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Reactive and proactive single-machine scheduling to
maintain a maximum number of starting times

Philippe Chrétienne*

November 24, 2017

Abstract

This paper considers, in the single-machine scheduling context, the
reactive and proactive problems arising when, due to unpredictable
events between the time a baseline scheduled has been planned and
the time the schedule must be implemented, the job durations may
have increased so that the baseline schedule is no longer feasible. In the
reactive case, the baseline schedule is known, the real job durations are
known and we search for a schedule of the real instance that maximizes
the number of jobs started at the same date in both schedules, this
maximum being called the reactive gain. We show that, in the non-
preemptive case, the corresponding decision problem is NP-complete
in the strong sense while in the discrete preemptive case, it can be
polynomially solved. In the proactive case, the real job durations are
only known to belong to an uncertainty domain and we search for
a baseline schedule that maximizes the worst reactive gain over the
uncertainty domain. We show that the corresponding decision problem
is NP-complete in the non-preemptive case while it is quite easy in the
discrete preemptive case.

1 Introduction

Most often, when a scheduling problem has to be solved, a significative delay
occurs between the time when a planned schedule is chosen and the time
when it must be implemented. A usual consequence of this delay is that, for
unpredictable reasons, the durations of some jobs have changed (most often
increased), what makes the planned schedule no longer feasible.
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A reactive problem has thus to be solved when the real durations of the
jobs are known. This problem is to determine a definitive schedule, that is
to say a schedule of the real instance, that minimizes a cost that measures
the gap between the planned schedule and the definitive schedule. At this
level, this problem falls in the field of robust optimization [4] and has been
widely studied in the scheduling context (see for example the survey [3]).

This minimum cost, which we call the reactive cost, depends on the
planned schedule and on the variations of the durations. A cost measure
that has been already studied is the sum of the absolute deviations of the
corresponding starting times [2].

An other approach [6] comes from an application of the 2-stage robust LP
model with right-hand-side uncertainty to robust PERT scheduling where
the problem is to determine the minimum makespan that can be achieved
for any realization of the job durations in a given uncertainty set.

However, in many applications, the cost is mainly impacted by the num-
ber of jobs that are not scheduled at the same date in the planned schedule
and in the definitive schedule. The problem is then to find a definitive
schedule such that the number of jobs scheduled at the same date in both
schedules is maximum (or equivalently the reactive cost is minimum). It has
been shown in [1] that this problem can be polynomially solved for CPM
scheduling instances and when the real durations are longer that those of
the planned instance.

The proactive problem takes place when a schedule has to be planned.
At that time, just an estimation of the job durations, called the planned
durations, is known and it is only assumed that the future variations of the
durations belong to a known uncertainty domain. To each planned sched-
ule corresponds the maximum reactive cost of this planned schedule over
the uncertainty domain. The proactive problem is then to find a planned
schedule that minimizes the maximum reactive cost.

In this paper, we study the reactive and proactive problems for the basic
single-machine scheduling framework where independent jobs have to be
processed on a single machine and all jobs must be completed before a given
deadline. The reactive problem is called MAXANCHOR since it consists in
maximizing an “anchorage level” defined by the number of jobs scheduled
at the same date between the baseline schedule and the definitive schedule.

Section 2 deals with the reactive problem. In subsection 2.1, we give
complexity results concerning the non-premptive case. We first study the
so-called COMPATIBILITY problem where it must be decided if the jobs of
a given subset of the real instance may be processed at their planned starting
times. We show that COMPATIBILITY is NP-complete in the strong sense



and that even the special case COMPATIBILITY (1), where a single job has
to be processed at its planned starting time is NP-complete. Coming back to
our optimization problem MAXANCHOR where we search for a compatible
subset with a maximum cardinality, we show that the decision problem
corresponding to MAXANCHOR is NP-complete in the strong sense. In
subsection 2.2, we study the discrete-preemptive variants called respectively
DPR-COMPATIBILITY and DPR-MAXANCHOR where the processing of
a job may be splitted into more than one interval with integer ends. We show
that DPR-COMPATIBILITY may be solved in O(n) time and we provide
an O(n?) dynamic programming algorithm solving DPR-MAXANCHOR.

Section 3 deals with the proactive problem. We consider the special
case when the perturbation of each job duration belongs to a known time
interval. We show that finding a proactive schedule that minimizes the
maximum reactive cost over the uncertainty domain, is an NP-complete
problem. Instead, in the discrete preemptive case, we show that finding
such a schedule is a quite easy problem.

2 The reactive problem

We assume that a given schedule x = (x1,--- ,x,) has been predetermined
to execute non preemptively, on a single machine M, the jobs Ji,--- , Jy,.
Job J; has a positive integer duration p; and we assume without loss of gen-
erality that 1< - - <x,. However, at the time when the schedule x must be
actually implemented, it occurs that the real duration of job J; is no longer
p; but p; + §; where J; is a non-negative integer. Moreover, it is assumed
that a common deadline D is imposed to the jobs of the real instance. The
problem MAXANCHOR is then to find a schedule y = (y1,--- ,yn) of the
real instance such that the number of jobs such that x; = y;, is maximum.
These jobs are called the on-time jobs of y. An instance of MAXANCHOR
is thus denoted by (J,z,p,d, D) where J = {Jy, -+, J,}.

It is interesting to note that the variant of MAXANCHOR where the
deadline constraint is removed is polynomial since it is equivalent to the
search of a maximum stable set in the interval graph (J, E') where there is
an edge e = {4, j} if the length of [x;; x; +p; + ;)N [xj; 2+ p;j+ ;] is positive

[5].

We will first consider the COMPATIBILITY problem where, given a
subset H = {hy,--- ,hq} of J, we have to decide whether there is a sched-



ule of the real instance such the jobs of H are scheduled at their planned
starting time z;. An instance of COMPATIBILITY will be denoted by
(J,H,z,p,0,D).

2.1 The non-preemptive case

Using a pseudopolynomial reduction from 3-PARTITION, we show that
Property 1. COMPATIBILITY is NP-complete in the strong sense.

Proof. Let (A, s) be an instance of 3-PARTITION, where A = {a1, - , asm},
s : A Nis such that 2™ s(a;) = mB and Vi € {1,---,3m},B/4 <
s(a;) < B/2. Note that we necessarily have B > 3.

The corresponding instance C of COMPATIBILITY is as follows: for ev-
ery a;, there is a job J; such that p(J;) = 1, 6(J;) = s(a;) — 1 and z(J;) =
q(B+1)+r where g and r are such that i—1 = 3¢+r with 0 < r < 3 (see Fig-
ure 1). C has also m—1 “blocking jobs” Ki,--- , Kp,—1 such that p(K;) =1,
d(K;j) =0 and z(K;) = jB + j — 1. Finally we have D = mB +m — 1 and
H={Ky,-- ,Kp-1}. ) )

Assume that the partition Aq,---,A,, of A is a solution of the instance
(A,s). Then, since B > 3, the upper schedule of Figure 1 is feasible with
respect to the planned durations of C. Moreover the lower schedule of Figure
1 is feasible with respect to the real durations of C and H is a compatible
subset of that schedule.

Assume now that H is a compatible subset of a schedule S of C. Every
blocking job K is scheduled in the interval [jB;jB + 1]. Since D is equal
to the sum of the real durations of all jobs of C, S has no idle time and
we can conclude that the m subsets of jobs scheduled by S in the intervals
[7(B+1);j(B+1)+B]forall j € {0,---,m—1} make a solution of (A,s). O

The problem COMPATIBILITY(1) is the special case of COMPATI-
BILITY when H is a singleton. Again, using a polynomial reduction from
PARTITION, we show that

Property 2. COMPATIBILITY(1) is NP-complete.

Proof. Let (A, s) be an instance of PARTITION, where A = {ay, - ,ay},
s : A — Nis such that s(a;) > 2 for every i € {1,--- ,n} and >, s(a;) =
2B. It is easy to see that this special case of PARTITION is also NP-

complete.
The corresponding instance C of COMPATIBILITY(1) is as follows: for
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Figure 1: 3-PARTITION<COMPATIBILITY

every a;, there is a job J; such that p(J;) =1, 6(J;) = s(a;) — 1 and x(J;) =
i— 1. C has also one “blocking job” Ky such that p(Ky) =1, (5(K0) =0 and
x(Kp) = B. Since n < B, the values z(J;) =i —1,i € {1,--- ,n} make a
feasible planned schedule. Finally, we let D =2B + 1 and H = {Ko}.
Assume that the partition A;, Ay of A is a solution of the instance (A, s).
Then the upper schedule of Figure 2 is feasible with respect to the planned
durations of C. Moreover the lower schedule of Figure 2 is feasible with
respect to the real durations of C and H is a compatible subset of that
schedule.
Assume now that H is a compatible subset of a schedule S of C. The
blocking job Ky is scheduled in the interval [B; B + 1]. Since D is equal to
the sum of the real durations of all jobs of C, S has no idle time and we can
conclude that the two subsets of jobs scheduled by S in the intervals [0; B]
and [B + 1; D] make a solution of (A4, s). O

The decision version D-MAXANCHOR of the problem MAXANCHOR
is to decide, given an integer K < n, if there is a compatible subset of jobs
with cardinality larger than or equal to K. An instance of D-MAXANCHOR
is thus denoted by (J, z, p,d, D, K). Using a reduction with nearly the same
structure than that used for Property 1, we show that

Property 3. D-MAXANCHOR is NP-complete in the strong sense.

Proof. Let us first denote by 3-PARTITION((3m + 3)s) the following vari-
ant of 3-PARTITION. An instance (A4, s, o) of 3-PARTITION((3m + 3)s) is
defined by:

L4 A: {alu"' ,a?’m}a
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Figure 2: PARTITION<COMPATIBILITY(1)

e 5: A N, such that 2™ s(a;) = mB and Vi € {1,--- ,3m}, B/4) <
s(a;) < B/2)

o Vie{l,---,3m},o(a;) = (3m + 3)s(a;).

It must be decided whether there is a partition of A each class of which has
size (3m + 3)B with respect to the size function o. It is easy to see that
3-PARTITION((3m + 3)s) is also NP-complete in the strong sense.

Let (A, s,0) be an instance of 3-PARTITION((3m + 3)s) and let B’ =
(3m 4+ 3)B. The corresponding instance of D-MAXANCHOR is as follows.

e For every a;, there is a job J; such that p(J;) =1, 6(J;) = o(a;) — 1
and z(J;) =i — 1 (see Figure 3),

e There are also m—1 “blocking jobs” Ky, - -, Ky,—1 such that p(K;) =
1, 8(K;) =0 and z(K;) = jB +j — 1.

e D=mB' +m—1,

e K =m.

Assume that the partition Ay, -+, A, of Ais a solution of the instance
(A, s,0). Without loss of generality, we can assume that a; € A;. Since B' >
3m, the upper schedule x of Figure 3 is feasible with respect to the planned
durations p(J;). In the lower schedule y of Figure 3, the jobs corresponding
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Figure 3: 3-PARTITION((3m + 3)s)<D-MAXANCHOR

to A; are scheduled in [0; B’]Aand J is the first scheduled job in this interval.

The jobs corresponding to A;,j € {2,---,m} are scheduled in the interval
[(j—1)B'4+j—1;jB"+j—1]. Since o(ay) > 3m, J; is the only on-time job
among the jobs Ji,--- , J3m. So y is a feasible schedule and the number of

on-time jobs in y is equal to m.

Assume now that y is a schedule of the instance of D-MAXANCHOR
with at least m on-time jobs. Since the size of each item is greater than 3m,
at most one job in {Jy,-- -, J3n} can be on-time. Thus the m — 1 blocking
jobs are on-time. Since D is equal to the sum of the processing times of
all jobs, the m subsets of A associated with the jobs scheduled by y in the
intervals [(j —1)B'+j —1;jB"+j —1],5 € {1,--- ,m} make a solution of
the instance (A, s, o). O

2.2 The discrete preemptive case

In the discrete-preemptive versions of COMPATIBILITY and MAXAN-
CHOR, which are respectively denoted by DPR-COMPATIBILITY and
DPR-MAXANCHOR, the first time unit during which every on-time job
i is run must be the interval [z;;x; + 1]. Note also that in this context,
discrete preemption is allowed for the planned schedule x. From now on,
to simplify the presentation, the job J; will be represented by its index i,
J=A{1,---,n}, and we recall that, without loss of generality, it is assumed
that r1< - <xy,.

2.2.1 A linear-time algorithm for DPR-COMPATIBILITY

Let I = (J,H,z,p,0,D) be an instance of DPR-COMPATIBILITY and let
I = (J,H,z,p,J) be the corresponding instance when the deadline constraint



is removed. Also assume without loss of generality that H = {hi,--- , hq}
and h;<---<hq,. We show that the algorithm DPR.COMP(J,H,z,p,0)
described below, where [t] denotes the time-unit [¢; t+1]), provides a schedule
of (J, H,z,p,d) with minimum makespan.

procedure DPR.COMP(J,H,z,p,d);

(1) For each k € {1,---,q}, assign time-unit [xp,] to the job hy;

(2) Fork=1togq

(2) assign the py, + 05, — 1 first idle time-units [t] with ¢t > x5, to job hy;
(3) While not all jobs are completed

(3)  assign the first idle time-unit to an uncompleted job.

In part (1), the jobs of H have to start exactly at their starting time
in the given schedule x. In part (2), the assignment of the jobs of H is
completed by scheduling them entirely in the order of the schedule and
as early as possible but after their starting times. The schedule Sy(H) of
the jobs of H that we get at the end of part (2) will be shown to have a
minimum makespan denoted by M (S2(H)). In part (3), the schedule So(H)
is completed by scheduling the other jobs as early as possible in the idle
periods of S3(H) for obtaining a schedule S3(H) which will also be shown
to have a minimum makespan denoted by M (S3(H)).

Figure 4 shows the schedule we get for the instance given by the following
array and the compatible set H = {1,3,4,5,7}.

1 |1]2)3 516 |7
pi 1111211} 2]1
i 2211 [1]2]1
z; (0|1 |7]11]13]16 |18

It is easy to see that this algorithm, which may be implemented in linear

time, finds a schedule such that each job of H is on-time. We now give some
notations that are useful to show some properties of the schedules issued
from steps 2 and 3 of DPR.COMP(J,H,z,p,?).
The minimum makespan over the schedules of I is denoted by u(J, H).
The special instance (H, H,z,p,0) (where x, p and ¢ are, in this case, the
restrictions of z, p and 0 to H) when all jobs must be on-time is denoted
by f(H) The schedules provided by DPR.COMP(J, H, x,p, ) satisfy the
following properties:



o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
initial schedule x

1 3 4 5 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

after step 1

1 3 4 5 7

T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
after step 2

1 2 6 3 6 4 5 6 7
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
after step 3

Figure 4: the 3 steps of DPR.COM P

Property 4. The schedules So(H) and S3(H) are such that
o M(Sa(H)) = pu(H,H) = max,cqy,... g} (Th, + D20, (Ph, + 0n,)),
o M(S3(H) = u(J, H) = ma(u(H, H), Sy (s + 57).

Proof. The schedule So(H) is made of a sequence of intervals Iy,--- I,
where Ij, = [ug; vg] such that

o for ke {1,---,r—1}, vp < ugy1;
e uy =y, and (u1,--- ,u,) is a subsequence of (zp,,--- ,zp,);
e for k € {1,---,r}, each time-unit of I} is assigned to a job of H with

x-values not less than wuy.

Assuming that u, = zj, , we thus have M (S2(H)) = zp, + Y1 (ph, +0n.))-
Since for any j € {1,--- ,q}, every job h; is scheduled after the date z;, we
get M(Sa(H)) > wp;+> 25 ;(Ph, +0n,)). Moreover, since max,c(i,... g3 (¥n, +

1 (ph, + 0n,)) is obviously a lower bound of p(H,H) and since the
makespan of Sy(H) is equal to that bound, we have M (Sy(H)) = u(H, H).



It is clear, from step 3 of the algorithm, that if M (S2(H)) —>25_; (pn, +
0n;) = Yse (i + 0i), we have M(Ss(H)) = M (So(H)) = p(H, H). Oth-
erwise, there is not enough idle time-units in So(H) to schedule the jobs of
J\ H and we have M(S3(H)) = >_1", (p; + 0;). We thus get M(S3(H)) =
max(pu(H, H),> " (pi + 6;)). Since max(u(H, H),> " | (pi + 6;)) is a lower
bound of u(J, H), we also have M (S3(H)) = p(J, H). O

The following property, which is a corollary of Property 4, will be useful
to prove the algorithm of the next section.

Property 5. Let H and K be two subsets of {1,---,i — 1} such that
p(H,H) < p(K,K). Then we have p(HU{i}, HU{i}) < p(KU{i}, KU{i}).

Proof. From Property 4, we get:
u(H U i, H U {i}) = max(u(H, H), 2) + p; + 0.
Since u(H,H) < p(K, K), we also have

p(H U{iy, HU{i}) < p(K U {i}, KU {i}).

2.2.2  An O(n?) algorithm for DPR-MAXANCHOR

In order to solve DPR-MAXANCHOR, we consider the following dynamic
programming algorithm:

procedure DPR.MAXANCHOR(J,z,p,0);

(1) ( ) p1+(51;m(1,1):x1 +p1+51

(2) Fori=2ton

(3) Fork=2toi—1

(4) m™ (i, k) = max(m(i — 1, k), Y5, (p; + 67));
(5) m+( )—max(xz, (Z—l,k—l))+pz+5z,
E ; m(i, k) = min(m= (i, k), m* (i, k);

5
6
7 m(i,4) = max(x;, m(i — 1,7 — 1)) + p; + ;.

Let us introduce some more definitions to interpret the variables m™ (i, k),
m* (i, k) and m(i, k). Ifi € {1,---,n} and H C {1,--- ,i}, the minimum
makespan of a schedule of {1,--- i} such that H is compatible, is denoted
by M (i, H). Notice that M (i, H) is a simpler notation for u({1,--- ,i}, H).

10



For i € {1,---,n} and k € {0,--- ,i}, we denote by m(i, k) the minimum
makespan of a schedule of {1,--- i} with k& on-time jobs:

m(i, k) = min{M (i, H)|H C {1, i}, |H| = k}.

Let us define the bi-partition (K~ (i, k),H (i, k)) of the subsets of {1,--- ,i}
with size k as follows:

e H (i,k)={H|H C{1,---,i—1},|H| =k}
o Ht(i,k)={H|H C{1,---,i},i€ H,|H| =k}
We then denote by m™ (i, k) the value min{M (i, H)|H € H™ (i,k)} and by
m™ (i, k) the value min{M (i, H)|H € H"(i,k)}. From these definitions, we
clearly have
m(i, k) = min{m~ (i, k), m* (i, k)}.

We first search for a recurrence formula satisfied by m™ (i, k).
Let K be such that m(i — 1,k) = M (i — 1, K). From Property 4, we have

i1
m(i —1,k) = max(u(K, K), > (p; + ;).
j=1
For any H € H™(i,k), we have u(K,K) < u(H,H) since otherwise, we
would not have m(i — 1,k) = M(i — 1, K). So, again from Property 4, we
get

m” (i, k) = max(u(K, K), Y (pj + ;).
j=1
From these two equalities, we can conclude that
m= (i, k) = max(m(i — 1,k), > (p; + ;).
j=1

We now search for a recurrence formula satisfied by the function m™ (i, k) =
min(M (i, H)|H € H*(i,k)}). We consider two cases.

Assume first that m(: —1,k—1) < z;. Let H be such that M (i—1, H) =
m(i — 1,k — 1) and let S be a schedule of the jobs {1,---,i — 1} such that
the jobs of H are on-time and whose makespan is m(i — 1,k —1). By adding
to S the job i scheduled in the interval [x;; z; + p; + d;], we get a schedule S’
of the jobs {1,---,i} such that the jobs of H U {i} are on-time and whose

11



the blocks of S

m(i-1,k-1) X

job i

. .+p.+0.
Xl Xl pl al

the schedule S'

Figure 5: The schedules S and S’

makespan is x; + p; + J; (See Figure 5). Since x; + p; + J; is a lower bound
of m™ (i, k), we have
mT (i, k) = z; + p; + 6.

Assume now that m(i — 1,k — 1) > z;. Let K C {1,---,7 — 1} be such
that m(i—1,k—1) = M(i—1,K) and let K’ = K U{i}. We first show that
there is a schedule of the jobs {1, - - - ,i} with makespan m(i—1,k—1)+p;+9;
such that the jobs of K’ are on-time.

Let S be a schedule of the jobs {1, -- ,i—1} with makespan m(i—1,k—1)
such that the jobs of K are on time. Consider the last block of S and let
[u; v] be the time interval of the last block of S (See Figure 6). We clearly
have v < x;_1 since otherwise all jobs of the last block of S could have been
left-shifted by one time unit. Let r be the job of {1,--- i — 1} scheduled
in the time-unit [z;]. By adding to S the job ¢ scheduled in the interval
[m(t — 1,k —1),m(t — 1,k — 1) + p; + 0;], we get a schedule S" of the jobs
{1,---,i} with makespan m(i — 1,k — 1) + p; + d; such that the & — 1 jobs of
K are on-time. By exchanging in S’ the jobs respectively scheduled at the
time-units [z;] and [m(i — 1,k — 1) + p; + 6; — 1] (See Figure 6), we get a
schedule S” of {1,--- ,i} with makespan m(i — 1,k — 1) + p; + §; such that
the k jobs of K’ are on-time.

Assume now that there exists H € H* (i, k)} such that M (i, H) < m(i—
1,k — 1) + p; + 6;. Since job i is entirely scheduled after time x;, we can
remove job i and reschedule after time x; and with no intermediate delay, all
remaining jobs of {1,---,i — 1} previously scheduled in S within the time

12



u X, X3 v=m(i-1,k-1)
i-1 . +1 !

last bloci of S

r i

u X *i v=m(i-1,k-1) vip;+9;

i-1 xi+1
last block of S”

i i r
X,
u X 4 i v=m(i-1,k-1) V*P;+d;
i

last block of '’

Figure 6: The schedules S, S” and S”

interval [x;;m(i — 1,k — 1) + p; + 0;]. We thus get a schedule of {1,---,i —
1} with makespan less than m(i — 1,k — 1) and £ — 1 on time jobs. A
contradiction. We thus have m*(i,k) = m(i — 1,k — 1) + p; + ;.

It finally comes from the study of the two cases that

m™ (i, k) = max(z;, m(i — 1,k — 1)) + p; + 6;.
We can now conclude about the function m(i, k).
e ifi>1and k <i—1 we have

max(m(i — 1, k), Z;zl(pj + )

m(i, k) = min !
T max(x;,m(i — 1,k —1)) +p; + &

e if k =4, we have
m(i,1) = max(z;,m(i — 1,1 — 1)) + p; + 0;

e The initial values are the following

i +p+0 k=1
m(l’k)_{p1+51 if k=0
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So, given an instance (J, z,p,d, D) of DPR-MAXANCHOR, the maximum
number of on-time jobs is given by max(k € {1,--- ,n}|m(n,k) < D). More-
over, it is easy to see that the complexity of the dynamic programming
algorithm is O(n?).

3 The proactive problem

In the proactive problem, the variations ; of the job durations are only
known to belong to an uncertainty domain A. It is also assumed that,
whatever the realization 0 in A, the real instance (J,p + J, D) has at least
one schedule since, otherwise, it could happen that the real instance has
no feasible schedule. Let I = (J,p,d) be the initial instance, where d is
the common deadline that must be satisfied by the jobs of J in a planned
schedule. If z is a schedule of I and if 6 € A, we denote by r(z,d) the
reactive gain of the planned schedule z to the variations vector J, that is
to say the maximum number of jobs that may be scheduled on-time when
the schedule x has been planned and ¢ is known. Given a planned schedule
x of I, we denote by R(xz,A) the value mingea r(x,d), which is the worst
number of jobs that could be scheduled on-time due to uncertainty, if the
planned schedule x is chosen. The proactive problem is finally to find a
planned schedule z* such that R(z*, A) is maximum.

We consider in this paper the special case when each §; belongs to a known
interval [(5j_; (5]+] and we denote respectively by 67 and 6~ the corresponding
vectors. In that case, the following monotonicity property will play a major
role

Property 6. Let x be a schedule of the instance (J,p,d). If §,6' € A, and
8 <6, then r(z,8") > r(z,9).

Proof. Let H C J. If the instance (J,z,p, 0, D) of MAXANCHOR has a
schedule such that the jobs of H are on-time, then clearly the same schedule
is also feasible for the instance (J, x,p,d’, D). O

3.1 The proactive problem for MAXANCHOR

From Property 6, we easily get that the problem of finding the best proac-
tive schedule z* is equivalent to the following problem : given the in-
stances I = (J,p,d) and I'" = (J,p+ 6", D) where d > > ie{1, ny Pi and
D > Zie{l,m,n}(pi + 4;), find a schedule z of I and a schedule y of I
such that the number of jobs eq(z,y) with x; = y; is maximum. We call

14



the decision version of this problem PROMAXANCHOR and denote by
(J,p,0%,d, D, k) the instance where it is asked if at least k jobs may be
scheduled at the same date in the two schedules.
Let us denote by II the special case of PROMAXANCHOR when d =
Zie{l,---,n} pi, D = Zi€{17.__7n}(pi + 5;") and k = 2. Before showing that II
is NP-complete, we prove the following property

Property 7. Let I = (J,p,6",d, D) an instance of II. I has at least one
solution (x,y) with eq(xz,y) > 2 if and only if there are two subsets K, L C J
such that :

e KULC J,

e KNL=#W,

d Zie[{pi = ZieL(pi +67L+)'

Proof. Assume there are two subsets K, L C J satisfying the 3 conditions,
let i € KNLandlet j € J\ (KUL). Then the solution (z,y) shown by
Figure 7 satisfies eq(x,y) > 2. Conversely, assume [ has a solution (z,y)
with eq(z,y) > 2, let J; and J; be two jobs such that z; = y; and z; = y;
and assume without loss of generality that x; < ;. Let K be the set of jobs
scheduled by « in the interval [x;;x;] and let L be the set of jobs scheduled
by y in the interval [y;; y;]. Then we clearly have J; € J\(K UL), J; € KNL

J— . +
and ZZ‘GK pi = ZiGL(pZ +4;7). O
7 K\{3;} 3 T\(KHI5)) schedule x
J; L\{J;} I3 J\(L+{Jj}) schedule y
a D

Figure 7: The schedules (x,y) corresponding to K, L.

Property 8. II is NP-complete.

Proof. We show that PARTITION polynomially reduces to II.
Let (A, s) be an instance of PARTITION where A = {ay, -+ ,an},s: A—
N and )", s(a;) = 2B. The corresponding instance of II is as follows:

b J:{Jla"'an}a
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o Vie{l,--- ,n}t,p = s(a),
o Vie {l,---,n}, 6" =B — s(a;).

We note that for that instance, we have d = 2B and D = nB.

Assume first that (A, A2) is a solution of the instance (A, s) of PARTITION
and let K be the subset of jobs corresponding to Aq, let J; be a job of K,
let L = {J;} and let J; be one of the jobs associated with As. Then the
schedules x and y shown on Figure 8 make a solution of the instance of II
such that eq(z,y) > 2.

Assume now that the instance of II has a solution (z,y) such that eq(z,y) >
2. We know that there are two subsets K, L C J such that the three con-
ditions of Property 7 are satisfied. We get from the third condition that
Y ick Pi = |L| x B. Now from the first condition we need to have |L| = 1.
So, if A1 = {a;|J; € K}, then (A, A\ A1) is a solution of the instance (4, s).

J

R\{J;} J I\ (K+(Jj)) schedule x

i

J. J\{Ji,Jj} schedule y

B d D=nB

Figure 8: A solution (x,y) of the instance of II.

O]

Pointing out that, without loss of generality, the parameter d of an in-
stance of PROMAXANCHOR may be assumed to be at most » ., (p; +
5;“), we get that the length of IT and the length of PROMAXANCHOR are
polynomially equivalent. So PROMAXANCHOR is also an NP-complete
problem.

3.2 The proactive problem for DPR - MAXANCHOR

As for the case of MAXANCHOR, we easily get from Property 6 that the
problem of finding the best proactive schedule x* is equivalent to the follow-
ing problem : given the instances I = (J,p,d) and It = (J,p+4d*, D) where
d> Zie{l’,_,’n} p; and D > Zie{l’_,,’n}(pi +6;"), find a discrete-precemptive
schedule x of I and a discrete-preemptive schedule y of I such that the
number of jobs eq(x,y) with z; = y; is maximum. Consider the schedule z*
of I where, for each job J;, the first time-unit assigned J; is [i] and where
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the remaining Y ;' | p; — n processing time-units of the jobs are assigned
the the time interval [n;) " | p;] in an arbitrary order (See Figure 9). It
is easy to see that the schedule provided by DPR.COMP(J, J,x*,p,6")
has no idle time so that its makespan is > . ,(p; + ;). We thus have
R(z*,A) = r(z*,0+) = n and conclude that z* is an optimal proactive
schedule.

remaining processing
Jy | Iy Iy time-units of schedule x"
the jobs
remaining processing
Iy |92 In time-units of
the jobs
4
0 1 2 n 2p; Z(pi+d ;)

Figure 9: The optimal proactive schedule

4 Conclusion

The results presented in this paper make a first contribution to that new
class of problems in the single-machine scheduling context. In the non pre-
emptive case, solving efficiently the reactive and proactive problems makes
an interesting future research direction. In the preemptive case, the com-
plexity of the weighted version where a cost is due for each delayed job is
still unknown. In both cases, the proactive problem should be studied for
other kinds of uncertainty domains, such as the case when the perturbations
are limited by a global budget constraint. Finally, the problem studied in
this paper does not only concern scheduling problems but all combinatorial
problems where a solution of a planned instance must be chosen before the
real instance is actually known.
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