
HAL Id: hal-02080155
https://hal.sorbonne-universite.fr/hal-02080155v2

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transport costs for PDEs: the coupling method
Nicolas Fournier, Benoît Perthame

To cite this version:
Nicolas Fournier, Benoît Perthame. Transport costs for PDEs: the coupling method. EMS Surveys
in Mathematical Sciences, 2020, 7 (1), pp.1-31. �10.4171/EMSS/35�. �hal-02080155v2�

https://hal.sorbonne-universite.fr/hal-02080155v2
https://hal.archives-ouvertes.fr


Transport costs for PDEs: the coupling method

Nicolas Fournier∗ Benôıt Perthame∗∗

June 18, 2020

Abstract

We informally review a few PDEs for which some transport cost between pairs of solutions,
possibly with some judicious cost function, decays: heat equation, Fokker-Planck equation, heat
equation with varying coefficients, fractional heat equation with varying coefficients, homogeneous
Boltzmann equation for Maxwell molecules, and some nonlinear integro-differential equations aris-
ing in neurosciences. We always use the same method, that consists in building a coupling between
two solutions. This means that we double the variables and solve, globally in time, a well-chosen
PDE posed on the Euclidian square of the physical space. Finally, although the above method fails,
we recall a simple idea to treat the case of the porous media equation. We also introduce another
method based on the dual Monge-Kantorovich problem.
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Introduction

It is usual to study the well-posedness, stability and large-time behavior of stochastic processes (e.g.
solutions to Stochastic Differential Equations) by using coupling methods: we consider two such
processes, with different initial conditions, driven by suitably correlated randomness, and we measure
the %-transport cost T% between their distributions.

We work in Rd and we always assume that the cost function % : Rd × Rd 7→ R satisfies %(x, x) = 0
and %(x, y) = %(y, x) > 0 for x 6= y. We recall that for two probability densities u1, u2 on Rd, T%(u1, u2) = inf

v∈K(u1,u2)

∫∫
%(x, y)v(x, y)dx dy,

K(u1, u2) = {v : Rd × Rd 7→ R+ such that
∫
v(x, y)dy = u1(x),

∫
v(x, y)dx = u2(y)}.
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∗Sorbonne Université, CNRS, Laboratoire de Probabilité, Statistique et Modélisation, F-75005 Paris, France. Email:
Nicolas.Fournier@sorbonne-universite.fr
∗∗Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, F-75005 Paris, France.

Email: Benoit.Perthame@sorbonne-universite.fr. B.P. has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740623).

1



When for some p ≥ 1,

%p(x, y) =
|x− y|p

p
,

and we put Tp = T%p . The distances dp = T 1/p
p are also called Wasserstein distances, and one refers to

the Monge-Kantorovich distance when p = 1.

The probabilistic coupling method consists in finding, for two solutions u1 and u2 of a given Partial
Differential Equation (PDE in short), two coupled stochastic processesX1 andX2, with time-marginals
u1 and u2, so that X1 and X2 remain as close as possible. One then controls T%(u1(t), u2(t)) by
E[%(X1(t), X2(t))]. The goal of the present survey paper is to describe, in an informal way, this method,
using only arguments based PDEs. This is what we call the coupling method: for each problem, we
introduce a PDE, with doubled variables, describing the time-evolution of density v(x, y, t) of the law
at time t ≥ 0 of two underlying coupled processes, in such a way that its two marginals solve the
original equation, and such that v(x, y, t) is as concentrated as possible near the diagonal x = y. This
is possible only when the underlying pair of stochastic coupled processes is Markov. We then study
the quantity

∫∫
%(x, y)v(x, y, t), which controls the transport cost T% between two solutions. This can

be seen as a translation, in terms of PDEs, of the probabilistic coupling method. For example, our
proof of Tanaka’s theorem [38] for the Boltzmann equation really relies on the same main arguments as
Tanaka (who is using some Poisson-driven stochastic differential equations), but we avoid introducing
any stochastic process.

The difficulties and novelties rely on the choice of the cost function and on the choice of coupling
between two solutions by solving a well-chosen PDE posed on the Euclidian square of the physical
space, R2d in general. Each time, we try to emphasize the main technical difficulties that would allow
one to justify the computations.

Of course, any way to produce some non-expansion estimates along solutions of some PDEs for some
transport cost relies on some coupling. However, for example, the deterministic methods in Carrillo
[12] for the heat equation or Villani [41, Section 7.5.6], see also [5], for Tanaka’s theorem, are really
different in spirit. In [12], the main tool is that solutions to the heat equation can be represented by
a convolution formula. In [41, Section 7.5.6] and [5], everything relies on the contractive property of
the gain operator and on the Duhamel principle.

For example, considering the Brownian motion leads to the heat equation. We first give a simple
proof that the heat equation is non-expansive (weak contraction) for any smooth cost function of the
form %(x, y) = r(|x−y|). This is standard but the PDE literature seems to ignore this simple approach.
The method can be extended to various cases. The Fokker-Planck equation is the simplest extension.
The case of the heat equation with variable coefficients, of the form ∂tu − ∆(a(x)u) = 0, is more
involved: in one dimension, the Monge-Kantorovich distance T1 plays a central role and is always
non-expansive (under technical conditions); we illustrate the general structure in higher dimension
and show that if the cost function % satisfies some elliptic PDE, which does seem to enter a class
with generic existence results, then T% is non-expansive along solutions. The method also applies to
some jump processes: fractional heat equation with variable coefficients in dimension one, scattering
equations, kinetic scattering equations, Boltzmann equation for Maxwell molecules.

For the porous media equation, the situation is more intricate and the above method does not seem
to apply. However, we recall from [6] another, somehow related and rather simple, path to treat this
equation.
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Concerning piecewise deterministic jump processes and (inhomogeneous) kinetic scattering equa-
tions, we present a new result showing that some transport costs are non-expansive.

Finally, concerning jump processes, in particular those related to the discretized heat equation, we
present another approach, based on the dual formulation of the transport costs.

Maybe the first example of use of the coupling method can be found in Dobrushin [20], where the
Vlasov equation is derived as mean-field limit of a deterministic system of interacting particles, making
use of some transport cost. No PDE is written for the coupling in [20], because eveything may be
written in terms of characteristics. See [24, Section 3] for a PDE analogue of Dobrushin’s argument.
In the same spirit, the Euler equation is derived from a deterministic system of interacting vortices in
Marchioro-Pulvirenti [31, Section 5.3], using also a coupling argument. See [26] for a result with the
strong transport distance d∞ but for a problem slightly less singular than the Euler equation.

Recently, the topic of transport costs has developed quickly for PDEs and integro-differential equa-
tions (IDEs) after new understanding of optimal transportation and of the Brenier-Kantorovich map
by [10, 2]. There are several approaches to use the transport costs in PDEs. A geometrical approach
based on gradient flow structures has been introduced in [34] and extended in [14, 8], in particular
for the porous media equation (with T2), for interacting particle systems and for granular flows. Also,
many results on PDEs have been derived from the discretization algorithm named JKO after [27]. See
the book [42] for a complete presentation of these results. See also [39] who showed that contractivity
for some other transport cost may fail for the porous media equation. Let us also mention that the
special structure associated with dimension 1 has been used to prove strict contraction for the porous
media equation [13] for the cost T2, and to treat other equations as scalar conservation laws [4], the
Keller-Segel system [11] or the granular media equation [30]. See also the general reference [15] for
nonlinear diffusion equations and [3] for the multi-dimensional Keller-Segel system. Methods based
on optimal transportation have also been recently used to treat singular congestion (incompressible)
equations arising in crowd modeling, see for instance [9, 32, 17].

Most of the recent papers using some transport cost for PDEs have been using the gradient flow
structure which is closely related to a variational formulation of the fluxes. Here, with several examples
of conservative equations, which do not necessarily have a gradient flow structure, we control the
transport cost using the coupling method. We often borrow our examples from the stochastic processes
which represent the PDEs thanks to their Kolmogorov equation. The cases of variable coefficients are
particularly interesting because they often require some special choice of the cost function.

We organize our examples as follows. We begin with three simple examples: heat equation, Fokker-
Planck equation, and a class of nonlinear transport equations. We show directly that the transport
costs are non-expansive along these equations. Then we turn, in Section 2, to the heat equation
with variable coefficients. In Section 3 we consider some IDEs: scattering equations, including kinetic
scattering and inhomogeneous fractional heat equation. Zero-th order terms, describing absorption
and re-emission, as they appear in models of neural networks, can also be treated by adapting the
method; this is explained in Section 4. The famous Tanaka theorem for the homogeneous Boltzmann
equation can be included in our framework and this is done in Section 5. We treat the porous media
equation in Section 6. Finally, we exemplify in Section 7 how the same results can be proved using
the dual formulation of the transport costs.
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1 Heat, Fokker-Planck and transport equations

In order to explain the coupling method in a very simple, but still relevant, framework, we begin with
the heat equation. Then we turn to drift and transport terms.

1.1 Heat equation

Here is the well-known result, see e.g. [42], we want to quickly recall.

Theorem 1 Consider any increasing function r : [0,∞) 7→ [0,∞) such that the cost function % :
Rd ×Rd 7→ R+ defined by %(x, y) = r(|x− y|) is of class C2. Consider two probability densities u0

1, u
0
2

on Rd, and the corresponding solutions u1, u2 to the heat equation

∂tu−∆u = 0, x ∈ Rd, t ≥ 0. (2)

For any t ≥ 0, one has
T%(u1(t), u2(t)) ≤ T%(u0

1, u
0
2).

Proof. We consider an initial density v0 : Rd ×Rd 7→ R+ with marginals u0
1 and u0

2, that is such that
v0 ∈ K(u0

1, u
0
2). We next consider the solution v(x, y, t) to the degenerate heat equation

∂v

∂t
−∆xv −∆yv − 2∇x · ∇yv = 0, x, y ∈ Rd, t ≥ 0 (3)

starting from v0. Observe that (3) may be rewritten as

∂v

∂t
− (∇x +∇y) · (∇x +∇y)v = 0, x, y ∈ Rd, t ≥ 0. (4)

Clearly, it holds that v(x, y, t) ≥ 0, because of the non-negativity of the operator in (3), which can
be written in the variables (x+ y, x− y) as −∆x+y.

We then define the marginals

v1(x, t) =

∫
v(x, y, t)dy, v2(y, t) =

∫
v(x, y, t)dx

and show that v1 = u1 and v2 = u2: for instance, integrating (3) with respect to y, one finds{
∂v1(x,t)
∂t −∆xv1(x, t) = 0, x ∈ Rd, t ≥ 0,

v1(x) = u0
1(x), x ∈ Rd

and uniqueness of the solution of the heat equation gives us v1 = u1.
Recalling (1), we conclude that

T%(u1(t), u2(t)) ≤
∫∫

%(x, y)v(x, y, t)dxdy =

∫∫
r(|x− y|)v(x, y, t)dxdy.

Finally, we may also compute, using (4) and integrating by parts,

d

dt

∫∫
r(|x− y|)v(x, y, t)dxdy =

∫∫
v(x, y, t)

(
(∇x +∇y) · (∇x +∇y)[r(|x− y|)]

)
dxdy =0.
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Therefore, for any initial data v0 ∈ K(u0
1, u

0
2),

T%(u1(t), u2(t)) ≤
∫∫

r(|x− y|)v0(x, y)dxdy =

∫∫
%(x, y)v0(x, y)dxdy

and minimizing among such v0 completes the proof. �

The only technical question is to justify the integration by parts, which is immediate if we assume
enough moments initially (otherwise there is nothing to prove), at least when we restrict ourselves to
power cost functions %p(x, y) = |x − y|p/p with p ≥ 2. Notice that the well-posedness for (3) follows
from the observation that we actually deal with −∆x+y. It is also possible, under some conditions, to
treat the case of some non smooth cost functions, e.g. %p for some p ∈ [1, 2): this issue is discussed in
Section 2.

Remark that the solution to (3) can be represented as v(x, y, t) = E[v0(x +
√

2Bt, y +
√

2Bt)], for
(Bt)t≥0 a Brownian motion. Note also that in (3), diffusion occurs only in the x + y variable, while
x− y remains invariant under the dynamics.

Another way to understand (3) is to see that v(t) is the law of the couple (X0+
√

2Bt, Y0+
√

2Bt), where
(X0, Y0) is v0-distributed and where we use the same Brownian motion (Bt)t≥0 for both coordinates.
If using e.g. independent Brownian motions (Bt)t≥0 and (Ct)t≥0, i.e. if considering the coupling
(X0 +

√
2Bt, Y0 +

√
2Ct), one would find v with the good marginals but solving ∂tv− (∆x + ∆y)v = 0,

leading for example to the far from optimal estimate T2(u1(t), u2(t)) ≤ T2(u0
1, u

0
2) + 2dt.

1.2 Fokker-Planck equation

The coupling method can be extended to the Fokker-Planck equation, see [7] for some more elaborate
consequences. The result can be stated as follows

Theorem 2 Consider some function V : Rd × R+ 7→ Rd such that, for some α ∈ R,

(V (x, t)− V (y, t)) · (x− y) ≤ α|x− y|2, x, y ∈ Rd, t ≥ 0. (5)

Consider two probability densities u0
1, u

0
2 on Rd and the corresponding solutions u1, u2 to the Fokker-

Planck equation
∂tu−∆u+ div(V (x, t)u) = 0, x ∈ Rd, t ≥ 0. (6)

For any t ≥ 0, any p ≥ 1, one has

Tp(u1(t), u2(t)) ≤ Tp(u0
1, u

0
2) exp(αpt).

This inequality is well-known, see for example [42] §9.1.5 and the references therein. One can also
find relations to several deep and recent functional analysis tools. This goes far beyond our present
purpose.

Proof. This is the same proof as for the heat equation, with longer expressions. We consider any v0,
with marginals u0

1 and u0
2, and the solution v to the equation

∂tv −∆xv −∆yv − 2∇x · ∇yv + divx(V (x, t)v) + divy(V (y, t)v) = 0, x, y ∈ Rd, t ≥ 0 (7)
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starting from v0. One easily checks that v(x, y, t) ≥ 0 and, integrating (7) with respect to y, that
v1(x, t) :=

∫
v(x, y, t)dy solves (6) and starts from u0

1, whence v1 = u1. The second marginal is treated
similarly, and we conclude that Tp(u1(t), u2(t)) ≤ p−1

∫∫
|x−y|pv(x, y, t)dxdy. Finally, using the same

computation as for the heat equation, with some additional terms, we see that

d

dt

∫∫
|x− y|p

p
v(x, y, t)dxdy = 0 +

∫∫
v(x, y, t)|x− y|p−2(x− y) · (V (x, t)− V (y, t))dxdy

≤ α
∫∫
|x− y|pv(x, y, t)dxdy

by assumption (5). The result follows using the Gronwall lemma

Tp(u1(t), u2(t)) ≤
∫∫
|x− y|p

p
v(x, y, t)dxdy ≤

(∫∫ |x− y|p
p

v0(x, y)dxdy
)
eαpt

and minimizing in v0. �

Observe that one can treat in a similar way the case with variable diffusion coefficients, of the
form ∂tu −

∑d
i,j=1 ∂ij(aij(x, t)u) + div(V (x, t)u) = 0, under suitable conditions on the nonnegative

symmetric matrix a and on V . For example, we will find that T2(u1(t), u2(t)) ≤ T2(u0
1, u

0
2) exp(αt) as

soon as

Tr
(

[σ(x, s)− σ(y, s)][σ(x, s)− σ(y, s)]∗
)

+ (x− y) · (V (x, t)− V (y, t)) ≤ α|x− y|2,

where σ(x, t) is, for each (x, t) ∈ Rd × [0,∞), a matrix such that σ(x, t)[σ(x, t)]∗ = a(x, t).

To our knowledge, a divergence form equation ∂tu −
∑d

i,j=1 ∂i(aij(x, t)∂ju) = 0 does not enjoy
particular properties from this point of view.

1.3 A nonlinear transport equation

We next consider a fully deterministic problem which arises in several types of modeling, such as
polymers, cell division, neuron networks, etc :

∂tu+ div[V (x, I(t))u] = 0, x ∈ Rd, t ≥ 0, (8)

where the nonlinearity stems from the quantity I(t) defined, with a given weight ψ : Rd 7→ R,

I(t) =

∫
Rd
ψ(x)u(x, t)dx. (9)

We again complement this equation with an initial condition u0 ≥ 0 with mass
∫
u0 = 1.

Theorem 3 Assume that V : Rd×R 7→ Rd and ψ : Rd 7→ R are of class C1, and that for some α > 0

(x− y) ·
(
V (x, I)− V (y, I)

)
≤ −α|x− y|2, ∀x, y ∈ Rd, I ≥ 0. (10)

Setting 〈x(t)〉 =
∫
xu(x, t)dx, we have

T2(u(t), δ〈x(t)〉) =

∫
|x− 〈x(t)〉|2

2
u(x, t)dx ≤ e−2αt

∫
|x− 〈x(0)〉|2

2
u0(x, t)dx = e−2αtT2(u(0), δ〈x(0)〉).
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Assume additionally that
β = ‖DIV ‖∞‖Dψ‖∞ < α

and fix any initial point X0 ∈ Rd. Consider the solution X to X ′(t) = −V (X(t), ψ(X(t)) starting
from X0. For all t ≥ 0, one has

T2(u(t), δX(t)) =

∫
|x−X(t)|2

2
u(x, t)dx ≤ e2(β−α)t

∫
|x−X0|2

2
u0(x)dx = e2(β−α)tT2(u0, δX0).

It holds that (δX(t))t≥0 solves (8) in a weak sense. A more general result, involving any pair of
solutions, can be found in [42]. One could prove Theorem 3 without using a PDE for the coupling,
using only the characteristics, in the spirit of Dobrushin [20].

Proof. We consider two solutions u1 and u2 to (8), and denote by I1(t) and I2(t) the corresponding
functions, see (9). As we are interested in the case where one of the two solutions is a Dirac mass (for
each t ≥ 0, u2(t) = δX(t)), we can consider the trivial coupling v(x, y, t) = u1(x, t)u2(y, t), which of
course has the correct marginals, and satisfies

∂tv + divx[V (x, I1(t))v] + divy[V (y, I2(t))v] = 0.

Therefore, we may compute

d

dt

∫∫
|x− y|2

2
u1(x, t)u2(y, t)dxdy =

∫∫
(x− y) ·

(
V (x, I1(t))− V (y, I2(t))

)
u1(x, t)u2(y, t)dxdy

=

∫∫
(x− y) ·

(
V (x, I1(t))− V (y, I1(t))

)
u1(x, t)u2(y, t)dxdy

+

∫∫
(x− y) ·

(
V (y, I1(t)))− V (y, I2(t))

)
u1(x, t)u2(y, t)dxdy

≤ −α
∫∫
|x− y|2u1(x, t)u2(y, t)dxdy

+‖DIV ‖∞|I1(t)− I2(t)|
(∫∫

|x− y|2u1(x, t)u2(y, t)dxdy
)1/2

.

We first apply this in the case of single solution u := u1 = u2, whence I1 = I2, and we directly conclude
by Gronwall’s lemma that∫∫

|x− y|2

2
u(x, t)u(y, t)dxdy ≤ e−2αt

∫∫
|x− y|2

2
u0(x, t)u0(y, t)dxdy.

This classically rewrites as∫
|x− 〈x(t)〉|2u(x, t)dx ≤ e−2αt

∫
|x− 〈x(0)〉|2u0(x, t)dx.

as desired. Next, when considering two solutions, we notice that

I1(t)− I2(t) =

∫∫
[ψ(x)− ψ(y)]u1(x, t)u2(y, t)dxdy,

whence∣∣I1(t)− I2(t)
∣∣ ≤ ‖Dψ‖∞ ∫∫ |x− y|u1(x, t)u2(y, t)dxdy ≤ ‖Dψ‖∞

(∫∫
|x− y|2u1(x, t)u2(y, t)dxdy

)1/2
.
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Therefore,

d

dt

∫∫
|x− y|2

2
u1(x, t)u2(y, t)dxdy ≤ (β − α)

∫∫
|x− y|2u1(x, t)u2(y, t)dxdy.

Applying this to the case where u2(t) = δX(t) concludes the proof. �

For consistency with the other presentations in this section, we have written this result for an L1

density v with a finite second moment, but the extension to a probability measure is immediate.

1.4 Agregation type equation

Among the nonlinear transport equations let us mention the agregation equation

∂tu− div[u (K ∗ u)] = 0, x ∈ Rd, t ≥ 0, (11)

where the convolution term is defined by K ∗ u(x, t) =
∫
Rd K(x− y)u(y, t)dy. It is well-known, under

various assumptions on K and for several variants of the equation, that it is contractive for transport
costs and we refer to the papers [34, 14, 15, 30, 24].

Here we assume that the smooth kernel satisfies, for some α ≥ 0,

K ∈ C1(Rd;Rd), (x− y) ·
(
K(x)−K(y)

)
≥ −α|x− y|2 K(x) = −K(−x). (12)

We also assume that the L1(Rd)-initial conditions u0
i ≥ 0 with unit mass

∫
u0
i = 1, for i = 1, 2 satisfy∫

Rd
|x|2u0

i dx <∞,
∫
Rd
xu0

i (x)dx = 0. (13)

These imply that
∫
Rd xui(x, t)dx = 0 for all t > 0.

Theorem 4 Assume (12). Consider two initial data u0
1 and u0

2 satisfying (13) and u1, u2 the corre-
sponding solutions to (11). One has for all t ≥ 0,

T2(u1(t), u2(t)) ≤ e2αtT2(u0
1, u

0
2).

Notice that, combining the coupling below with that in Section 1.1, it is immediate to also treat the
case with diffusion

∂tu−∆u− div[uK ∗ u] = 0,

Proof. Again the simple coupling

∂tv(x, y, t)− divx[v K ∗ u1]− divy[v K ∗ u2] = 0, x, y ∈ Rd, t ≥ 0 (14)

is enough. Indeed, we can verify immediately the properties that it preserves nonnegativity and the
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marginales satisfy the correct equations. Finally, one can compute

d

dt

∫∫
|x− y|2

2
v(x, y, t)dxdy

= −
∫∫

(x− y) ·
[ ∫

K(x− x′)u1(x′)dx′ −
∫
K(y − y′)u2(y′)dy′

]
v(x, y, t)dxdy

= −
∫∫∫∫

(x− y) ·
[
K(x− x′)−K(y − y′)

]
v(x′, y′, t)v(x, y, t)dx′dy′dxdy

= −1

2

∫∫∫∫
(x− x′ − y + y′) ·

[
K(x− x′)−K(y − y′)

]
v(x′, y′, t)v(x, y, t)dx′dy′dxdy

≤ α

2

∫∫∫∫
|x− x′ − y + y′|2v(x′, y′, t)v(x, y, t)dx′dy′dxdy

= α

∫∫
|x− y|2v(x, y, t)dxdy.

.

We have used a symmetry argument and that
∫∫

(x− y)v(x, y, t)dxdy = 0. We complete the proof as
in Section 1.1. �

2 Heat equation with variable coefficients

We consider the heat equation with variable coefficient. This is much more intricate than the previous
examples. In 1 dimension, we use the T1 distance and recover a result implicitly included in [29].
In higher dimension, we indicate a general way to construct cost functions. This leads to a poorly
explored degenerate elliptic PDE, see however [36] and the references therein.

2.1 One-dimensional case

We consider some a : R 7→ R+ and the following heat equation.

∂u

∂t
− ∂2

∂x2
[a(x)u] = 0, x ∈ R, t ≥ 0. (15)

Theorem 5 Assume that d = 1 and that a = σ2 for some σ ∈ C1/2(R). Consider two probability
densities u0

1, u
0
2 on R and the corresponding solutions u1, u2 to (15). For all t ≥ 0, one has

T1(u1(t), u2(t)) ≤ T1(u0
1, u

0
2).

Proof. We give a proof for σ ∈ Cα(R), with α > 1/2, the remark below explains how to treat
α = 1/2. We consider any probability density v0(x, y) with marginals u0

1 and u0
2 and consider the

coupling equation

∂tv − ∂xx(σ2(x)v)− ∂yy(σ2(y)v)− 2∂x∂y[σ(x)σ(y) v] = 0, x, y ∈ R, t ≥ 0 (16)

starting from v0. This equation preserves non-negativity. A simple way to see this is the following
computation: mutliplying (16) by −v−, integrating on R2 and using some integrations by parts, one
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can check that

1

2

d

dt

∫∫
v2
−(x, y, t)dx dy

=−
∫∫ [

|σ(x)∂xv−(x, y, t)|2 − 2σ(x)σ(y)∂xv−(x, y, t)∂yv−(x, y, t) + |σ(y)∂yv−(x, y, t)|2
]
dx dy

+
1

2

∫∫
v2
−(x, y, t)[∂xx(σ2(x)) + ∂yy(σ

2(y))− 2∂xσ(x)∂yσ(y)]dx dy

≤1

2

∫∫
v2
−(x, y, t)[∂xx(σ2(x)) + ∂yy(σ

2(y))− 2∂xσ(x)∂yσ(y)]dx dy.

Since
∫∫
v2
−(x, y, 0)dx dy = 0, the result follows from the Gronwall lemma if σ is smooth. Otherwise,

one can work by approximation.

Integrating (16) with respect to y, we see that v1(x, t) :=
∫
v(x, y, t)dy solves (15) and starts from

u0
1, whence v1 = u1. The second marginal is treated similarly, and we conclude that T1(u1(t), u2(t)) ≤∫∫
|x− y|v(x, y, t)dxdy. Because of its singularity, we need to regularize the absolute value as a W 2,∞

function and define

ωε(r) =

{
r2

2ε for r ≤ ε,
r − ε

2 for r ≥ ε.

Using the Hölder constant Cσ of σ(·), we see that

d

dt

∫∫
ωε(|x− y|)v(x, y, t)dxdy =

∫∫
v(x, y, t) ω′′ε (|x− y|) [σ(x)− σ(y)]2dxdy

≤ C2
σ

∫∫
v(x, y, t)

1I{|x−y|≤ε}

ε
|x− y|2αdxdy

≤ C2
σε

2α−1,

because v(t) is a probability measure. Since now 2α− 1 > 0, we may let ε→ 0 and we find that

T1(u1(t), u2(t)) ≤
∫∫
|x− y|v(x, y, t)dxdy ≤

∫∫
|x− y|v0(x, y)dxdy.

We conclude, as usual, by minimizing in v0. �

Remark 6 The condition σ ∈ C1/2(R) is enough. To treat this exponent, a better construction of the
regularization is required, using the so-called Yamada function:

ωε(r) = 0 for r ≤ ε3/2, ω′′ε (r) =
2

r| ln(ε)|
for ε3/2 ≤ r ≤ ε, ω′ε(r) = 1 for r ≥ ε.

There are other technical issues here. For example, the well-posedness of (16), which is necessary to
identify the marginals of the solution v to the coupling equation, is not so easy. A possible direction
is to use results established in [21], in the spirit of [19].
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2.2 A general construction of the weight

In order to unravel the algebraic structure behind the choice of the weight %, we now consider the
general case of dimension d. We assume that a : Rd 7→ Md×d(R) is everywhere symmetric and
nonnegative, of the form

aij(x) =
K∑
k=1

σik(x)σjk(x), (17)

for some σ : Rd 7→ Md×K(R), and we consider the heat equation

∂u

∂t
−

d∑
i,j=1

∂2

∂xi∂xj
[aij(x)u] = 0, x ∈ Rd, t ≥ 0, (18)

completed with an initial probability density u0 on Rd.

Proposition 7 Assume that σ is regular enough and consider two probability densities u0
1, u

0
2 on Rd

and the corresponding solutions u1, u2 to (18). For all t ≥ 0, one has

T%(u1(t), u2(t)) ≤ T%(u0
1, u

0
2),

for any smooth cost % : Rd 7→ R+ satisfying

d∑
i,j=1

aij(x)
∂2%(x, y)

∂xi∂xj
+

d∑
i,j=1

aij(y)
∂2%(x, y)

∂yi∂yj
+ 2

d∑
i,j=1

K∑
k=1

σik(x)σjk(y)
∂2%(x, y)

∂xi∂yj
≤ 0, x, y ∈ Rd. (19)

When a is constant, we recover that any C2 cost function of the form %(x, y) = r(|x− y|) works. In
dimension 1, %(x, y) = |x− y| is indeed a (weak) solution to (19). We do not know of a theory to solve
(19), in dimension d ≥ 2, for a general coefficient a, so that we do not know if this result is useful.
Notice that equation (19) should be completed by the boundary value %(x, x) = 0 with some growth
condition to mimic |x− y|p.
Proof. We consider any probability density v0(x, y) with marginals u0

1 and u0
2 and consider the

coupling equation

∂v

∂t
−

d∑
i,j=1

∂2

∂xi∂xj
[aij(x)v]−

d∑
i,j=1

∂2

∂yi∂yj
[aij(y)v]− 2

d∑
i,j=1

K∑
k=1

∂2

∂xi∂yj
[σik(x)σjk(y)v] = 0

starting from v0. We show as usual that
∫
v(x, y, t)dy = u1(x, t) and that

∫
v(x, y, t)dx = u2(y, t).

Moreover, we have v(x, y, t) ≥ 0: we multiply the coupling equation by −v− and integrate, finding

1

2

d

dt

∫∫
v2
−(x, y, t)dxdy = −

K∑
k=1

Ik − J,

with

Ik =

∫∫ d∑
i,j=1

[
σik(x)

∂v−(x, y, t)

∂xi
σjk(x)

∂v−(x, y, t)

∂xj
+ σik(y)

∂v−(x, y, t)

∂yi
σjk(y)

∂v−(x, y, t)

∂yj

+2σik(x)σjk(y)
∂v−(x, y, t)

∂xi

∂v−(x, y, t)

∂yj

]
dxdy
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which can also be written

Ik =

∫∫ ∣∣∣ d∑
i=1

σik(x)
∂v−(x, y, t)

∂xi
+

d∑
i=1

σik(y)
∂v−(x, y, t)

∂yi

∣∣∣2dxdy ≥ 0.

The other term is

J =

∫∫ d∑
i,j=1

[∂v−(x, y, t)

∂xi

∂aij(x)

∂xj
v−(x, y, t) +

∂v−(x, y, t)

∂yi

∂aij(y)

∂yj
v−(x, y, t)+

2
∂v−(x, y, t)

∂xi
v−(x, y, t)

∂

∂yj

K∑
k=1

σik(x)σjk(y)
]
dxdy,

which can also be written after integration by parts

J = −1

2

∫∫
(v−(x, y, t))2

d∑
i,j=1

[∂2aij(x)

∂xi∂xj
+
∂2aij(y)

∂yi∂yj
+ 2

∂2

∂xi∂yj

K∑
k=1

σik(x)σjk(y)
]
dxdy.

Assuming that the entries σik are bounded with two bounded derivatives, we conclude by Gronwall’s
lemma that v− ≡ 0, since we initially have

∫∫
v2
−(x, y, 0)dx dy = 0.

Recalling (1), we conclude that T%(u1(t), u2(t)) ≤
∫∫
%(x, y)v(x, y, t)dxdy. Since finally

d

dt

∫∫
%(x, y)v(x, y, t)dxdy

=

∫∫
v(x, y, t)

d∑
i,j=1

[
aij(x)

∂2%(x, y)

∂xi∂xj
+ aij(y)

∂2%(x, y)

∂yi∂yj
+ 2

K∑
k=1

σik(x)σjk(y)
∂2%(x, y)

∂xi∂yj

]
dxdy ≤ 0

by assumption, we conclude as usual. �

We leave open the question to formalize this approach rigorously, in particular for degenerate coef-
ficients σ, and to build other examples where one can prove the existence of a weight %.

3 Scattering and integral kernels

We now turn to equations that describe the probability law of various jump processes. These are
well-known results except the case of kinetic scattering in Subsection 3.2 which seems to be new.

3.1 Simple scattering

For x ∈ Rd, we parameterize the pre-jump location X = Φ(x, h) by h ∈ Rd, distributed according to
a bounded measure µ. We assume that for all fixed h ∈ Rd,

x 7→ X = Φ(x, h) is invertible on Rd and DxΦ(x, h) is an invertible matrix, (20)

and we use the notation X 7→ x = Φ−1(X,h) for the inverse in x (with h fixed).

We consider the scattering problem

∂tu(x, t) =

∫ [
u(Φ(x, h), t) det(DxΦ(x, h))− u(x, t)

]
dµ(h), (21)
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with initial condition u0, a probability density on Rd. Actually, this equation is to be understood in
the weak sense: integrating the right hand side against a test function ϕ(x), we see that∫∫

ϕ(x)
[
u(Φ(x, h), t) det(DxΦ(x, h))− u(x, t)

]
dµ(h) =

∫∫
u(X, t)[ϕ(Φ−1(X,h))− ϕ(X)]dXdµ(h),

which shows that the determinant det(DxΦ(x, h)) is only used informally. We briefly prove the fol-
lowing result, which is classical, see for instance [1].

Theorem 8 Assume (20), fix p ∈ [1,∞) and suppose there is δ ∈ R such that for all X,Y ∈ Rd,∫
|Φ−1(X,h)− Φ−1(Y, h)|pdµ(h) ≤ KL|X − Y |p, where K = µ(Rd). (22)

Consider two probability densities u0
1, u

0
2 on Rd and the corresponding solutions u1, u2 to (21). For all

t ≥ 0, one has
Tp(u1(t), u2(t)) ≤ eK(L−1)tTp(u0

1, u
0
2),

The homogeneous scattering corresponds to Φ(x, h) = x+h and obviously fulfills the above assump-
tions.

Proof. For a probability density v0 on Rd×Rd with marginals u0
1 and u0

2, we consider the solution v of
the coupled equation built in such a way that the jumps parameter h is common to the two variables.
Namely, we choose

∂tv(x, y, t) =

∫
[v(Φ(x, h),Φ(y, h), t) det(DxΦ(x, h)) det(DxΦ(y, h))− v(x, y, t)]dµ(h), (23)

starting from v0. We clearly have v ≥ 0, and integrating in y and using the change of variable
y 7→ Φ(y, h), we find that v1(x, t) =

∫
v(x, y, t)dy satisfies (21). Since it starts from u0

1, we conclude
that v1 = u1. The second marginal is treated similarly, and we conclude as usual that Tp(u1(t), u2(t)) ≤
p−1

∫∫
|x− y|pv(x, y, t)dxdy. Next, we compute, using (23):

d

dt

∫∫
|x− y|pv(x, y, t)dxdy +K

∫∫
|x− y|pv(x, y, t)dxdy

=

∫∫∫
|x− y|pv(Φ(x, h),Φ(y, h), t) det(DxΦ(x, h)) det(DyΦ(y, h))dµ(h)dxdy

=

∫∫∫
|Φ−1(X,h)− Φ−1(Y, h)|pv(X,Y, t)dµ(h)dXdY.

We used the changes of variables X = Φ(x, h) and Y = Φ(y, h) (with h fixed). Recalling (22), we
conclude that

d

dt

∫∫
|x− y|pv(x, y, t)dxdy ≤ K(L− 1)

∫∫
|x− y|pv(x, y, t)dxdy.

Using the Gronwall lemma, we thus find that

Tp(u1(t), u2(t)) ≤ p−1

∫∫
|x− y|pv(x, y, t)dxdy ≤ p−1eK(L−1)t

∫∫
|x− y|pv0(x, y)dxdy

and we conclude as usual, minimizing in v0. �
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The most general scattering equation reads

∂tu(x, t) =

∫ [
π(x, x∗)u(x∗)− π(x∗, x)u(x, t)

]
dx∗, (24)

and equation (21) corresponds to the homogeneous cases when
∫
π(x∗, x)dx∗ = 1, and the above

method can easily be adapted. For the inhomogeneous case, see Section 4.

3.2 Kinetic scattering

We next consider some kinetic scattering models, that means we work in the phase space. We consider
some finite measure µ on Rd, some application V : Rd 7→ Rd such that, for all h ∈ Rd,

v 7→ V = Φ(v, h) is invertible and DvΦ(v, h) is an invertible matrix, (25)

and the kinetic scattering equation

∂tf(x, v, t) + v.∇xf =

∫
[f(x,Φ(v, h), t) det(DvΦ(v, h))− f(x, v, t)]dµ(h) (26)

completed with an initial data f0(x, v) ≥ 0 with
∫
f0dxdv = 1.

Theorem 9 Assume (25). Set K = µ(Rd) and suppose that for some L ∈ R+, for all v, w ∈ Rd,∫
|Φ−1(V, h)− Φ−1(W,h)|dµ(h) ≤ KL|V −W |. (27)

Suppose that K ≥ KL+ 1. Consider two probability densities f0
1 , f

0
2 on Rd × Rd and the correspond-

ing solutions f1, f2 to (21). It holds that for all t ≥ 0, (here T1 is associated to the cost function
%((x, v), (y, w)) = |x− y|+ |v − w|)

T1(f1(t), f2(t)) ≤ T1(f0
1 , f

0
2 ).

Proof. As usual, we consider any probability density F 0((x, v), (y, w)) on (Rd ×Rd)2 with marginals
f0

1 and f0
2 , and we consider F ((x, v), (y, w), t) starting from F 0 and solving

∂tF + v.∇xF + w.∇yF

=

∫ [
F ((x,Φ(v, h)), (y,Φ(w, h)), t) det(DvΦ(v, h)) det(DvΦ(w, h))− F ((x, v), (y, w), t)

]
dµ(h).

This function is clearly nonnegative and has the correct marginals. For example, with F1(x, v, t) =∫
F (x, y, v, w, t)dydw, we see that

∂tF1 + v.∇xF1 =

∫
[F1(x,Φ(v, h), t) det(DvΦ(v, h))− F1(x, v, t)]dµ(h)

because
∫
F ((x,Φ(v, h)), (y,Φ(w, h)), t) det(DvΦ(w, h))dydw = F1(x,Φ(v, h), t): use the substitution

V = Φ(w, h) (with h fixed). Since F1(0) = f1(0), we conclude that F1(t) = f1(t). Hence we conclude
that T1(f1(t), f2(t)) ≤

∫∫
(|x− y|+ |v − w|)F ((x, v), (y, w), t)dxdydvdw.
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Next, using the equation for F , we find with V = Φ(v, h) and W = Φ(w, h),

d

dt

∫∫
(|x− y|+ |v − w|)F (x, y, v, w, t)dxdydvdw

=

∫∫
x− y
|x− y|

· (v − w)F (x, y, v, w, t)dxdydvdw

−K
∫∫

(|x− y|+ |v − w|)F (x, y, v, w, t)dxdydvdw

+

∫∫∫ (
|x− y|+ |Φ−1(V, h)− Φ−1(W,h)|

)
F ((x, V ), (y,W ), t)dxdydV dWdµ(h)

≤ (1−K +KL)

∫∫
|v − w|F (x, y, v, w, t)dxdydvdw.

by (27). Since now K ≥ 1 +KL by assumption, we deduce that

T1(f1(t), f2(t)) ≤
∫∫

(|x− y|+ |v − w|)F 0((x, v), (y, w))dxdydvdw

and complete the proof as usual, minimizing in F 0. �

Remark 10 Fix a > 0. If using the transport cost with weight % = a|x − y| + |v − w|, the condition
K ≥ 1 +KL is replaced by the condition K > a+KL.

3.3 Fractional heat equation with variable coefficients

Informally, the fractional Laplacian is a variant of the integral equation treated in Subsection 3.1.
However there is a particular interest when the coefficients depend on space, an example we borrow
from [28, 22]. Consider the parabolic equation with derivatives of order α ∈ (0, 2)

∂tu(x, t) = Lα[u], x ∈ R, t ≥ 0,

L∗α[ϕ](x) :=

∫
[ϕ(x+ σ(x)h)− ϕ(x)− hσ(x)ϕ′(x)]

dh

|h|1+α
.

(28)

Theorem 11 Assume that α ∈ (1, 2) and that σ ∈ C1/α and consider two initial probability densities
u0

1 and u0
2 on R and the corresponding solutions u1 and u2 to (28). For all t ≥ 0,

Tα−1(u1(t), u2(t)) ≤ Tα−1(u0
1, u

0
2).

Proof. We consider an initial probability density v0 on R2 with marginals u0
1 and u0

2 and the solution
v to the problem (written in weak form): for all smooth ϕ : R2 7→ R,

d

dt

∫∫
ϕ(x, y)v(x, y, t)dxdydt (29)

=

∫∫
v(x, y, t)

∫ (
ϕ(x+ σ(x)h, y + σ(y)h)− ϕ(x, y)− h[σ(x)∂xϕ(x, y) + σ(y)∂yϕy(x, y)]

) dh

|h|1+α
dxdy

starting from v0. The solution is clearly nonnegative and one checks as usual that for each t ≥ 0,
the marginals of v(t) are u1(t) and u2(t): for example, we apply the above formula with ϕ depending
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only on x and deduce that v1(x, t) =
∫
v(x, y, t)dy solves the weak form of (28), whence v1 = u1 since

v1(0) = u1(0). Consequently, we have Tα−1(u1(t), u2(t)) ≤ (α − 1)−1
∫∫
|x− y|α−1v(x, y, t)dxdy, and,

using the same arguments as usual, it suffices to show that

d

dt

∫∫
|x− y|α−1v(x, y, t)dxdydt ≤ 0.

This follows from the fact that for all x, y ∈ R, setting u = σ(x)−σ(y)
x−y ,∫

R
[
|x+ σ(x)h− y − σ(y)h|α−1 − |x− y|α−1 − (α− 1)h[σ(x)− σ(y)]|x− y|α−3(x− y)

]
dh
|h|1+α

= |x− y|α−1
∫
R
[
|1 + hu|α−1 − 1− (α− 1)hu

]
dh
|h|1+α

= |x− y|α−1|u|α
∫
R
[
|1 + h|α−1 − 1− (α− 1)h

]
dh
|h|1+α = 0.

The proof of this last equality can be found in [22, Lemma 9-(ii)], case a+ = a− and β = α − 1.
Observe that

|x− y|α−1|u|α =
|σ(x)− σ(y)|α

|x− y|
≤ Cσ

so that (29) makes sense with ϕ(x, y) = |x− y|α, thanks to our regularity assumption on σ. �

Here again, as in Section 2.1, the main technical difficulty is to prove the well-posedness of (28), in
particular when σ may degenerate. This is useful to check that the solution v to the coupled equation
has the correct marginals.

4 Inhomogeneous integral equations

Our next purpose is to give an example on the way to take into account x-dependency in IPDE models,
for instance when considering a measure µ(x, h) in the scattering equation (21). We exemplify this
issue with a simple equation we borrow from [23]. Consider an interval I of R, a rate function d ≥ 0
defined on I and some probability density b on I. We consider the conservative equation

∂tu(x, t) + d(x)u = b(x)A(t), A(t) =

∫
I
d(x)u(x, t)dx (30)

starting from an initial probability density u0 on I. We notice at once that this equation makes sense
for probability measures u(dx, t) (for each t ≥ 0, u(dx, t) is a probability measure on I) in the following
weak sense: for all smooth ϕ : I 7→ R,

d

dt

∫
ϕ(x)u(dx, t) =

∫∫
[ϕ(z)− ϕ(x)]b(z)d(x)u(dx, t)dz. (31)

Theorem 12 Consider two probability densities u0
1, u

0
2 on Rd and the corresponding solutions u1, u2

to (31). Under one of the two conditions (a) or (b) below, for all t ≥ 0,

T%(u1(t), u2(t)) ≤ T%(u0
1, u

0
2).

(a) I = R+, d(0) = 0, d is increasing, b = δ0, and %(x, y) = |dp(x)− dp(y)| for some p ≥ 1.
(b) I = R+, d(x) = αxp+β for some α, β ≥ 0 and p ≥ 1, with %(x, y) = |xp− yp|, under the condition
that β ≥ α

∫∞
0 zpb(z)dz.

16



Other assumptions on I, b, d are possible: it suffices that %, b and d satisfy the dual inequality (33)
below, which corresponds to (19) for the heat equation with variable coefficients.

Proof. We consider some probability density v0 on I2 with marginals u0
1 and u0

2 and define the
probability measure v(dx, dy, t) as solving, for all smooth ϕ : I2 7→ R,

d

dt

∫∫
ϕ(x, y)v(dx, dy, t) =

∫∫∫ [
ϕ(z, z)− ϕ(x, y)]b(z) min(d(x), d(y))v(dx, dy, t)dz

+

∫∫∫ [
ϕ(z, y)− ϕ(x, y)]b(z)(d(x)− d(y))+v(dx, dy, t)dz

+

∫∫∫ [
ϕ(x, z)− ϕ(x, y)]b(z)(d(y)− d(x))+v(dx, dy, t)dz. (32)

It holds true that v(t) is a probability measure on I2 for each t ≥ 0, and that its marginals are u1(t)
and u2(t). For example, applying the coupling equation with ϕ depending only on x and using that

min(d(x), d(y)) + (d(x)− d(y))+ = d(x),

one verifies that
∫
y∈I v(dx, dy, t) solves (31), whence

∫
y∈I v(dx, dy, t) = u1(dx, t) by uniqueness. Hence

for any cost function % : I2 7→ R+, we have T%(u1(t), u2(t)) ≤
∫∫
%(x, y)v(dx, dy, t). Furthermore,

we easily compute, using that %(z, z) = 0 for all z ∈ I, that b is a probability density, and that
min(r, s) + (r − s)+ + (s− r)+ = max(r, s),

d

dt

∫∫
%(x, y)v(dx, dy, t) +

∫∫
%(x, y) max(d(x), d(y))v(dx, dy, t)

=

∫∫∫
%(z, y)b(z)

(
d(x)− d(y)

)
+
v(dx, dy, t)dz +

∫∫∫
%(x, z)b(z)

(
d(y)− d(x)

)
+
v(dx, dy, t)dz.

Therefore, using the same arguments as usual, the result will follows from the fact that for all x, y ∈ I,

%(x, y) max(d(x), d(y)) ≥
∫

[%(z, y)b(z)
(
d(x)− d(y)

)
+

+ %(x, z)b(z)
(
d(y)− d(x)

)
+
dz. (33)

(a) Assuming that I = R+, that d(0) = 0, that d is increasing, that ρ(x, y) = |d(x)−d(y)|p for some
p ≥ 1 and that b = δ0, we check that, when e.g. x ≥ y ≥ 0,

(dp(x)− dp(y))d(x) ≥ d(y)p(d(x)− d(y)),

which holds true since indeed, for any s ≥ t ≥ 0, (sp − tp)s ≥ tp(s− t) because p ≥ 1.

(b) Assume next that I = R+, d(x) = αxp + β for some α, β ≥ 0 and p ≥ 1 and that %(x, y) =
|xp − yp|. We have to verify that, for all x ≥ y ≥ 0,

(xp − yp)(αxp + β) ≥ (αxp − αyp)
∫ ∞

0
|zp − yp|b(z)dz.

Setting m =
∫∞

0 zpb(z)dz, it suffices to check that αxp + β ≥ α(m+ yp). This of course holds true if
β ≥ αm. �

Observe that the strong equation corresponding to the weak form (32) is nothing but

∂tv + max(d(x), d(y))v =b(x)δ(x− y)

∫
min(d(x′), d(y′)) v(dx′, dy′, t)

+ b(x)

∫ (
d(x′)− d(y)

)
+
v(dx′, y, t) + b(y)

∫ (
d(y′)− d(x)

)
+
v(x, dy′, t).
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5 Homogeneous Boltzmann equation

In his seminal paper [38], Tanaka observed, using a probabilistic approach based on nonlinear Poisson-
driven stochastic differential equations, that the homogeneous Boltzmann equation for Maxwell mole-
cules is non-expansive for the 2-transport cost. A deterministic proof was provided by Villani in
[41, Section 7.5.6] and was extended to inelastic collisions in [5]. A survey of results concerning
homogeneous kinetic equations can be found in [16]. The approach in [41, 5, 16] is to first derive a
contractivity result for the gain operator by coupling, and then to conclude via Duhamel’s principle.
Here we follow Tanaka’s original approach, or rather we show how to write down his main arguments
without introducing stochastic processes.

Let us also mention that [37] managed to study the corresponding dissipation in order to quantify
the convergence to equilibrium of the solutions and, even more interesting, to prove the convergence
to equilibrium of the Kac particle system, with a rate of convergence not depending on the number of
particles.

The homogeneous Boltzmann writes
∂tf(v, t) = Q(f) :=

∫
R3

∫
S2

[f(v′, t)f(v′∗, t)− f(v, t)f(v∗, t)]B(θ)dv∗dσ,

v′ = 1
2(v + v∗) + 1

2 |v − v∗|σ, v′∗ = 1
2(v + v∗)− 1

2 |v − v∗|σ,

cos(θ) = v−v∗
|v−v∗| ·

v′−v′∗
|v−v∗| .

(34)

The collision kernel B : (0, π) 7→ R+ is assumed to satisfy
∫ π

0 B(θ)dθ = 1. As is well-known, this
equation writes, in weak form, for all mapping ϕ : R3 7→ R,

d

dt

∫
R3

φ(v)f(v, t)dv =

∫
R3×R3

∫
S2

[
φ(v′) + φ(v′∗)− φ(v)− φ(v∗)

]
B(θ)f(v, t)f(v∗, t)dvdv∗dσ. (35)

Theorem 13 Consider two initial probability densities f0
1 , f

0
2 on R3 with a finite moment of order 2

and the corresponding solutions f1, f2 to (34). Then, for all t ≥ 0, one has

T2(f1(t), f2(t)) ≤ T2(f0
1 , f

0
2 ).

Proof. We fix a probability density F 0 on (R3)2 with marginals f0
1 and f0

2 and build a coupled
equation with the same principle as for scattering, that is the jump parameters are taken in common
to the two variables, in such a way that the post-collisional velocities are as close as possible. We
consider the solution F (v, w, t), starting from F 0, to the following coupling equation written in weak
form: for all mapping Ψ : R3 × R3 7→ R,

d

dt

∫∫
(R3)2

Ψ(v, w)F (v, w, t)dvdw =

∫∫
(R3×R3)2

∫ π

0

∫ 2π

0

[
Ψ(v′, w′) + Ψ(v′∗, w

′
∗)−Ψ(v∗, w∗)−Ψ(v, w)

]
B(θ)F (v, w, t)F (v∗, w∗, t)dvdwdv∗dw∗dθdϕ, (36)

where, for v, w, v∗, w∗ ∈ R3, θ ∈ (0, π) and ϕ ∈ (0, 2π), we have set

σ = cos(θ)
v − v∗
|v − v∗|

+sin(θ)[I cos(ϕ)+I1 sin(ϕ)] and ω = cos(θ)
w − w∗
|w − w∗|

+sin(θ)[I cos(ϕ)+I2 sin(ϕ)],
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where I = (v−v∗)∧(w−w∗)
|(v−v∗)∧(w−w∗)| , and I1, I2 are chosen so that ( v−v∗

|v−v∗| , I, I1) and ( w−w∗
|w−w∗| , I, I2) are two direct

orthonormal bases, and where

v′ =
1

2
(v + v∗) +

1

2
|v − v∗|σ, v′∗ =

1

2
(v + v∗)−

1

2
|v − v∗|σ,

w′ =
1

2
(w + w∗) +

1

2
|w − w∗|ω, w′∗ =

1

2
(w + w∗)−

1

2
|w − w∗|ω.

It is not difficult to show that (36) is well-posed in L∞loc([0,∞), L1(R3 × R3)) and that the solution
remains nonnegative for all times. Indeed, applying (36) with the test function Ψ(v, w) = −1I{F (v,w)<0},
using that [

− 1I{F (v′,w′)<0} − 1I{F (v′∗,w
′
∗)<0} + 1I{F (v,w)<0} + 1I{F (v∗,w∗)<0}

]
F (v, w)F (v∗, w∗)

≤4
[
F−(v, w)|F (v∗, w∗)|+ |F (v, w)|F−(v∗, w∗)

]
and that

∫ π
0 B(θ)dθ = 1, we conclude that

d

dt

∫∫
(R3)2

F−(v, w, t)dvdw ≤ 8

∫∫
(R3)2

F−(v, w, t)dvdw ×
∫∫

(R3)2
|F (v, w, t)|dvdw,

whence the conclusion by the Gronwall lemma.

Also, it holds that
∫
R3 F (v, w, t)dw = f1(v, t) and

∫
R3 F (v, w, t)dv = f2(w, t). For example con-

cerning f1, we apply the weak coupling equation to some Ψ depending only on v and we show that∫
R3 F (v, w, t)dw solves (35). This follows from the fact that, when fixing (v, w) and (v∗, w∗), the ex-

pression between brackets in (36) only depends on σ, so that for any function H : S2 7→ R, we may
write ∫

S2
H(σ)B(θ)dσ =

∫ π

0

∫ 2π

0
H
(

cos(θ)
v − v∗
|v − v∗|

+ sin(θ)[I cos(ϕ) + I1 sin(ϕ)]
)
B(θ)dϕdθ.

We conclude that∫∫
(R3×R3)2

∫ π

0

∫ 2π

0

[
Ψ(v′) + Ψ(v′∗)

]
B(θ)F (v, w, t)F (v∗, w∗, t)dvdwdv∗dw∗dθdϕ

=

∫∫
(R3×R3)2

∫
S2

[
Ψ(v′) + Ψ(v′∗)

]
B(θ)F (v, w, t)F (v∗, w∗, t)dvdwdv∗dw∗dσ

=

∫∫
(R3×R3)2

∫
S2

[
Ψ(v′) + Ψ(v′∗)

]
B(θ)f1(v, t)f1(v∗, t)dvdv∗dσ.

Consequently, it holds that T2(f1(t), f2(t)) ≤
∫∫
|v − w|2F (v, w, t)dvdw =: h(t), and it suffices, as

usual, to show that h′(t) ≤ 0. For this, it suffices to verify that for all fixed v, w, v∗, w∗ ∈ R3, all
θ ∈ (0, π),

∆ =

∫ 2π

0
[|v′ − w′|2 + |v′∗ − w′∗|2 − |v − w|2 − |v∗ − w∗|2]dϕ ≤ 0.

A simple computation, using that
∫ 2π

0 σdϕ =
∫ 2π

0 ωdϕ = 0, shows that

∆ =

∫ 2π

0
[(v − w) · (v∗ − w∗)− |v − v∗||w − w∗|σ · ω]dϕ

=

∫ 2π

0
[(1− cos2 θ − sin2 θ sin2 ϕ)(v − w) · (v∗ − w∗)− sin2 θ cos2 ϕ|v − v∗||w − w∗|]dϕ.
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We used that |v − v∗||w − w∗|I1 · I2 = (v − w) · (v∗ − w∗). All in all, we arrive at

∆ = [(v − w) · (v∗ − w∗)− |v − v∗||w − w∗|] sin2 θ

∫ 2π

0
cos2 ϕdϕ,

and the proof is complete. �

6 Porous media equation

We now consider the generalized porous media equation written, with A : R+ 7→ R of class C2, as

∂tu− div(u∇[A′(u)]) = 0, x ∈ Rd, t ≥ 0. (37)

Using a gradient flow approach taking advantage of displacement convexity, as introduced in [33], it
was discovered by Otto [34], see also [14, 35, 18], that this equation is non-expansive for T2, under a
few conditions on A, including convexity. The method was improved by Bolley and Carrillo [6] who
make the contraction property an equivalence to displacement convexity for the energy functional.
The coupling method, as defined in the introduction and used in the whole present paper, does not
seem to apply directly. However, using Brenier’s map, the argument in [6] can somehow be presented
in relation with a coupling. We present this argument, staying at an informal level.

Theorem 14 ([34, 6]) Consider some C2 function A : R+ 7→ R such that B(r) =
∫ r

0 wA
′′(w)dw ≥ 0

for all r ≥ 0 and such that r 7→ r1/d−1B(r) is non-decreasing. Consider two probability densities u0
1, u

0
2

on Rd and the corresponding solutions u1, u2 to (37). Then for all t ≥ 0, one has

T2(u1(t), u2(t)) ≤ T2(u0
1, u

0
2).

This applies to the porous media equation, i.e. with A(u) = m−1um, as soon as m ≥ 1. The
justification of the computation requires at least that

∫
Rd B(u1(x, t)) <∞. See [34, 6] for the rigorous

proof, which uses that general weak solutions of the porous media equation can be approximated by
smooth and positive solutions of suitably regularized nonlinear diffusion equations.

Proof. We consider Brenier’s map [10] for u0
1 and u0

2, i.e. a convex function Φ : Rd 7→ R such that
T2(u0

1, u
0
2) = 1

2

∫
Rd |x−∇Φ(x)|2u0

1(x)dx and ∇Φ#u0
1 = u0

2. We next consider the probability measure
v(dx, dy, t) (for each t ≥ 0, v(t) ∈ P((Rd)2)) solving the coupling equation

∂v

∂t
= divx

(
v∇xA′(u1(x, t)

)
+ divy

(
v∇yA′(u2(y, t)

)
and starting from v0 ∈ K(u0

1, u
0
2) defined by the formula v0(A) =

∫
Rd 1{(x,∇Φ(x))∈A}u

0
1(x)dx for all

Borel set A ⊂ Rd, in short notation v0(x, y) = u0
1(x)δ∇Φ(x)(y). Because of this specific initial data,

the equation on v will not provide a global coupling as in the equations treated so far. Again, we only
use the weak form, for all smooth ϕ : Rd × Rd 7→ R,

d

dt

∫∫
ϕ(x, y)v(dx, dy, t) = −

∫∫ [
∇xϕ(x, y)·∇x[A′(u1(x, t))]+∇yϕ(x, y)·∇y[A′(u2(y, t))]

]
v(dx, dy, t).

One easily verifies, as usual, that for each t ≥ 0, v(t) has u1(t) and u2(t) for marginals: for example,
applying the weak equation of v to some ϕ depending only on x shows that

∫
y∈Rd v(dx, dy, t) is a
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(weak) solution to (37) and since it starts from u0
1, we conclude by uniqueness. As a conclusion, for

all t ≥ 0, T2(u1(t), u2(t)) ≤ I(t), where I(t) = 1
2

∫∫
|x− y|2v(dx, dy, t). Next, following [6], we observe

that

I ′(t) = −
∫∫ (

∇x[A′(u1(x, t))]−∇y[A′(u2(y, t))]
)
· (x− y)v(dx, dy, t) = D1(t) +D2(t),

where

D1(t)=−
∫∫
∇x[A′(u1(x, t))]·(x−y)v(dx, dy, t) and D2(t)=−

∫∫
∇y[A′(u2(y, t))]·(y−x)v(dx, dy, t).

In particular, by definition of v0,

D1(0) = −
∫
∇x[A′(u0

1(x))] · (x−∇Φ(x))u0
1(x)dx = −

∫
∇x[B(u0

1(x))] · (x−∇Φ(x))dx,

where we recall that B(r) =
∫ r

0 wA
′′(w)dw. Integrating by parts, we thus find

D1(0) =

∫
B(u0

1(x))[d−∆Φ(x)]dx ≤ d
∫
B(u0

1(x))[1− (det(D2Φ(x)))1/d]dx.

This uses that for any convex function Φ : Rd 7→ R, we have d−1∆Φ(x) ≥ [det(D2Φ(x))]1/d. But since
∇Φ#u0

1 = u0
2, we have, for any ϕ : Rd 7→ R,∫
ϕ(x)u0

1(x)dx =

∫
ϕ((∇Φ)−1(y))u0

2(y)dy =

∫
ϕ(x)u2(∇Φ(x)) detD2Φ(x)dx,

so that detD2Φ(x) = u0
1(x)/u2(∇Φ(x)) (see [25] for an account on this Monge-Ampère equation). All

in all, we have checked that

D1(0) ≤ d
∫
B(u0

1(x))
[
1−

( u0
1(x)

u0
2(∇Φ(x))

)1/d]
dx.

Proceeding similarly, we see that

D2(0) ≤ d
∫
B(u0

2(y))
[
1−

( u0
2(y)

u0
1((∇Φ)−1(y))

)1/d]
dy.

Performing the substitution x = (∇Φ)−1(y), we end with

D2(0) ≤ d
∫
B(u0

2(∇Φ(x)))
[
1−

(u0
2(∇Φ(x))

u0
1(x)

)1/d] u0
1(x)

u0
2(∇Φ(x))

dx.

We thus find, with the notation y = ∇Φ(x)

I ′(0)

d
≤

∫ [
B(u0

1(x))
(

1−
(u0

1(x)

v2(y)

)1/d)
+B(u0

2(y))
(

1−
(u0

2(y)

u0
1(x)

)1/d)u0
1(x)

u0
2(y)

]
dx

=

∫
u0

1(x)
[B(u0

1(x))

u0
1(x)

(
1−

(u0
1(x)

u0
2(y)

)1/d)
+
B(u0

2(y))

u0
2(y)

(
1−

(u0
2(y)

u0
1(x)

)1/d)]
dx

=

∫
u0

1(x)
[B(u0

1(x))

u0
1(x)

[u0
1(x)]1/d − B(u0

2(y))

u0
2(y)

[u0
2(y)]1/d

](
[u0

1(x)]−1/d − [u0
2(y)]−1/d

)
dx.
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Since r 7→ r1/d−1B(r) is non-decreasing by assumption, we conclude that I ′(0) ≤ 0.

The above considerations hold true at any time, and not only at t = 0. In other words, for all
t ≥ 0, we can find a function It : [t,∞) 7→ R such that It(t) = T2(u1(t), u2(t)), I ′t(t) ≤ 0 and
T2(u1(s), u2(s)) ≤ It(s) for all 0 ≤ t ≤ s.One immediately concludes that for all t ≥ 0,

lim sup
h↓0

T2(u1(t+ h), u2(t+ h))− T2(u1(t), u2(t))

h
≤ I ′t(t) ≤ 0,

so that t 7→ T2(u1(t), u2(t)) is non-increasing. �

7 An approach by duality

In order to complete the presentation, we quickly mention another possible and original approach,
based on duality. We consider the simplest model, i.e. the heat equation in dimension 1, but all
the models treated in the present paper, except the porous media equation, may be treated similarly,
with more complicated discretization procedures and more involved computations. See also Villani
[40, pages 41-43] for a similar approach concerning the Vlasov equation, in the case of the Monge-
Kantorovich distance T1, of which the dual expression is particularly simple.

Proof of Theorem 1 when d = 1 for ρ(x, y) = |x − y|p with p ≥ 1. We consider two solutions
u1, u2 to (2), starting from probability measures u0

1, u
0
2 with finite p-moment. For h > 0, we consider

the solutions u1,h, u2,h, starting from u0
1, u

0
2, to the discrete heat equation

∂tu(x, t)− 1

h2
[u(x+ h, t) + u(x− h, t)− 2u(x, t)] = 0.

It can be written in weak form

d

dt

∫
Rd
ϕ(x)u(x, t)dx =

∫
Rd

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x)

h2
u(x, t)dx.

It is standard that u1,h → u1 and u2,h → u2 as h→ 0 (in the weak topology of measures for instance).
We will verify that for each h > 0, it holds that Tp(u1,h(t), u2,h(t)) ≤ Tp(u0

1, u
0
2), for any p ≥ 1, and

this will complete the proof.

We fix p ≥ 1 and introduce the set Qp of pairs (ϕ,ψ) of functions from Rd to R such that for all
x, y ∈ Rd, ϕ(x) + ψ(y) ≤ |x− y|p. For any pair of probability densities f, g on Rd, the transport cost
can also be expressed by duality, see [42], as

Tp(f, g) =
1

p
sup

(ϕ,ψ)∈Qp

[ ∫
ϕ(x)f(x)dx+

∫
ψ(y)g(y)dy

]
.

For (ϕ,ψ) ∈ Qp, we set ∆ϕ,ψ(t) =
∫
ϕ(x)u1,h(x, t)dx+

∫
ψ(y)u2,h(y, t)dy. Using that (ϕ(·+h), ψ(·+h))

and (ϕ(· − h), ψ(· − h)) both belong to Qp, we find

d

dt
∆ϕ,ψ(t) ≤ −2h−2∆ϕ,ψ(t) + 2ph−2Tp(u1,h(t), u2,h(t)).

This implies that

e2h−2t∆ϕ,ψ(t) ≤ ∆ϕ,ψ(0) + 2ph−2

∫ t

0
e2h−2sTp(u1,h(s), u2,h(s))ds

≤ pTp(u0
1, u

0
2) + 2ph−2

∫ t

0
e2h−2sTp(u1,h(s), u2,h(s))ds.
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Taking the supremum over all pairs (ϕ,ψ) in Qp and dividing by p, we conclude that

e2h−2tTp(u1,h(t), u2,h(t)) ≤ Tp(u0
1, u

0
2) + 2h−2

∫ t

0
e2h−2sTp(u1,h(s), u2,h(s))ds.

By the Gronwall lemma, we conclude that e2h−2tTp(u1,h(t), u2,h(t)) ≤ e2h−2tTp(u0
1, u

0
2) as desired. �

Unfortunately, we are not able to use a similar procedure directly on the (non discretized) heat
equation.
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[23] N. Fournier and E. Löcherbach, On a toy model of interacting neurons, Ann. Inst. Henri
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