
HAL Id: hal-02075865
https://hal.sorbonne-universite.fr/hal-02075865v1

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Temporal Matching
Julien Baste, Binh-Minh Bui-Xuan, Antoine Roux

To cite this version:
Julien Baste, Binh-Minh Bui-Xuan, Antoine Roux. Temporal Matching. Theoretical Computer Sci-
ence, 2020, �10.1016/j.tcs.2019.03.026�. �hal-02075865�

https://hal.sorbonne-universite.fr/hal-02075865v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Temporal Matching ?

Julien Baste a Binh-Minh Bui-Xuan a Antoine Roux a,b

aLaboratoire d’Informatique de Paris 6 (LIP6), Centre National de la Recherche
Scientifique (CNRS), Sorbonne Université (SU UPMC).

bThales Communications & Security, Thales Group.
[julien.baste,buixuan,antoine.roux]@lip6.fr

Abstract

A link stream is a sequence of pairs of the form (t, {u, v}), where t ∈ N represents
a time instant and u 6= v. Given an integer γ, the γ-edge between vertices u and v,
starting at time t, is the set of temporally consecutive edges defined by {(t′, {u, v}) |
t′ ∈ Jt, t+ γ − 1K}. We introduce the notion of temporal matching of a link stream
to be an independent γ-edge set belonging to the link stream. We show that the
problem of computing a temporal matching of maximum size is NP-hard as soon as
γ > 1. We depict a kernelization algorithm parameterized by the solution size for
the problem. As a byproduct we also give a 2-approximation algorithm.

Both our 2-approximation and kernelization algorithms are implemented and con-
fronted to link streams collected from real world graph data. We observe that find-
ing temporal matchings is a sensitive question when mining our data from such
a perspective as: managing peer-working when any pair of peers X and Y are to
collaborate over a period of one month, at an average rate of at least two email
exchanges every week. We furthermore design a link stream generating process by
mimicking the behaviour of a random moving group of particles under natural sim-
ulation, and confront our algorithms to these generated instances of link streams.
All the implementations are open source.

Key words: graph, parameterized algorithm, link stream, open source code

? Part of the results reported in this paper were presented at CTW’18. Links to
the source code and the GUI of the link stream generator:
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams

https://antoinedimitriroux.github.io

For financial support, we are grateful to: Thales Communications & Security,
project TCS.DJ.2015-432; Agence Nationale de la Recherche Technique, project
2016.0097; Centre National de la Recherche Scientifique, project INS2I.GraphGPU.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304397519301914
Manuscript_272e097de770a8a894741deac091708f

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304397519301914
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304397519301914

1 Introduction

The problem of finding a maximum matching is a fundamental and well stud-
ied question. It consists in finding a maximum independent edge set of a given
graph. It can be solved in polynomial time by the well known Edmonds al-
gorithm [8]. On the theoretical side, Edmonds result plays a primary role in
combinatorial optimization. This is not only because it made a major histor-
ical impact in pointing out the polytope structure of a graph problem, but
also because this result has marked the beginning of a long and fruitful list
of matching algorithms all having polynomial worst case time complexity. We
can cite in this sense the connection between Matching and matrix multi-
plication which was exploited for algorithm design [4,16].

A lot of research effort has been put in investigating variants of Matching as
well. For instance, a tricky structural analysis helps in devising a linear time
procedure for finding popular matchings [1]. Albeit it must be under some
conditions called fairness, the fact that a linear time algorithm exists for this
kind of popular matching helps in better understanding the underlying dis-
crete structure of matchings. Surprisingly, while being a well-known and fun-
damentally polynomial algorithmic problem, Matching has lately attracted
research interest in the parameterized areas of algorithmic as well [9,12]. Here,
the overall effort has been put in reducing the polynomial time complexity to
linear time, by means of factorising bits of the time complexity to depend on
another parameter of the input instance rather than its size.

On the practical side, Matching is a convenient formalism to approach task
management problems. For instance, in a bipartite graph where one vertex set
represents chores and the other vertex set represents executors, each having
the ability to execute a (different) subset of chores, Matching models the
question of maximising the number of chores that can be executed. This prob-
lem has been intensively investigated under the setting of streaming inputs,
where unpredictable arrivals of executors must be affected to chores in real
time, see e.g. [14,19]. In this topic, a careful randomized study [7] not only
provides a streaming algorithm achieving competitive approximation ratios,
but it also gives the upper bound of extra information the streaming algorithm
requires, and, particularly, a tricky proof of a lower bound of extra informa-
tion one need to use in order to achieve the previously said approximation
ratio. More generally, in an arbitrary graph representing compatible cowork-
ers, Matching models the concern of maximising the overall workload when
work must be done by compatible pairs. This problem has recently been in-
vestigated from a heuristics point of view [6], as well as under a quantitative
comparison of the greedy approach on large input [20].

From the perspective of mining data collected from human activities, how-

6

ever, the input graph should be taken under the light of the time dimension:
graph edges are time stamped edges. They come ordered by the time instants
where they are recorded. We call this kind of data a link stream, in the sense
of [11,18]. The most natural illustration of such thing is web logs, where any
single line of log includes a field under time format. Phone calls between in-
dividuals are also time dependent information, so are email exchanges. Other
kind of time dependent interaction could arise from peer programming man-
agement in IT best practices too. For instance, let us consider a human re-
source platform where collaborators register for the coming trimester the time
intervals where they are unavailable for work. For simplicity we discretize these
time intervals by days, from 1 to 90. Besides, the collaborators also commu-
nicate via keywords the hard skills in which they are efficient. Let us consider
that a task must be processed by two skilled collaborators over at least γ = 5
five consecutive days before delivery. By human limitations, a collaborator
will only process a given maximum number of tasks at a time. Under these
conditions, given a potentially infinite number of tasks to process, how many
deliveries can be made for the coming trimester? How continuously can deliv-
ery be? How dense can peer working be versus individualistic task processing?
Fundamentally, how to quantify the concession in term of continuous delivery
in favoring peer programming over individualistic behaviour? While not fully
answering to these questions, we propose to make one step toward this kind
of reflection by formalizing the notion of timed collaboration, and show how
to compute it.

A link stream L is a triple L = (T, V,E) where E is a sequence of pairs of

the form (t, {u, v}), with {u, v} ∈
(
V
2

)
being an edge in the sense of classical

loopless undirected simple graphs, and t ∈ T ⊆ N an integer representing a
discretized time instant. If every pair (t, {u, v}) in L satisfies t = t0 for some
fixed t0, then we say that link stream L is a graph. Given an integer γ, a time
instant t, and two distinct vertices u and v, we define the γ-edge between u
and v starting at time t as the set {(t′, {u, v}) | t′ ∈ Jt, t+ γ − 1K}. A temporal
vertex is a pair (t, u), representing vertex u ∈ V at time t ∈ T . We say that a
γ-edge Γ contains a temporal vertex (t, u) if there exists a vertex v ∈ V such
that (t, {u, v}) ∈ Γ. Two γ-edges are independent if there is no temporal vertex
that is contained in both of them. Finally, a γ-matching of link stream L is a set
of pairwise independent γ-edges where each γ-edge contains exclusively edges
from L. We define γ-matching as the problem of computing a maximum γ-
matching from a given input link stream. We believe that problems involving
γ-edges with γ = 1 somewhat are rooted in classical graph theory, whereas γ-
edges for γ > 1 intrinsically model temporal interactions. For instance, when
γ = 1, this problem can be solved by a slight extension of previously mentioned
Edmonds algorithm [8]. In recent studies under a temporal perspective, the
problem when γ = 1 has also been considered along with additional conditions
in the computed γ-matching, making it NP-hard [2,13]. In this paper, we focus
on γ-edges with a non-trivial duration, that is, when γ > 1.

7

Unfortunately, γ-matching turns out to be NP-hard for γ > 1. We subse-
quently address the question of pre-processing, in polynomial time, an input
instance of γ-matching, in order to reduce it to an equivalent instance of
smaller size, in the sense of kernelization algorithms introduced in [5]. We
show that γ-matching when parameterized by the solution size admits a
quadratic kernel. On the way to do so, we also point out a simple way to
produce a 2-approximation algorithm for γ-matching.

We try to comprehend our result from a practical point of view. From this
perspective we design a link stream generating process 1 by mimicking the
behaviour of a random moving group of particles, using natural simulation:
velocity, friction, and random walk. The generating process helps us in unit
testing our implementations on small generated inputs, as well as in stress
testing our implementations on large inputs mimicking natural movements.

Both our 2-approximation and kernelization algorithms are implemented 2 and
confronted, not only to our generated link streams, but also to two particular
sets of link streams collected from real world graph data. These raw datasets
are first cleaned by a procedure that we call time-compression, and argue the
need for it right below. In one dataset the link streams have been built by time-
compression over exchanges collected from the Enron emailing network [10].
The other dataset is built by time-compression over a recording of 2 × 80
minute Rollerblade touring in Paris [17].

The reason for us to time-compress the raw data is because, therein, the
(machine recorded) consecutive time stamps can happen quite instantaneously
for human standards. This leaves no chance for a γ-edge to exist, as soon as γ >
1. For instance with the Enron emails, by ISO8601 time stamps are discretized
down to the order of seconds. However, there is absolutely no chance for that
individuals X and Y exchange two different emails in any two consecutive
seconds in the whole duration of the experiment: there is simply no time to
read the first email and type a reply the following second. For Enron we usually
merge up the time stamps to the order of half a week: if an email is received,
read, thought over, eventually replied within 3.5 days, then we consider there
is collaboration within that period of time. From this perspective, we compress
our raw data by edge contraction over the time dimension, formally as follows.
For any link stream L = (T, V,E) and 1 < δ < |T |, we define the δ-compression
Lδ = (Tδ, Vδ, Eδ) as Vδ = V , Tδ = JminT

δ
, maxT

δ
K, and

Eδ = {(t, {u, v}) | ∃t′ ∈ T : δt ≤ t′ < δ(t+ 1) ∧ (t′, {u, v}) ∈ E}.

1 Direct link to the GUI of the generator:
https://antoinedimitriroux.github.io
2 The source code is available at
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams

8

After running our implementation on the two datasets, we make three obser-
vations. First, we believe that solving γ-matching is not easy as soon as we
time-compress the raw data with “human-understandable” values of δ and γ.
Second, on small values of γ, we observe that the kernelization algorithm helps
in reducing the input link stream to an equivalent instance of size approxima-
tively 10− 20% the size of the original input. This gives measurable evidence
of performance for our preprocessing by kernelization. Our third observation
is very marginal. Note beforehand from definition that the 2-approximation
algorithm produces a lower bound for γ-matching, which is at least half
the optimal value. Moreover, note also that the kernelization algorithm gives
a naive upper bound for γ-matching by simply counting the number of γ-
edges present in the kernel. Our third observation from the numerical analysis
is that these upper bound and lower bound nearly meet on some areas in the
datasets. Even though they remain extremely marginal, these cases point out
that, sometimes, a kernelization algorithm can also provide a numerical proof
of optimality of the result found by a (greedy) 2-approximation. This hints at
the usefulness beyond theoretical considerations of γ-matching kernelization.
Moreover, our kernelization runtime is under ten seconds for inputs where the
input size is some hundreds thousand and the parameter is some thousands.
Fixed parameter tractable (FPT) paradigm in general, and kernelization in
particular, would never be numerically helpful if the complexity analysis hides
a big function of the parameter in the Landau notation. Luckily, we use simple
algorithmic processes for our kernelization.

The paper is organised as follows. We first introduce the notion of temporal
matching in Section 2. In Section 3, we present our algorithmic tools in order to
obtain our main result, the kernelization algorithm: it is presented in Section 4.
In Section 5, we present our numerical analysis. We close the paper with
concluding remarks and directions for further research.

2 Temporal matching

Unless otherwise stated, graphs in this paper are simple, undirected and loop-
less graphs. We denote by N the set of non negative integer. Given two integers
p and q, we denote by Jp, qK the set {r ∈ N | p ≤ r ≤ q}. A link stream L is a

triple (T, V,E) such that T ⊆ N is an interval, V is a set, and E ⊆ T ×
(
V
2

)
.

The link stream can be seen as an extension of graphs. Indeed, a graph is
a link stream where |T | = 1. The elements of V are called vertices and the
elements of E are called (timed) edges. A temporal vertex of L is a pair (t, u)
such that t ∈ T and u ∈ V .

Given an integer γ, a γ-edge between two vertices u and v at time t, denoted
Γγ(t, u, v), is the set {(t′, {u, v}) | t′ ∈ Jt, t+ γ − 1K}. We say that a γ-edge

9

Γ contains a temporal vertex (t, u) if there exists a vertex v ∈ V such that
(t, {u, v}) ∈ Γ. We say that two γ-edges are independent if there is no temporal
vertex that is contained in both of them. A γ-matchingM of a link stream L
is a set of pairwise independent γ-edges. We say that a γ-edge Γ is incident
with a vertex u ∈ V if there exist a vertex v ∈ V and an integer t ∈ T such
that Γ = Γγ(t, u, v). We say that an edge e ∈ E is in a γ-matchingM if there
exists Γ ∈M such that e ∈ Γ.

We focus on the following problem.

γ-matching
Input: A link stream L and an integer k.
Output: A γ-matching of L of size k or a correct answer that such a set
does not exist.

Theorem 1 γ-matching is NP-hard for γ > 1.

Proof: We prove the NP-completeness of the decision version of γ-matching
by a reduction from 3-Sat, that is well known to be NP-complete. Let ϕ be
a formula with n variables x1, . . . , xn and m clauses C0, . . . , Cm−1 such that
each clauses is of size at most 3. Without loss of generality, we assume that a
clause does not contain twice the same variable. We call X the set containing
the n variables and C the set containing the m clauses.

We define the link stream L = (T, V,E) in the following way:

• T = J0, (m+ 1)γ − 1K.
• V = {x−, x=, x+ | x ∈ X} ∪ {x++

t , x−−t | x ∈ X, t ∈ J0,m− 1K} ∪ {c}
• E = Evar ∪ Ecla where:

Evar = {(t, {x=, x+}), (t, {x=, x−}) | t ∈ J0, (m+ 1)γ − 1K , x ∈ X}
∪ {(t, {x+, x++

i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X}
∪ {(t, {x−, x−−i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X}

Ecla = {(t, {c, x++
i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X,

x appears positively in Ci}
∪ {(t, {c, x−−i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X,

x appears negatively in Ci}.

We depict in Figure 1 the link stream build for γ = 3 and ϕ = (w ∨ x ∨ y) ∧
(w ∨ x ∨ z).

We show that there is an assignments of the variables that satisfies ϕ if and
only if L contains a γ-matching of size (2m+ 1)n+m.

10

w−−1

w−−0

w−

w=

w+

w++
0

w++
1

x−−1

x−−0

x−

x=

x+

x++
0

x++
1

y−−1

y−−0

y−

y=

y+

y++
0

y++
1

z−−1

z−−0

z−

z=

z+

z++
0

z++
1

c

0

•

•
•

•

•
•

•

•
•

•

•
•

•

1

•

•
•

•

•
•

•

•
•

•

•
•

•

2

•

•
•

•

•
•

•

•
•

•

•
•

•

3

•

•
•

•

•
•

•

•
•

•

•
•

•

4

•

•
•

•

•
•

•

•
•

•

•
•

•

5

•

•
•

•

•
•

•

•
•

•

•
•

•

6

•

•
•

•

•
•

•

•
•

•

•
•

•

7

•

•
•

•

•
•

•

•
•

•

•
•

•

8

•

•
•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 1. The constructed linkstream L when ϕ = (w∨ x∨ y)∧ (w∨ x∨ z) and γ = 3.
Here T = J0, 8K and the edge (t, {u, v}) of L are depicted by an edge following the
vertical line corresponding to time t going from the horizontal line corresponding
to u to the horizontal line corresponding to v. For readability, the edges incident
with c are not drown. Instead, we have circled the vertices that are neighbors of c
at each specific time.

11

Intuitively, the edge between (0, {x=, x+}) and (0, {x=, x−}) that is in the
requested γ-matching determines if the variable x is set to true or false.
Moreover, the size of the requested γ-matching will ensure that if the edge
(0, {x=, x+}) (resp. (0, {x=, x−})) is in the γ-matching, then every edge (t, {x=, x+})
(resp. (t, {x=, x−})), t ∈ J0, (m+ 1)γ − 1K and every edge (t, {x−, x−−i }) (resp.

(t, {x+, x++
i })), t ∈ J1,mγK}, i =

⌊
t−1
γ

⌋
, are in the γ-matching as well. Finally,

during the time interval Jiγ + 1, (i+ 1)γK, we will certify that the clause Ci is
satisfied.

First assume that ϕ is satisfiable. Let ψ be a satisfying assignment of ϕ and
let χ : C → V be a function that, for each clause Ci, i ∈ J0,m− 1K, arbitrary
chooses a variable x ∈ X, such that the assignment of x given by ψ satisfies
Ci, and returns x++

i (resp. x−−i) if ψ(x) = true (resp. ψ(x) = false). Let

M= {Γγ(i · γ, x=, x+) | x ∈ X,ψ(x) = true, i ∈ J0,mK}
∪ {Γγ(i · γ, x=, x−) | x ∈ X,ψ(x) = false, i ∈ J0,mK}
∪ {Γγ(i · γ + 1, x−, x−−i) | x ∈ X,ψ(x) = true, i ∈ J1,mK}
∪ {Γγ(i · γ + 1, x+, x++

i) | x ∈ X,ψ(x) = false, i ∈ J1,mK}
∪ {Γγ(i · γ + 1, c, χ(Ct)) | i ∈ J1,mK}.

One can verify that M is a γ-matching of L of size (2m+ 1)n+m.

Assume now that L contains a γ-matchingM of size (2m+ 1)n+m. We use
several claim in order to construct a satisfying assignment of ϕ.

Claim 1 For each x ∈ X, M contains at most m + 1 γ-edges incident with
x+ (resp. x−).

Proof: This result follows from the fact that T = J0, (m+ 1)γ − 1K is of size
(m+ 1)γ and so, cannot be divided into m+ 2 pairwise disjoint sets of size γ.
2

Claim 2 Given x ∈ X, if Γγ(0, x
=, x+) 6∈ M (resp. Γγ(0, x

=, x−) 6∈ M), then
M contains at most m γ-edges incident with x+ (resp. x−).

Proof: As Γγ(0, x
=, x+) is the only γ-edge of L that contains the edge e0x =

(0, {x=, x+}), this implies that the edge e0x is not contained in any γ-edge of
M. So the γ-edge of M that are incident with x+ are constraint to exist in
the time interval I = J1, (m+ 1)γ − 1K that is of size (m + 1)γ − 1. Thus, I
cannot be divided in m+ 1 pairwise disjoint sets of size γ. The claim follows.
2

Claim 3 M contains exactly m γ-edges incident with c and contains exactly

12

2m+ 1 γ-edges incident with x+ or x−, for each x ∈ X.

Proof: As M is a γ-matching, then for each x ∈ X, Γγ(0, x
=, x+) 6∈ M or

Γγ(0, x
=, x−) 6∈ M. So Claim 1 and Claim 2 implie that for each x ∈ X,

M contains at most 2m + 1 γ-edges incident with x+ or x−. Moreover, by
construction M can contains at most m γ-edges incident with c and L does
not contains any edge of the form (t, {x+, y−}), (t, {x+, y+}), (t, {x−, y−}),
(t, {x+, c}), or (t, {x−, c}), for any x, y ∈ X. Thus the budget is tight. The
claim follows. 2

Note that by construction, ifM contains a γ-edge incident with x++
i for some

x ∈ X and i ∈ J0,m− 1K, then this γ-edge has to be either Γγ(iγ + 1, c, x++
i)

or Γγ(iγ+ 1, x+, x++
i). Moreover Claim 4 give us some information in the case

where Γγ(iγ + 1, x+, x++
i) ∈M

Claim 4 Given x ∈ X, if M contains a γ-edge Γγ(iγ + 1, x+, x++
i) (resp.

Γγ(iγ + 1, x−, x−−i)) for some i ∈ J0,m− 1K, then M contains at most m
γ-edges incident with x+ (resp. x−).

Proof: Let x ∈ X and let i be the first value such that Γγ(iγ + 1, x+, x++
i) ∈

M. As γ does not divide iγ + 1, this implies that, in the interval J0, iγK, at
least one edge etx = (t, {x=, x+}), t ∈ J0, iγK is not inM. So the γ-edges ofM
that are incident with x+ are constraint to exist in the time interval I = T \ t
that is of size (m + 1)γ − 1. Thus, I cannot be divided in m + 1 pairwise
disjoint sets of size γ. The claim follows. 2

Let x ∈ X. Using Claim 3, we know that M contains exactly 2m + 1 γ-
edges incident with x+ or x−. By the pigeonhole principle, we know that for
x+ or x−, say x+, M contains exactly m + 1 γ-edges incident with x+. By
Claim 4, this implies that {Γγ(iγ, x=, x+) | i ∈ J0,mK} ⊆ M. Thus, as M is
a γ-matching that contains m γ-edges incident with x−, this also implies that
{Γγ(iγ + 1, x−, x−−i) | i ∈ J0,m− 1K} ⊆ M.

For each variable x ∈ X, we set x to true (resp. false) if Γγ(0, x
=, x+) ∈

M (resp. Γγ(0, x
=, x−) ∈ M). Let ϕ be the so obtained assignment. Let

i ∈ J0,m− 1K. We know that there exists x ∈ X such that either Γγ(iγ +
1, c, x++

i) ∈M or Γγ(iγ+ 1, c, x−−i) ∈M. Let fix this x ∈ X and assume that
Γγ(iγ+ 1, c, x++

i) ∈M, meaning that x appears positively in Ci. This implies
that Γγ(iγ + 1, x+, x++) 6∈ M, so that {Γγ(i′γ, x=, x+) | i′ ∈ J0,mK} ⊆ M.
Thus, x is set to true by ϕ and x satisfies Ci. This concludes the proof. 2

13

3 Approximation algorithm

In classical graph theory, it is folklore that any maximal matching is also a 2-
approximation of a maximum matching, see e.g. [3, Exercice 35.4]. Fortunately
enough, it is roughly the same situation with link streams. Precisely, in this
section, we adopt the greedy approach –finding a maximal γ-matching– in
order to provide a 2−approximation algorithm for γ-matching.

Let L = (T, V,E) be a link stream. Let P be the set of all γ-edges of L. Note
that these γ-edges are not independent from each other, on the contrary, they
highly overlap. Let � be an arbitrary total ordering on the elements of P such
that given for any two elements of P , Γ1 = Γγ(t1, u1, v1) and Γ2 = Γγ(t2, u2, v2)
such that t1 < t2, we have Γ1 � Γ2.

We denote by A the following greedy algorithm. The algorithm starts with
M = ∅, Q = P , and a function ρ : V × T → {0, 1} such that for each
(t, v) ∈ T × V , ρ(t, v) = 0. The purpose of ρ is to keep track of the temporal
vertices that are contained in a γ-edge of M. As long as Q is not empty, the
algorithm selects Γ, the γ-edge of Q that is minimum for �, and removes it
from Q. Let K be the set of the 2γ temporal vertices that are contained in Γ.
If, for each (t, v) ∈ K, ρ(t, v) = 0, then the algorithm adds Γ toM, otherwise
it does nothing at this step. For each (t, v) ∈ K, it sets ρ(t, v) to 1 and repeats.
If Q = ∅, it returns M.

As P can be determined in a sorted way in time O(m), this algorithm runs in
time O(nτ +m), where τ = |T |, n = |V |, m = |E|, and where γ is a constant
hidden in the O.

Given a γ-matchingM, we define the bottom temporal vertices ofM, denoted
by bot(M), as the set {(t+γ−1, u), (t+γ−1, v) | Γγ(t, u, v) ∈M}. Lemma 1
shows the crucial role of the bottom temporal vertices of the matchings re-
turned by A.

Lemma 1 Let γ be a positive integer, let L be a link stream, and let M be
a γ-matching returned by A when applied to L. If M′ is a γ-matching of L,
then every γ-edge of M′ contains, at least, one temporal vertex of bot(M).

Proof: First, note that any γ-edge of M contains two temporal vertices of
bot(M), and so, at least one. Let Γ′ be a γ-edge ofM′ that is not inM. Let
M∗ ⊆M be the set of every γ-edge Γ∗ ofM such that there exists a temporal
vertex (t, u) that is contained in both Γ′ and Γ∗. Assume that Γ′ = Γγ(t, u, v).
If there exists Γ∗ ∈ M such that Γ∗ = Γγ(t

′, u, v′) and t′ ≤ t, then we have
that (t′ + γ − 1, u) ∈ bot(M) is contained in Γ′. Otherwise, we have that
for each Γ∗ ∈ M∗ such that Γ∗ = Γγ(t

′, u, v′), t′ > t. This is not possible by
construction of A. This concludes the proof. 2

14

Lemma 1 plays a cornerstone role in the proof of subsequent Theorem 2. As
a byproduct, we also obtain the following result.

Corollary 1 A is a 2-approximation of the γ-matching problem.

Proof: Let L be the input link stream. Let M be a solution returned by
the algorithm A when applied to L, and let M′ be a γ-matching of L. As
|bot(M)| = 2|M|, two γ-edges of M′ cannot contains the same temporal
vertex, and, by Lemma 1, every γ-edge ofM′ contains at least one element of
bot(M), we obtained that |M′| ≤ 2|M|. 2

4 Kernelization algorithm

Problem γ-matching has a kernel if there exist a computable function f :
N→ N and a polynomial time algorithm A which takes as input an instance
(L, k) of γ-matching and produces an instance (L′, k′) such that: k′ ≤ k;
|L′| ≤ f(k); and (L′, k′) yields a positive answer for γ-matching if and only
if (L, k) yields a positive answer for γ-matching. In this case, algorithm A
is called a kernelization algorithm for γ-matching [5].

We now show a kernelization algorithm for γ-matching by a direct pruning
process based on Lemma 1. For convenience, let us say that a γ-edge Γ is
incident to a temporal vertex (t, u) when there exists vertex v 6= u such that
(t, {u, v}) ∈ Γ. The main idea is as follows. First, we compute the set S of
all bottom temporal vertices of a γ-matching produced by previously defined
algorithm A. Then, we prune the original instance by only keeping edges that
belong to a γ-edge incident to a temporal vertex of S. More precisely, we prove
the following result.

Theorem 2 There exists a polynomial-time algorithm that for each instance
(L, k), either returns a true instance which correctly correspond to the fact that
L contains a γ-matching of size k, or returns an equivalence instance (L′, k)
such that the number of edges of L′ is 2(k − 1)(2k − 1)γ2.

Proof: Let L = (T, V,E) be a link stream and k be an integer. We first run
the algorithm A on L. Let M be the γ-matching outputed by the algorithm
and let ` = |M|. If ` ≥ k, then we already have a solution and then return a
true instance. If ` < k

2
, then, by Corollary 1, we know that the instance does

not contains a γ-matching of size k, and then we return a false instance. We
now assume that k

2
≤ ` < k.

Lemma 1 justifies that we are now focusing on the temporal vertices of bot(M)
in order to find the requested kernel. We construct a set P of γ-edges and we

15

show that any edge e, that is not in a γ-edge of P , is useless when looking for
a γ-matching of size k. For each (t, u) ∈ bot(M), and for each t′ such that
max(0, t−γ+1) ≤ t′ ≤ t, we consider the set S(t′, u) of every γ-edge, existing
in L, with the form Γγ(t

′, u, v) with v ∈ V . If the set S(t′, u) is of size at most
2k − 1, we add every element of S(t′, u) to P . Otherwise, we select 2k − 1
elements of S(t′, u) that we add to P . In both cases, we denote by S ′(t′, u) the
set of elements of S(t′, u) that we have added to P . This finish the construction
of P . As |bot(M)| = 2` and for each element of bot(M) we have added at
most (2k−1)γ γ-edges to P , we have that |P| ≤ 2`(2k−1)γ ≤ 2(k−1)(2k−1)γ.

We now prove that if L contains a γ-matching M′ of size k, then it also
contains a γ-matching M′′ of size k such that M′′ ⊆ P . Let M′ be a γ-
matching of L of size k such that p = |M′ \P| is minimum. We have to prove
that p = 0. Assume that p ≥ 1. Let Γ be a γ-edge in M′ \ P . Let (t, u) be
a temporal vertex of bot(M) that is contained in Γ. We know by Lemma 1
that this temporal vertex exists. Assume that Γ = Γγ(t

′, u, v) for some v ∈ V
and some t′ such that max(0, t − γ + 1) ≤ t′ ≤ t. As Γ 6∈ P , we have that
Γ ∈ S(t′, u) \ S ′(t′, u), and so |S ′(t′, u)| = 2k − 1. Let NS′(t

′, u) be the set
of vertices w of V \ {u} such that a γ-edge of S ′(t′, u) is incident to w. As
M′ \ {Γ} is of size k − 1, the γ-edges that it contains can be incident to at
most 2k − 2 vertices. This means that there exists w ∈ NS′(t

′, u) such that
no γ-edge of M′ \ {Γ} is incident to w. Thus (M′ \ {Γ}) ∪ {Γγ(t′, u, w)} is a
γ-matching of size k. As Γ 6∈ P and Γγ(t

′, u, v) ∈ P , this contradicts the fact
that p is minimum.

We now can define the link stream L′ = (T, V,E ′) such that E ′ = {e ∈ E |
∃Γ ∈ P : e ∈ Γ}. As |P| ≤ 2(k − 1)(2k − 1)γ and every element of P is a
γ-edge, we have that |E ′| ≤ 2(k − 1)(2k − 1)γ2. The theorem follows. 2

5 Experimental result

For easy diffusion, both our 2-approximation and kernelization algorithms are
implemented in Java and JavaScript 3 . Experiments are run on a standard
laptop clocking at 3,1 Ghz with DDR3 16Go memory.

3 The source code is available at
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams

16

5.1 Dataset

We carried out our experiments on two main types of datasets: those that are
randomly generated 4 ; and those that are collected from human activities.

Artificially generated link streams, and stress test:
In order to generate random sets of link stream instances, we adopt the more
realistic point of view of random geometric graphs, rather than the classically
theoretic Erdös-Rényi model, as follows. Let S be a 2D Euclidian space. We
define a particle as a point in space S. Every particle is given along with a
radius representing the maximum communication distance it can have with
another particle. Thus, the particle together with its range define a disk in
space S. Let P be a set of particles, given along with the same value of ra-
dius. We partition set P into n parts, P = P1 ∪ P2 ∪ · · · ∪ Pn, of roughly
equal size. We will construct a link stream L = (T, V,E) as follows. Let
V = {P1, P2, . . . , Pn}. At time zero, let E0 = {(0, {Pi, Pj}) | ∃a ∈ Pi ∧ b ∈
Pj, the distance between a and b is less than their radius}. In other words, if
there are at least two particles under communication range a ∈ Pi, b ∈ Pj of
different groups Pi 6= Pj (at time zero), then, we consider there is a (zero-
timed) edge between Pi and Pj. Every particle has a velocity that is defined
as follows. First, the velocity of a particle at time t is a fraction of the ve-
locity at time t− 1 of that particle (friction). Second, all velocity vectors are
subject to a small random additional factor (random walk factor modeling
the wind condition). Finally, we truncate every velocity vector in order to
insure that the norm of the vector is lower than a given maximum particle
speed (physical limits). We then let the system evolve during a given laps
of time, that we also refer to as T . At every time instant t ∈ T , we define,
similarly as before, the t-timed edge set Et = {(t, {Pi, Pj}) | ∃a ∈ Pi ∧ b ∈
Pj, the distance between a and b is less than their radius}. Finally, we define
our link stream as E =

⋃
t∈T Et.

Roughly, increasing any of the three parameters which are defined by the
particle radius, the cardinality of P , and the maximum particle speed, results
in the same effect on the generated link stream, that is, to produce a dense link
stream. The generated data allows us to unit test our code, and especially to
verify that approximation and kernelization runtime is sound on large input.
For instance, with inputs containing hundreds of thousand timed edges, our
runtime is under ten seconds, cf. Fig. 2.

Interestingly, in the left chart of Fig. 2, we note for some input with a large
number of timed edges and no γ-edges that the runtime can be very quick. We
also discuss this phenomenon on real world dataset, in below Fig. 3 and 4. For

4 Direct link to the GUI of the generator:
https://antoinedimitriroux.github.io

17

Fig. 2. Stress-test on generated input, with γ = 5. Though the number of γ-edges
can be extremely high compared to timed edges (cf. overlapping γ-edges), we
parametrised the generator so that they look the same in the left chart and the
right chart. This is by no means a general property.

this reason, it is much more interesting to examine the runtime as a function
of the number of γ-edges of the input, cf. the right chart in Fig. 2. For easy
eye-comparison, we tried to parametrise the generator in a way that most of
the generated instances have roughly the same number of timed edges and
γ-edges. For instance, most instances with less than 100000 timed edges also
have roughly the same number of γ-edges. However, the situation is more
random for instances having between 100000 and 200000 timed edges.

Real world datasets, with cleaning methodology:
We also confront the implementations of our algorithms to two particular link
streams collected from real world graph data. In one dataset the link stream
is built from emailing information collected from the Enron company [10].
The other dataset has been built by analysing a recording of 2 × 80 minute
Rollerblade touring in Paris [17]. Because of the long duration of these two
experiments, the number of vertices (under two hundred persons in both cases)
is negligible when comparing to the number of temporal vertices (nearly one
million for Rollernet). For a link stream L = (T, V,E), we mostly compare |T |
with |E| to get a glimpse on the density of the links. For a complete view of
|T |, |V |, and |E| in the datasets, we refer the reader to Fig. 7. Furthermore,
we noticed with our raw datasets that the instants where some timed edge is
present can be very sparse, leaving no chance for a γ-edge to exist as soon as
γ > 1. For instance, in the Enron experiment (Fig. 3), we can see that there
are no pair of employees who keep sharing 1 mail per hour during 24 hours,
probably due to inactivity at night. We will, for this reason, time-compress
our raw datasets by the following process.

Definition 1 (Data cleaning by time-compression) For any link stream
L = (T, V,E) and for any 1 < δ < |T |, we define the δ-compression Lδ =
(Tδ, Vδ, Eδ) as Vδ = V , Tδ = JminT

δ
, maxT

δ
K, and

Eδ = {(t, {u, v}) | ∃t′ ∈ T : δt ≤ t′ < δ(t+ 1) ∧ (t′, {u, v}) ∈ E}.

18

δ |T | |E| γ |γE |

3600s = 1h 27300 21959 24 0

7200s = 2h 13650 20962 12 0

10800s = 3h 9100 20284 8 0

14400s = 4h 6825 19732 6 16

21600s = 6h 4550 19071 4 69

28800s = 8h 3413 18402 3 335

43200s = 12h 2275 17610 2 2667

Fig. 3. Enron dataset: number of timed edges and γ-edges after time-compression.
Values are taken such that δ ∗ γ = 24hours. In particular, we observe that Enron
employee will not continuously share 1 mail per hour during 24 hours, since the
company is closed at night. When compared to the number |T | of time instants, the
number |V | of vertices is very small (under two hundred) and not presented here.

δ |T | |E| γ |γE |

1s 9977 403834 7200 0

5s 1996 127401 1240 0

15 666 77989 480 0

30s 333 60919 240 0

60s = 1m 167 45469 120 0

300s = 5m 34 22484 24 51

600s = 10m 17 15808 12 357

1200s = 20m 9 10735 6 1893

1800s = 30m 6 8324 4 2745

3600s = 1h 3 5000 2 3094

Fig. 4. Rollernet dataset: number of timed edges and γ-edges after time-compression.
Values are taken such that δ ∗ γ = 7200s = 2hours. In particular, we observe that
every person in the Rollernet experiment has been away from another person for at
least 1 minutes during 2 hours. When compared to the number |T | of time instants,
the number |V | of vertices is very small (under on hundred) and not presented here.

Fig. 3 and 4 show that parameters δ and γ have an important influence on the
number of γ−edges. One can also notice from Fig. 3 and 4 that the compression
process generally breaks down the number |E| of timed edges in the dataset.
However, we stress that it is not necessarily the case: Fig. 5 exemplifies two
different time-compressions of the same original link stream, respectively with
δ = 3 and δ = 4, where it is possible to obtain more edges even if we have
a larger δ. Nonetheless, the usual effect of time-compression is to drastically
reduce the number of timed edges. On Enron and Rollernet datasets, we need
to ensure that time-compression does not result in empty inputs. Luckily, for
sensible values of δ, e.g. 1

2
week for Enron or 15 minutes for Rollernet, there

is still a large number of timed edges after δ-compression, cf. Fig. 6. We give
in the subsequent Fig. 7 and 8 the runtime of our algorithm on random pieces
of the two Enron and Rollernet datasets, where we observe that our runtime
is very quick.

19

Fig. 5. Time-compression with δ = 3 and δ = 4, resulting in 4 and 5 timed edges.

Fig. 6. Enron dataset (left) and Rollernet dataset (right): remaining timed edges
after δ-compression. For instance, with δ = 1

2 week, the number of timed edges
after δ-compression Enron is over ten thousand. With δ = 15 minutes, the number
of timed edges after δ-compression Rollernet is also over ten thousand. We conclude
that for sensible values of δ, our time compression process does not break down the
input to an empty instance.

5.2 Hypothesis

We theorise three hypotheses. For each hypothesis we run experiment on the
above described datasets, and expose our results in the next Subsection 5.3.
We discuss and conclude our numerical analysis in the subsequent and last
Subsection 5.4 of current Section 5.

Hypothesis 1. Consistence of the formalism:
We would like to verify that γ-matching is non-trivial on human values for δ
and γ. For instance, we suppose when mining emails that collaborating during
a month at a rate of at least two emails per week (round trip) is sensibly human
values. When mining proximity records of 2× 80 minute Rollerblade touring
Paris, we consider that collaborating during 80 minutes at a rate of one visit
every quarter hour (water/snack supplying) is sensibly human values.

Hypothesis 2. Kernelization quality:
We reckon that, beside the hidden constants under the Landau notation, a
space reduction from O(n) to O(k2), when k = O(

√
n) is also meaningless.

Unfortunately, when parameterizing by the size of the solution as we do in this
paper, one very usually results in the situation where k is numerically in the

20

Link-Streamδ |V | |T | |E| |γE | appr(s) kern(s) total(s)

Enron1hour 150 27300 21959 1991 0.010 0.397 0.408

Enron3hours 150 9100 20284 2695 0.018 0.694 0.696

Enron1day 150 1138 16224 4416 0.007 1.76 1.774

Enron3days 150 380 12868 4644 0.007 1.932 1.939

Enron7days 150 163 10028 4812 0.005 1.173 1.179

Enron30days 150 38 5573 2917 0.001 0.147 0.149

Enron90days 150 13 3480 1650 6.6E-4 0.029 0.030

Rollernet1min 61 167 45469 24009 0.098 1.696 1.794

Rollernet2mins 61 84 33304 17089 0.047 0.561 0.609

Rollernet5mins 61 34 22484 13346 0.018 0.140 0.158

Rollernet15mins 61 12 12410 8544 0.005 0.044 0.050

Rollernet30mins 61 6 8324 5979 0.005 0.032 0.038

Rollernet1hour 61 3 5000 3094 0.001 0.007 0.008

Generated 10 50 684 83 4.4E-4 0.001 0.001

Generated 10 100 1384 136 4.8E-4 7.4E-4 0.001

Generated 10 200 2906 322 4.1E-4 0.002 0.002

Generated 20 50 2599 705 0.001 0.004 0.006

Generated 20 100 5326 1508 0.003 0.016 0.020

Generated 20 200 10667 2998 0.004 0.030 0.035

Generated 50 50 15842 6534 0.005 0.034 0.040

Generated 50 100 31113 12876 0.018 0.125 0.144

Generated 50 200 63032 26495 0.054 0.426 0.480

Generated 100 50 53665 32235 0.093 0.280 0.374

Generated 100 100 107524 65145 0.342 1.054 1.396

Generated 100 200 214728 130371 1.437 4.277 5.713

Fig. 7. Runtime required by our 2-approximation algorithm, kernelization algorithm,
and the total process. Values are taken for γ = 2. The parameter k for the kerneliza-
tion algorithm is the size of the solution found by the 2-approximation algorithm.
The (rawly recorded) runtime is very quick, hence, probably subject to many noises.

Fig. 8. Enron dataset (left) and Rollernet dataset (right): runtime of our algorithms
in function of the number of timed edges, with γ = 2. The parameter k for ker-
nelization is the size of the 2-approximation result. The (rawly recorded) runtime
is probably subject to many noises. We rather refer to Fig. 2 for evaluating per-
formance. Each dot in current Fig. 8 is obtained by first truncating the raw input
with varying maximum value of time instants, then, δ-compressing the so-obtained
link streams with δ = 100. The only observation we make with this figure is that,
on real world dataset, our combined runtime for both the 2-approximation and the
kernelization algorithms is very quick.

21

order of
√
n. This is particularly true for our study of temporal matchings on

Enron and Rollernet. For this reason, our second hypothesis is that, in addition
to a theoretical guarantee of reduction from O(n) to O(k2) space complexity,
solving γ-matching can numerically benefit from the kernelization algorithm
described in Theorem 2, at least on well-chosen and humanly sensible intervals
of δ and γ.

Hypothesis 3. Approximation quality:
We stress that Matching in a classical graph is polynomial. Unfortunately,
γ-matching in a link stream is NP-hard. However, in practice, a lot of NP-
complete problems are not difficult on datasets arising from human activities.
What’s more, some such problems can be solved near-optimally by simple algo-
rithms such as by a random or greedy approach, or a mix of both approaches,
even on arbitrary inputs. A popular example is Coloring [15]. Accordingly,
our last hypothesis is that, in practice, finding an optimal γ-matching need
not to be difficult. Moreover, we hypothesise that the greedy 2-approximation
described in Lemma 1 can produce near-optimal γ-matching on real world
dataset, as well as artificial datasets that mimic real word datasets.

5.3 Result

Both our 2-approximation and kernelization algorithms are implemented and
confronted to the above mentioned datasets.

Observations w.r.t. Hypothesis 1. Consistence of the formalism:
Results are given in Fig. 9. We observe on Enron dataset with δ ≈ 1

2
week

that, after δ-compression, the number of γ-edges for γ varying from 2 to 10 is:
over 500 for γ = 10; over 1000 for γ = 6; and over 4500 for γ = 2. Moreover,
we will see in the next paragraph that our numerical analysis can only find
γ-matchings of size approximately one fifth of the previous number. We also
tried other techniques to improve the size of the γ-matchings but failed in
finding substantial difference. With the Enron dataset, we believe that γ-
matching for γ ≈ 10 is a tricky question when the time-compression rate is
δ ≈ 1

2
week. These values translate the fact that any pair of collaborators in

the γ-matching necessarily keep exchanging emails together continuously for
one month, at a rate of at least one email per week and in average at least
two emails every week.

Observations w.r.t. Hypothesis 2. Kernelization quality:
Results are given in Fig. 10. The parameter k for the kernelization algorithm
is the size of the solution found by the 2-approximation algorithm. We observe
that on well chosen intervals of δ and γ, kernelization reduces the input size
down to under twenty per cent. This is particularly true for γ ≈ 20, 30 with

22

Fig. 9. Enron dataset (left) and Rollernet dataset (right): number of γ-edges after
δ-compression, for varying values of δ and γ.

Fig. 10. Enron dataset (left) and Rollernet dataset (right): ratio obtained by di-
viding the number of γ-edges in the kernelization output by the number of γ-edges
in the kernelization input (which is obtained after δ-compression). Here, the darker
is the better. The parameter k for the kernelization algorithm is the size of the
solution found by the 2-approximation algorithm.

Fig. 11. Enron dataset (left) and Rollernet dataset (right): ratio obtained by di-
viding the 2-approximation output by the number of γ-edges in the kernelization
output. Here, the brighter is the better: the approximation solves γ-matching op-
timally on regions where the ratio is 100%, which is denoted by the yellow color.
The parameter k for the kernelization algorithm is the size of the solution found by
the 2-approximation algorithm.

23

δ ≤ 2 month on Enron; and γ ≤ 10 with δ ≤ 20 minutes for Rollernet. We
observe on these values that the kernelization algorithm reduces the input
link stream to an equivalent instance of size smaller than 20% the size of the
original input, and sometimes under 10%. We conclude that Hypothesis 2 is
sound.

Observations w.r.t. Hypothesis 3. Approximation quality:
Results are given in Fig. 11. The parameter k for the kernelization algorithm
is the size of the solution found by the 2-approximation algorithm. We notice
from definition that the 2-approximation algorithm produces a lower bound
for γ-matching, which is at least half the optimal value. Moreover, the ker-
nelization algorithm gives a naive upper bound for γ-matching by simply
counting the number of γ-edges present in the kernel. We observe for tangent
areas in Fig. 11 that these two upper and lower bounds meet. This means that
the 2-approximation outputs an optimal solution for γ-matching on these ar-
eas. However, we observe that for most parts of our dataset, Hypothesis 3 is
not confirmed. At this state, our experiments w.r.t. Hypothesis 3 fail in giving
any clue for a conclusion. Further experiments must be done in order to clarify
this question. Our feeling, however, is that Hypothesis 3 is generally false. We
conjecture that the 2 approximation factor is far from optimal.

5.4 Discussion

Our experiment results are optimistic about the numerical usefulness of ker-
nelization in finding temporal matching. At the same time, they also point
out several questions. While our experiments allow us to observe that:

• preprocessing an instance of γ-matching by a greedy process, and then
kernelization as described in Theroem 2, seems to be sound;
• the preprocessing is very quick on real world input;
• the preprocessing is robust versus stress testing on large inputs using com-

mon laptop: below ten seconds on input of hundreds thousand timed edges;

they also testify that works still need to be done for further investigating
γ-matching, especially that:

• the optimisation problem is NP-hard;
• numerical proofs of optimality of the 2-approximation are only available for

very marginal bits of data in the Enron and Rollernet datasets;
• while it is true that the kernelization algorithm helps in reducing the input

down to 10−20% for interesting mining parameters on Enron and Rollernet
datasets, we still do not know how then to find a γ-matching of the kernel
that is better than the output of the 2-approximation;
• in particular, we do not know if the approximation factor can be improved.

24

6 Conclusion and perspectives

We introduce the notion of temporal matching in a link stream. Unfortunately,
the problem of computing a temporal matching of maximum size, called γ-
matching, turns out to be NP-hard. We then show a kernelization algorithm
for γ-matching parameterized by the size of the solution. Our process pro-
duces quadratic kernels. On the way to obtaining the kernelization algorithm,
we also provide a 2-approximation algorithm for γ-matching. We believe
that the same techniques extend to a large class of hitting set problems in link
streams.

Acknowledgements: We are grateful to Clémence Magnien for helpful point-
ers and valuable pieces of advice. We are grateful to the anonymous referees
for helpful comments which greatly improve the paper. In particular, we are
grateful to the referee who coined the name of time-compression, whose usage
greatly improves the paper. For financial support, we are grateful to: Thales
Communications & Security, project TCS.DJ.2015-432; Agence Nationale de
la Recherche Technique, project 2016.0097; Centre National de la Recherche
Scientifique, project INS2I.GraphGPU.

References

[1] D. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings.
SIAM Journal on Computing, 37(4):1030–1045, 2007.

[2] E. Bampis, B. Escoffier, M. Lampis, and V. T. Paschos. Multistage matchings.
In 16th Scandinavian Symposium and Workshops on Algorithm Theory, volume
101 of LIPIcs, pages 7:1–7:13, 2018.

[3] T. H. Cormen, C. E. Leiserson, R. L Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 1989.

[4] M. Cygan, H. N. Gabow, and P. Sankowski. Algorithmic applications of Baur-
Strassen’s theorem: Shortest cycles, diameter, and matchings. Journal of the
ACM, 62(4):28:1–28:30, 2015.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[6] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Approximation algorithms
for maximum matchings in
undirected graphs. In SIAM Workshop on Combinatorial Scientific Computing,
2018. https://hal.archives-ouvertes.fr/hal-01740403.

[7] C. Dürr, C. Konrad, and M. P. Renault. On the Power of Advice and
Randomization for Online Bipartite Matching. In 24th Annual European
Symposium on Algorithms, volume 57 of LIPIcs, pages 37:1–37:16, 2016.

25

[8] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467, 1965.

[9] F. V. Fomin, D. Lokshtanov, S. Saurabh, M. Pilipczuk, and M. Wrochna. Fully
polynomial-time parameterized computations for graphs and matrices of low
treewidth. ACM Transactions on Algorithms, 14(3):34:1–34:45, 2018.

[10] B. Klimt and Y. Yang. Introducing the Enron Corpus. In CEAS, 2004.

[11] M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for
the modeling of interactions over time. 2017.
https://arxiv.org/abs/1710.04073.

[12] G. B. Mertzios, A. Nichterlein, and R. Niedermeier. The power of linear-time
data reduction for maximum matching. In 42nd International Symposium on
Mathematical Foundations of Computer Science, volume 83 of LIPIcs, pages
46:1–46:14, 2017.

[13] O. Michail and P. G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016.

[14] S. Miyazaki. On the advice complexity of online bipartite matching and online
stable marriage. Information Processing Letters, 114(12):714–717, 2014.

[15] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method.
Springer, 2002.

[16] M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination.
In 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS
’04, pages 248–255, 2004.

[17] P.-U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. D. De Amorim,
and J. Whitbeck. The Accordion Phenomenon: Analysis, Characterization,
and Impact on DTN routing. In 28th IEEE Conference on Computer
Communications, 2009.

[18] T. Viard, M. Latapy, and C. Magnien. Computing maximal cliques in link
streams. Theoretical Computer Science, 609:245–252, 2016.

[19] Y. Wang and S. C.-W. Wong. Two-sided Online Bipartite Matching and Vertex
Cover: Beating the Greedy Algorithm. In 42nd International Colloquium on
Automata, Languages, and Programming, volume 9134 of LNCS, pages 1070–
1081, 2015.

[20] S. Wøhlk and G. Laporte. Computational comparison of several greedy
algorithms for the minimum cost perfect matching problem on large graphs.
Computers and Operations Research, 87(C):107–113, 2017.

26

