
HAL Id: hal-02075831
https://hal.sorbonne-universite.fr/hal-02075831

Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal matching in link stream: kernel and
approximation

Julien Baste, Binh-Minh Bui-Xuan

To cite this version:
Julien Baste, Binh-Minh Bui-Xuan. Temporal matching in link stream: kernel and approximation.
CTW 2018 - 16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Jun 2018,
Paris, France. �hal-02075831�

https://hal.sorbonne-universite.fr/hal-02075831
https://hal.archives-ouvertes.fr

Temporal matching in link stream: kernel and approximation

Julien Baste1 Binh-Minh Bui-Xuan1

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
[julien.baste,buixuan]@lip6.fr

Abstract

A link stream is a sequence of pairs of the form (t, {u, v}), where t ∈ N represents
a time instant and u 6= v. Given an integer γ, the γ-edge between vertices u and v,
starting at time t, is the set of temporally consecutive edges defined as {(t′, {u, v}) | t′ ∈
Jt, t+ γ − 1K}. We introduce the notion of temporal matching of a link stream to be a
set of pairwise non overlapping γ-edges belonging to the link stream. Unexpectedly, the
problem of computing a temporal matching of maximum size turns out to be NP -hard.
We provide a kernelization algorithm parameterized by the solution size for the problem.
As a byproduct we also depict a 2-approximation algorithm.

Keywords : graph, parameterized algorithm, link stream.

1 Introduction
The question of mining data stemming from human activities not only comes from an old and
well studied topic of social science. In the recent years, mining human data is also moved by
the sheer amount of applications in web analytics, graph mining statistics, criminology graph
visualization and so on. An important, yet not quite well understood, feature of graph data
collected by such tools comes from the time dimension: edges here are timestamped edges.
They come ordered by the time interval where they are effectively active. We call this kind of
data a link stream, in the sense of [3, 4].

A link stream L is a sequence of pairs of the form (t, {u, v}) where {u, v} is an edge, in
the sense of classical loopless undirected simple graphs, and t ∈ N is an integer representing
a discretized time instant. If every pair (t, {u, v}) in L satisfies t = t0 for some fixed t0,
then we say that link stream L is constant. A constant link stream is equivalent to the
formalism of a graph in the classical sense. Given an integer γ, a time instant t, and two
distinct vertices u and v, we define the γ-edge between u and v starting at time t as the set
{(t′, {u, v}) | t′ ∈ Jt, t+ γ − 1K}. Two γ-edges are compatible when they are not overlapping
(cf. formal definition in Section 2). Finally, a γ-matching of link stream L is a set of compatible
γ-edges where each γ-edge contains exclusively edges from L. We consider the problem of
computing a maximum γ-matching of an input link stream, that we call γ-matching. When
γ = 1, this problem can be solved by a slight extension of the notorious polynomial time
algorithm given in [2].

Unfortunately, we found that γ-matching on arbitrary input is NP -hard, as soon as
γ > 1. We address the question of pre-processing, in polynomial time, an input instance of
γ-matching, in order to reduce it to an equivalent instance of smaller size, in the sense of
kernelization algorithms introduced by [1]. We show that γ-matching when parameterized
by the solution size admits a quadratic kernel. On the way to do so, we also depict a procedure
which turns out to define a 2-approximation algorithm for γ-matching. Our paper is organised
as follows. We first introduce the notion of temporal matching (Section 2), before presenting
our algorithmic tools (Section 3) in order to obtain our main result, the kernelization algorithm
(Section 4). We close the paper with concluding remarks and directions for further research
(Section 5).

2 Temporal matching

We denote by N the set of nonnegative integer. Given two integers p and q, we denote by Jp, qK
the set {r ∈ N | p ≤ r ≤ q}. A link stream L is a triple (T, V,E) such that T ⊆ N, V is a
set, and E ⊆ T ×

(V
2
)
. The elements of V are called vertices and the elements of E are called

(timed) edges. A temporal vertex of L is a pair (t, v) such that t ∈ T and v ∈ V .
Given an integer γ, a γ-edge between two vertices u and v at time t, denoted Γγ(t, u, v), is

the set {(t′, {u, v}) | t′ ∈ Jt, t+ γ − 1K}. We say that a γ-edge Λ is incident to temporal vertex
(t, v) if there exists a vertex u ∈ V such that (t, {u, v}) ∈ Λ. We say that two γ-edges are
compatible if there is no temporal vertex (t, v) that is incident to both of them. A γ-matching
M of a link stream L is a set of pairwise compatible γ-edges. We say that a γ-edge Λ is
incident with a vertex v ∈ V if there exist a vertex u ∈ V and an integer t ∈ T such that
Λ = Γγ(t, u, v). We say that an edge e ∈ E is in a γ-matchingM if there exists Λ ∈ M such
that e ∈ Λ.

This paper focus on the following problem.

γ-matching
Input: A link stream L and an integer k.
Output: A γ-matching of L of size k or a correct answer that such a set does
not exist.

Property 1 γ-matching is NP-hard.

Sketch of the proof. We reduce from 3-Sat, that is well known to be NP-hard. Let ϕ be a
formula with n variables x1, . . . , xn and m clauses C0, . . . , Cm−1 such that each clauses is of
size at most 3. Without loss of generality, we assume that a clause does not contain twice the
same variable. We call X the set containing the n variables and C the set containing the m
clauses.

We define the linkstream L = (T, V,E) in the following way: T = J0, (m+ 1)γ − 1K, V =
{x−, x=, x+ | x ∈ X} ∪ {x++

t , x−−t | x ∈ X, t ∈ J0,m− 1K} ∪ {c}, and E = Evar ∪ Ecla where:

Evar = {(t, {x=, x+}), (t, {x=, x−}) | t ∈ J0, (m+ 1)γ − 1K , x ∈ X}

∪ {(t, {x+, x++
i }), (t, {x−, x−−i }) | t ∈ J1,mγK , x ∈ X, i =

⌊
t− 1
γ

⌋
}

Ecla = {(t, {c, x++
i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X, x appears positively in Ci}

∪ {(t, {c, x−−i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X, x appears negatively in Ci}.

We depict in Figure 1 the linkstream build for γ = 3 and ϕ = (w ∨ x ∨ y) ∧ (w ∨ x ∨ z). In
order to finish the proof of the property, it is sufficient to show the equivalence between above
gadget and the original instance of 3-Sat, that is:

Claim 1 There is an assignment of the variables that satisfies ϕ if and only if L contains a
γ-matching of size (2m+ 1)n+m.

Due to space limit, we omit the formal proof of Claim 1. Intuitively, the edge between
(0, {x=, x+}) and (0, {x=, x−}) that is in the requested γ-matching determines if the variable
x is set to true or false. Moreover, the size of the requested γ-matching ensures that if the edge
(0, {x=, x+}) (resp. (0, {x=, x−})) is in the γ-matching, then every edge (t, {x=, x+}) (resp.
(t, {x=, x−})), t ∈ J0, (m+ 1)γ − 1K, and every edge (t, {x−, x−−i }) (resp. (t, {x+, x++

i })),
t ∈ J1,mγK}, i =

⌊
t−1
γ

⌋
, are in the γ-matching as well. Finally, during the time interval

Jiγ + 1, (i+ 1)γK, we check that the clause Ci is satisfied.

w−−1 w−−0 w− w= w+ w++
0 w++

1 x−−1 x−−0 x− x= x+ x++
0 x++

1 y−−1 y−−0 y− y= y+ y++
0 y++

1 z−−1 z−−0 z− z= z+ z++
0 z++

1c

0 • • •• • •• • •• • ••
1 • • •• • •• • •• • ••
2 • • •• • •• • •• • ••
3 • • •• • •• • •• • ••
4 • • •• • •• • •• • ••
5 • • •• • •• • •• • ••
6 • • •• • •• • •• • ••
7 • • •• • •• • •• • ••
8 • • •• • •• • •• • ••

• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •

FIG. 1: The constructed linkstream L when ϕ = (w ∨ x∨ y)∧ (w ∨ x∨ z) and γ = 3. Here T = J0, 8K
and an edge (t, {u, v}) of L is depicted by a bold line, following the horizontal line corresponding to
time t, going from the vertical line corresponding to u to the vertical line corresponding to v. For
readability, the edges incident with c are not drown. Instead, we have circled the temporal vertices
that are neighbors of c.

3 Approximation algorithm
In this section, we adopt the greedy approach in order to provide a 2−approximation algorithm
for γ-matching. Let L = (T, V,E) be a link stream. Let P be the set of every γ-edges of L.
Let � be an arbitrary total ordering on the elements of P such that for any two elements of
P , Λ1 = Γγ(t1, u1, v1) and Λ2 = Γγ(t2, u2, v2) such that t1 < t2, we have Λ1 � Λ2.

We denote by A the following greedy algorithm. The algorithm starts withM = ∅, Q = P ,
and a function ρ : V × T → {0, 1} such that for each (t, v) ∈ T × V , ρ(t, v) = 0. The purpose
of ρ is to keep track of the temporal vertices that are incident to a γ-edge ofM. As long as
Q is not empty, the algorithm selects Λ, the γ-edge of Q that is minimum for �, and removes
it from Q. Let K be the set of the 2γ temporal vertices that are incident to Λ. If, for each
(t, v) ∈ K, ρ(t, v) = 0, then the algorithm adds Λ toM and for each (t, v) ∈ K, it sets ρ(t, v)
to 1, otherwise it does nothing at this step. When Q = ∅, the algorithm returnsM.

As P can be determined in a sorted way in timeO(m), this algorithm runs in timeO(nτ+m),
where τ = |T |, n = |V |, m = |E|, and where γ is a constant hidden in the O.

Given a γ-matchingM, we define the bottom temporal vertices ofM, denoted bot(M), as
the set {(t + γ − 1, u), (t + γ − 1, v) | Γγ(t, u, v) ∈ M}. Lemma 1 shows the crucial role of
the bottom temporal vertices of the matching returned by A. We omit the proof of Lemma 1
because of the space restriction.

Lemma 1 Let γ be a positive integer, let L be a link stream, and let M be a γ-matching
returned by A when applied to L. If M′ is a γ-matching of L, then every γ-edge of M′ is
incident to, at least, one temporal vertex of bot(M).

Lemma 1 plays a cornerstone role in the proof of subsequent Theorem 2. As a byproduct,
we also obtain the following result.

Theorem 1 A is a 2-approximation of the γ-matching problem.

4 Kernelization algorithm
We now show a kernelization algorithm for γ-matching by a direct pruning process based on
Lemma 1. The main idea is as follows. First, we compute the set S of all bottom temporal
vertices of a γ-matching produced by previously defined algorithm A. Then, we prune the
original instance by only keeping edges that belong to a γ-edge incident to a temporal vertex
of S. More precisely, we prove the following result.

Theorem 2 There exists a polynomial-time algorithm that for each instance (L, k), either
correctly determines if L contains a γ-matching of size k, or returns an equivalence instance
(L′, k) such that the number of edges of L′ is 2(k − 1)(2k − 1)γ2.
Proof : Let L = (T, V,E) be a link stream and k be an integer. We first run the algorithm
A on L. LetM be the γ-matching outputed by the algorithm and let ` = |M|. If ` ≥ k, then
we already have a solution and then we return a true instance. If ` < k

2 , then, by Theorem 1,
we know that the instance does not contains a γ-matching of size k, and then we return a false
instance. We now assume that k

2 ≤ ` < k.
Lemma 1 justifies that we are now focusing on the temporal vertices of bot(M) in order

to find the requested kernel. We construct a set P of γ-edges and we show that any edge
e, that is not in a γ-edge of P , is useless when looking for a γ-matching of size k. For each
(t, u) ∈ bot(M), and for each t′ such that max(0, t−γ+1) ≤ t′ ≤ t, we consider the set S(t′, u)
of every γ-edge, existing in L, with the form Γγ(t′, u, v) with v ∈ V . If the set S(t′, u) is of size
at most 2k − 1, we add every element of S(t′, u) to P . Otherwise, we select 2k − 1 elements
of S(t′, u) that we add them to P . In both cases, we denote by S ′(t′, u) the set of elements
of S(t′, u) that we have added to P . This finish the construction of P . As |bot(M)| = 2`
and for each element of bot(M) we have added at most (2k − 1)γ γ-edges to P , we have that
|P| ≤ 2`(2k − 1)γ ≤ 2(k − 1)(2k − 1)γ.

We now prove that if L contains a γ-matching M′ of size k, then it also contains a γ-
matchingM′′ of size k such thatM′′ ⊆ P . LetM′ be a γ-matching of L of size k such that
p = |M′ \ P| is minimum. We have to prove that p = 0. Assume that p ≥ 1. Let Λ be a
γ-edge inM′ \ P . Let (t, u) be a temporal vertex of bot(M) that is incident to Λ. We know
by Lemma 1 that this temporal vertex exists. Assume that Λ = Γγ(t′, u, v) for some v ∈ V and
some t′ such that max(0, t − γ + 1) ≤ t′ ≤ t. As Λ 6∈ P , we have that Λ ∈ S(t′, u) \ S ′(t′, u),
and so |S ′(t′, u)| = 2k− 1. Let NS′(t′, u) be the set of vertices w of V \ {u} such that a γ-edge
of S ′(t′, u) is incident to w. AsM′ \ {Λ} is of size k − 1, the γ-edges that it contains can be
incident to at most 2k − 2 vertices. This means that there exists w ∈ NS′(t′, u) such that no
γ-edge ofM′ \ {Λ} is incident to w. Thus (M′ \ {Λ}) ∪ {Γγ(t′, u, w)} is a γ-matching of size
k. As Λ 6∈ P and Γγ(t′, u, v) ∈ P , this contradicts the fact that p is minimum.

We now can define the link stream L′ = (T, V,E′) such that E′ = {e ∈ E | ∃Λ ∈ P :
e ∈ Λ}. As |P| ≤ 2(k − 1)(2k − 1)γ and every element of P is a γ-edge, we have that
|E′| ≤ 2(k − 1)(2k − 1)γ2. The theorem follows. �

5 Conclusion and perspectives
We introduce the notion of a temporal matching in a link stream. Unexpectedly, the problem
of computing a temporal matching, called γ-matching, turns out to be NP -hard. We then
show a kernelization algorithm for γ-matching parameterized by the size of the solution.
Our process produces quadratic kernels. On the way to obtaining the kernelization algorithm,
we also provide a 2-approximation algorithm for γ-matching. We believe that the same
techniques extend to a large class of hitting set problems in the link streams.

References
[1] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[2] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[3] M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the modeling
of interactions over time. 2017. https://arxiv.org/abs/1710.04073.

[4] T. Viard, M. Latapy, and C. Magnien. Computing maximal cliques in link streams. Theo-
retical Computer Science, 609:245–252, 2016.

	Introduction
	Temporal matching
	Approximation algorithm
	Kernelization algorithm
	Conclusion and perspectives

