLUSION AND FUTURE WORK

We proposed DAVS a new adaptation logic for DASH
mobile video streaming. DAVS uses dynamic buffer occupancy
threshold to deal with highly variable bandwidth profiles as
well as dynamic delay updates to minimize bitrates switching.
We evaluated DAVS using trace driven simulation and with
widely used video streaming performance metrics. DAVS
shows higher performance compared to other benchmark al-
gorithms (OSMF, BBA2, SARA and PSQA). In addition, we
used a QoE utility function widely used in literature to evaluate
the performance of DAVS. DAVS increases the QoE between
15% and 55% compared to the benchmark algorithms.

Our work will continue in the following directions. First,
we will enhance DAVS by considering the mobile device
capabilities (such as screen resolution and processing speed)
to select the most suitable bitrate. Second, we will address
the use of MultiPath TCP (MPTCP) [36] to increase the TCP
throughput in mobile networks.

REFERENCES

[1] C. Systems, “Visual Networking Index: Global IP traffic forecast 2015-
2020,” https://goo.gl/rGQCL8, Last accessed Jan 20, 2017.

[2] T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards
and design principles,” in Proceedings of the second annual ACM
conference on Multimedia systems, 2011, pp. 133–144.

[3] B. Bing, Next-generation video coding and streaming. Wiley, 2015.
[4] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,

and H. Zhang, “Understanding the impact of video quality on user
engagement,” in ACM SIGCOMM CCR, vol. 41, no. 4, 2011, pp. 362–
373.

[5] H. Nam, K.-H. Kim, and H. Schulzrinne, “QoE matters more than QoS:
Why people stop watching cat videos,” in IEEE INFOCOM, 2016, 2016.

[6] W. Pu, Z. Zou, and C. W. Chen, “Dynamic adaptive streaming over http
from multiple content distribution servers,” in Global Telecommunica-
tions Conference (GLOBECOM 2011), 2011 IEEE. IEEE, 2011, pp.
1–5.

[7] T. Mangla, N. Theera-Ampornpunt, M. Ammar, E. Zegura, and
S. Bagchi, “Video through a crystal ball: effect of bandwidth prediction
quality on adaptive streaming in mobile environments,” in Proceedings
of the 8th International Workshop on Mobile Video, 2016, p. 1.

[8] R. M. Abuteir, A. Fladenmuller, and O. Fourmaux, “An SDN approach
to adaptive video streaming in wireless home networks,” in IEEE Inter-
national Wireless Communications and Mobile Computing Conference,
2016.

[9] ——, “Sdn based architecture to improve video streaming in home
networks,” in IEEE International Conference on Advanced Information
Networking and Applications (AINA). IEEE, 2016, pp. 220–226.

[10] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive
congestion control for unpredictable cellular networks,” in ACM SIG-
COMM CCR, vol. 45, no. 4, 2015, pp. 509–522.

[11] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with festive,” in Pro-
ceedings of the 8th International Conference on Emerging networking
experiments and technologies, 2012, pp. 97–108.

[12] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 187–198, 2015.

[13] A. H. Zahran and J. J. Quinlan, “Impact of the LTE scheduler on
achieving good QoE for DASH video streaming,” in Proceedings of the
22nd IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN 2016), 2016.

[14] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin,
J. Rexford, and R. K. Sinha, “Can accurate predictions improve video
streaming in cellular networks?” in Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications, 2015, pp.
57–62.

[15] A. Systems, “Open source media framework,” http://goo.gl/89Re4W,
Last accessed Jan 20, 2017.

[16] P. Juluri, V. Tamarapalli, and D. Medhi, “SARA: Segment aware rate
adaptation algorithm for dynamic adaptive streaming over HTTP,”
in 2015 IEEE International Conference on Communication Workshop
(ICCW), 2015, pp. 1765–1770.

[17] ——, “QoE management in DASH systems using the segment aware rate
adaptation algorithm,” in NOMS 2016 IEEE/IFIP Network Operations
and Management Symposium, 2016, pp. 129–136.

[18] H. K. Yarnagula, S. Luhadia, S. Datta, and V. Tamarapalli, “Quality of
experience assessment of rate adaptation algorithms in DASH: An exper-
imental study,” in 2016 8th International Conference on Communication
Systems and Networks (COMSNETS), 2016, pp. 1–8.

[19] Y. Liu and J. Y. Lee, “A unified framework for automatic quality-of-
experience optimization in mobile video streaming,” in IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications, 2016, pp. 1–9.

[20] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chi-
ang, “A scheduling framework for adaptive video delivery over cellular
networks,” in Proceedings of the 19th annual international conference
on Mobile computing & networking, 2013, pp. 389–400.

[21] M. Riad, H. Abu-Zeid, H. S. Hassanein, M. Tayel, and A. A. Taha,
“A channel variation-aware algorithm for enhanced video streaming
quality,” in Local Computer Networks Conference Workshops (LCN
Workshops), 2015 IEEE 40th. IEEE, 2015, pp. 893–898.

[22] K. Prabhu, Window functions and their applications in signal processing.
CRC Press, 2013.

[23] H. Wu and Y. Pan, Medium access control in wireless networks. Nova
Publishers, 2008, vol. 8.

[24] “Big buck bunny homepage,” https://peach.blender.org/, Last accessed
Jan 20, 2017.

[25] “Netflix encoding bitrate,” https://goo.gl/M32pFh, Last accessed Jan 20,
2017.

[26] “FFmpeg homepage,” https://www.ffmpeg.org/, Last accessed Jan 20,
2017.

[27] “GPAC homepage,” https://gpac.wp.mines-telecom.fr, Last accessed Jan
20, 2017.

[28] C. Sieber, P. Heegaard, T. Hoßfeld, and W. Kellerer, “Sacrificing effi-
ciency for quality of experience: Youtube’s redundant traffic behavior,”
in IFIP Networking Conference (IFIP Networking) and Workshops,
2016. IEEE, 2016, pp. 503–511.

[29] D. C. Mocanu, A. Liotta, A. Ricci, M. T. Vega, and G. Exarchakos,
“When does lower bitrate give higher quality in modern video services?”
in Network Operations and Management Symposium (NOMS), 2014
IEEE. IEEE, 2014, pp. 1–5.

[30] “The SSIMplus,” https://goo.gl/3BFB7b, Last accessed Jan 20, 2017.
[31] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,

“Developing a predictive model of quality of experience for internet
video,” in ACM SIGCOMM CCR, vol. 43, no. 4. ACM, 2013, pp.
339–350.

[32] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of
experience of http video streaming,” in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on. IEEE, 2011, pp.
485–492.

[33] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” in Proceedings
of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication. ACM, 2012,
pp. 359–370.

[34] J. Joskowicz and J. C. L. Ardao, “A parametric model for perceptual
video quality estimation,” Telecommunication Systems, pp. 49–62, 2012.

[35] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” ACM
SIGCOMM CCR, vol. 45, no. 4, pp. 325–338, 2015.

[36] “MPTCP,” https://goo.gl/jL85kW, Last accessed Jan 20, 2017.

