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Thermally limited force microscopy on optically trapped single metallic nanoparticles

Gabriel Schnoering, Yoseline Rosales-Cabara, Hugo Wendehenne,∗ and Cyriaque Genet†
ISIS & icFRC, University of Strasbourg and CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France.

Antoine Canaguier-Durand
LKB, UPMC, ENS, and CNRS, Paris, France.

We propose and evaluate a new type of optical force microscope based on a standing wave optical trap.
Our microscope, calibrated in-situ and operating in a dynamic mode, is able to trap, without heating, a single
metallic nanoparticle of 150 nm that acts as a highly sensitive probe for external radiation pressure. An Allan
deviation-based stability analysis of the setup yields an optimal 0.1 Hz measurement bandwidth over which
the microscope is thermally limited. Over this bandwidth, and with a genuine sine-wave external drive, we
demonstrate an optical force resolution down to 3 fN in water at room temperature with a dynamical range for
force detection that covers almost 2 orders of magnitude. This resolution is reached both in the confined and
freely diffusing regimes of the optical trap. In the latter, we measure 10−11 m induced displacements on the
trapped nanoparticle, spatially confined within less than 25 nm along the optical axis.

INTRODUCTION

Optical traps have now become central experimental tools
for measuring forces at the nanoscale with outstanding posi-
tional and force resolutions. Because of their small sizes, opti-
cally trapped objects have enabled thermally limited sensitiv-
ity, in particular in liquids [1–4]. These remarkable features
have been exploited in a vast variety of contexts, ranging from
biology [5], non-equilibrium physics [6], to optomechanics
[7]. Recent work have demonstrated how non-conservative
optical force fields can be measured and spatially resolved us-
ing optically trapped dielectric particles, leading to study non-
trivial Brownian type of motions [8, 9]. In this context, using
metallic nanoparticles (NPs) would offer new opportunities
considering all the specific modes of actuation and control that
could be implemented on metallic nano-objects through their
high extinction cross sections [10–15]. But it remains difficult
to reach 3D stable optical trapping of large metallic NPs (i.e.
radii larger than 50 nm) in fluids in standard laser intensity
conditions [16–18]. This difficulty remains to date a strong
limitation despite the potential offered by metallic NPs, in par-
ticular in the context of biophysics [19], nanosensing [20] and
spectroscopy [21].

In this paper, we propose a new setup where stable trap-
ping conditions for single large Au NPs can be reached at low
laser power. In addition, our setup offers, by construction, the
possibility to inject an additional laser that can exert, in a per-
fectly controllable way, radiation pressure on the trapped NP,
along the optical axis and independently from the restoring
force at play inside the trap. Importantly, all this is achieved
with negligible heating, as carefully discussed below.

In order to qualify our setup as a force microscope, impor-
tant features are implemented. The additional pushing laser
is injected inside the trap in such a way as to generate an op-
tical force field as uniform as possible. Having the strength
of the external force exerted on the NP constant throughout
the diffusion volume of the NP inside the trap is a central fea-
ture of our scheme that stands out from force measurements

performed using total internal reflection microscopes. It in-
deed allows operating our setup in a dynamical mode (DM)
where the pushing laser, harmonically driven at a fixed fre-
quency, leads to a modulated force signal independent from
the instantaneous position of the NP inside the trap. As well
known in such conditions, the DM operation is particularly
appealing from a calibration point of view since it does not
request any static force calibration procedure [22–26]. In our
experiments, the external force is directly measured on the
power spectrum density (PSD) of the motion of the trapped
NP at the modulation frequency. Operating with a uniform
force field, one simply demands a positional calibration of the
optical trap, obtained from the fluctuation-dissipation theorem
[27]. This straightforward approach is clearly an advantage of
our method, considering that a static force calibration is, in
general, challenging to perform within the limits of stability
of the setup.

Discussing such limits is important since they play a cru-
cial role in the determination of the force resolution level [28–
31]. They indeed yield the optimal (maximal) time τopt over
which a measurement remains thermally limited. In our work,
these limits are properly identified through a global stability
analysis of the setup. The acquisition of the positional PSD
of the trapped NP over τopt thus directly leads to determin-
ing the smallest external force Fopt measurable on our setup.
Shorter than the duration over which the NP can remained
trapped, τopt warns against the appealing, but misleading pos-
sibility to improve resolution by reducing the spectral noise
density through an average of independent sequences of mea-
surements extracted from acquisition time series longer that
τopt. In fact, at the level of a single measurement performed
over τopt, the signal associated with the external drive is super-
imposed to contributions coming not only from thermal fluc-
tuations but also from other (uncharacterized) noise sources.
As detailed below, the stability analysis sets for our exper-
iments a resolution criterium at twice the thermal limit that
leads us to demonstrate an external optical force resolution of
3 fN in water at room temperature within a τopt = 10 s mea-
surement time.
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STANDING WAVE OPTICAL TRAP

FIG. 1. Schematics of the experimental setup. Gold nanospheres
(BBI) are trapped by a near IR laser (785 nm, 45 mW Excelsior-
Spectra Physics laser diode, optically isolated) with a power of 24.5
mW at the entrance of a water immersion objective (NA 1.2, 100×).
A standing wave optical trap is formed by reflecting the laser beam
on a dichroic mirror (cut-off at 700 nm). The reflected intensity
I(t) varies linearly with the nanosphere displacement z(t) inside the
trap and is collected and recorded by a PIN photodiode (Thorlabs
det10A). A second beam (639 nm, 70 mW Thorlabs laser diode) of
low power (400 µW) is injected inside the trap colinearly with the
trapping beam but from behind the dichroic mirror using a dry ob-
jective (NA 0.7, 60×). This second beam is not expanded and does
not fill the entrance pupil of the objective. It is hence only weakly
focused in front of the trapped bead and can be used to push the bead
along the optical axis, minimizing any gradient force effect. To avoid
any intensity signature of the modulated signal on the PIN photodi-
ode, a high-pass filter (HPF) at 650 nm is added.

Our optical trap configuration, schematized in Fig. 1, con-
sists in focusing a trapping laser at λT = 785 nm into a
120 µm fluidic cell, entering with a mean intensity of 24.5 mW
through a water immersion objective on top of an end-mirror.
The beam largely overfills the objective pupil and its power is
estimated to be of∼10 mW at the waist. This mirror is highly
reflecting at λT and therefore induces a standing wave pattern
inside the cell. In such a counter-propagating beam config-
uration, the incident and reflected scattering forces acting on
the NP practically compensate each other, and can therefore
be easily overcome by the gradient force induced by the fo-
cusing effect of the objective [32]. This configuration yields
a balance of forces appropriate for trapping metallic NPs of
radii larger than 50 nm, an interesting asset when aiming at
measuring radiation pressure forces. Such a capacity is not
found on conventional single beam traps where the scattering
forces tend to push away from the waist such large metallic
NPs. We have indeed checked experimentally that replacing
the end-mirror by a glass slide does not allow trapping the Au
NPs. This is in agreement with calculations that cannot find
any stable position for such an Au NP within a propagating
Gaussian beam determined from our experimental conditions
of wavelength and numerical aperture [33].

We monitor the instantaneous position z(t) of the NP by
recording the trapping laser light scattered by the NP in the
forward direction and reflected back towards the PIN detector
-see Fig. 1. In the Fourier domain, the motional dynamics

of the NP is described by its power spectral density (PSD)
Sz[ f ] = 2|z[ f ]|2 [34]. In the low Reynolds number conditions
of our experiments, the overdamped displacement of the NP
along the optical axis of the trap obeys the spectral Langevin
equation z[ f ] = χ[ f ]Fth[ f ] where χ[ f ] is the mechanical sus-
ceptibility of the NP inside the trap and Fth[ f ] the Langevin
force responsible for the Brownian motion of the NP. Assum-
ing that the response of the trapped bead is harmonic, the sus-
ceptibility

χ[ f ] =
1

κT − i2πγ f
(1)

is Lorentzian with γ = 6πηR the Stokes drag and η ∼ 10−3

Pa· s−1 the dynamical viscosity of water at room temperature.
The stiffness of the harmonic trap κT = 2πγ fT is character-
ized by a roll-off frequency fT .

At thermal equilibrium, the (one sided) Langevin force
spectral density is given by the fluctuation-dissipation theo-
rem (FDT) with Sth[ f ] = 4kBT γ . The bead dynamics is en-
tirely driven by thermal fluctuations which have a broad Gaus-
sian white noise spectrum. The PSD

Sz[ f ] =
D

π2
(

f 2 + f 2
T

) (2)

thus spectrally describes the motional response of the trapped
NP under the action of thermal forces with a diffusion coeffi-
cient D = kBT/γ .

The PSD Sz[ f ] is determined after calibration of the inten-
sity PSD SI [ f ] against the known properties of the fluid and
assuming that the recorded intensity I(t) is linear with the dis-
placement z(t) of the NP. This assumption holds in our experi-
ment because the bead displacements in the trap are small and
the measured PSD follows the Lorentzian fit that uses a linear
restoring force.

The calibration factor is given by fitting the experimen-
tal PSD by the Lorentzian model of Eq. (2). The fit uses
only points above 10 Hz where it is reasonable to assume
that all the displacement contributions (aside from the exter-
nal force peak) originate from thermal fluctuations. This pro-
vides best-fitted values for D and fT and from the diffusion
coefficient DFDT = kBT/γ calculated from the FDT (assum-
ing known temperature and viscosity), the calibration factor is
simply β = DFDT/D and the calibrated PSD Sz[ f ] = β 2SI [ f ].
For the one-sided PSD on Fig. 2, we extract a best-fitted
roll-off frequency fT = 8 kHz and a calibration factor β =
1.2×10−7 m ·V−1.

Because the trap stiffness κT , directly proportional to the
field intensity, depends on the viscosity η(T ), it is clear that
a wrong estimation of the fluid temperature can impact the
calibration of the setup and the force measurements. Optical
powers at the waists of tightly focused light beams can reach
significant levels (of the order of MW/cm2), and metallic ob-
jects are subject to strong elevations of temperature, around
1500 K/W for Au NPs of 150 nm at λT (see Supplemental
Material, Sec. C). This would correspond for our experiments
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FIG. 2. One experimental (one-sided) PSD acquired over τopt = 10
s at 1 MHz is shown in the main panel, with a roll-off frequency
fT = 8 kHz. The corresponding Lorentzian fit is shown in black. The
external drive amplitude, with a modulation ratio of 0.3, has a strong
spectral signature around f0 = 43333 Hz. The height of the peak is
large and well-above the PSD variance. The spectral height of this
contribution leads to a measure of the force via the trap calibration.
The Allan standard deviation σz(τ) of a trapped gold nanosphere
without external drive is shown in the inset. For time delays smaller
than 0.1 s, σz(τ) shows a −1/2 slope. This, on a PSD, is a white
noise and corresponds to the plateau at low frequencies where the
bead is trapped. For small frequencies (i.e. long time delays) a slight
departure from the thermally driven dynamics of the bead appears.
At 10 s, it varies usually between 1.2 and 2 depending on the trapped
Au NP and its distance to the end-mirror.

to an increase in temperature of ca. 40 K which gives, for wa-
ter, a change in viscosity by a factor two. In order to check,
and if necessary, estimate such unwanted heat contributions,
we varied the trapping beam intensity for different Au NPs
stably trapped, and at different mirror-waist distances. As dis-
cussed in detail in Supplemental Material, Sec. C, no devia-
tions to linearity for trap stiffnesses as a function of the laser
power were observed, suggesting a constant surrounding vis-
cosity for all trapping laser intensities. Importantly therefore,
heating of the trapped Au NP in our system, if present, has
a negligible impact in calibrating the setup and measuring an
external force.

TEST OF GLOBAL STABILITY: ALLAN DEVIATION
ANALYSIS

As we emphasized in the Introduction, the limited stability
of the entire experimental setup in standard conditions puts
an upper bound on the available measurement time. This is
particularly true for our configuration where the interferomet-
ric nature of our trap makes it very sensitive to all external
perturbations such as flow drift and evaporation inside the flu-
idic cell, vibrations, etc. Despite the fact that a single Au NP
can be kept in the trap over minutes, the low frequency drift

of our optofluidic system impacts the overall trapping dynam-
ics. As a result of this uncontrolled drift, it is not possible to
average a large number of measurements repeated throughout
long acquisition times in order to improve the experimental
sensitivity. This would misestimate the roll-off frequency.

In this context, it is important to determine the optimal
data acquisition time τopt beyond which the various sources of
noise have drifted the entire setup out of the thermodynamic
response given by Eq. (2) [28, 35]. To do so, we evaluate the
Allan deviation σz(τ) for various NPs trapped for 1 minute at
different mirror-waist distances. A typical σz(τ) is shown in
Fig. 2 (inset). The Allan deviation measures the standard de-
viation of the bead motion after it has been averaged for a time
τ . This analysis clearly reveals low frequency noise sources
for acquisition times longer than 100 ms. Nevertheless, their
contribution remains limited up to 10 s. For all the NPs mea-
sured, differences between σz(τ) and the thermal limit at 10 s
remained within 1.2 and 2 ratios. This gives an optimal time
τopt ∼ 10 s where noise sources remain limited throughout all
measurements. The maximal deviation from the thermal limit,
a factor 2 after 10 s, also fixes a strong criterion for the mini-
mum resolvable external force, as discussed further down. All
our measurements, like the PSD displayed in Fig. 2, have been
performed over τopt ∼ 10 s, corresponding to an experimental
bandwidth ∆ fopt = 0.1 Hz.

Under such conditions of optimal bandwidth, the spatial
confinement offered by the optical trap at thermal equilibrium
is set by the equipartition result δ z =

√
kBT/κT . With the

values extracted from the fit of the PSD in Fig. 2, we eval-
uate δ z = 24 nm. Considering that the trapping position is
typically located at a few (ca. 2−3) microns from the mirror
surface, such a low δ z value leads to neglect any z-dependent
surface-induced correction to η that can safely be taken as its
bulk value of ∼ 10−3 Pa· s−1. Reminding that a fixed value
for the viscosity is a necessary condition for the calibration
procedure presented above, one understands that this δ z value
is an important parameter to determine.

THE FORCE MICROSCOPE

Our force microscope, schematized on Fig. 1, consists in
illuminating an Au NP optically trapped (in the standing wave
of the trapping laser) with a second pushing laser that exerts
an optical force on the NP. The wavelength λP of the push-
ing laser is set from a Mie calculation that gives at 640 nm a
maximum in the extinction coefficient of an Au NP of radius
R = 75 nm illuminated by a plane wave. This allows for large
radiation pressure effects with low laser intensities (a mean
intensity of 400 µW at the entrance of the objective).

It is absolutely crucial that the pushing laser acts on the
NP independently from the restoring force at play inside the
trap. To this aim, we use a dichroic end-mirror that reflects the
trapping laser at λT = 785 nm, while transmitting the pushing
laser at λP = 639 nm. The pushing laser comes from behind
the mirror colinearly with respect to the optical axis of the
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trapping laser. It underfills a dry microscope objective (NA
0.7, 60×) in such a way that, transmitted through the dichroic
mirror, it is only slightly focused behind the trapped bead.
Both gradient and scattering forces are at play, but we have
carefully checked that the pushing laser never traps the NP
and never perturbs the trap dynamics. We have confirmed nu-
merically that at such wavelength λP and using such NA, the
pushing laser was not able to trap an Au NP of radius R = 75
nm.

In the DM operation of the optical trap, the pushing laser
power is sinusoidally modulated at a frequency f0 around a
mean value with PP = 〈P〉t +Pmod cos(2π f0t). A high-pass
filter above λP eliminates any contamination on the scattered
λT signal by the modulation of the pushing laser. The over-
damped dynamics of the optically trapped NP is therefore
simply determined by a static (DC) force component FDC -
proportional to 〈P〉2t - and a modulated (AC) force component
FAC -proportional to P2

mod- both added to the thermal Langevin
force, as discussed in Supplementary Material, Sec. D. This
yields a spectral displacement

z[ f ] = χ[ f ] ·
(
Fth[ f ]+FDCδ [0]+

FAC

2
(δ [ f − f0]+δ [ f + f0])

)
(3)

from which the contribution of the radiation pressure can be
measured at the drive frequency. Experimentally, the output
signal from the PIN photodiode that records z(t) is sent into
a low noise pre-amplifier. A high-pass filter with cut-off fre-
quency at 0.03 Hz removes from the signal the DC component
of the force, which can then span the whole vertical resolution
of the acquisition card with the bead dynamics that includes
the AC force modulation. The measured signal is thereby not
electronically limited.

The pushing laser is injected in such a way that the exter-
nal force field induced by the pushing laser on the NP can
be considered uniform throughout the volume of the optical
trap. Forces exerted on the trapped NP hence are not mod-
ulated by its Brownian diffusion. This central features gives
Eq. (3) its simple structure with the external force compo-
nents (FDC,FAC) independent from z(t). Position-dependent
external forces, such as found with evanescent waves involved
in total internal reflection microscopy, would complicate the
whole experiment. Eq. (3) also implies that the pushing
laser induces no additional heating effect. We have carefully
checked that this is the case, with no change in the trap stiff-
ness observed with the external force on (see details in Sup-
plementary Material, Sec. C).

FORCE MEASUREMENT, RESOLUTION, AND
SENSITIVITY

Under such sinusoidal modulation of the pushing laser, the
spectral signature of the AC force component FAC is a single
resonant peak centered at the modulation frequency f0 of the
pushing laser. It is directly superimposed on the (one-sided)

FIG. 3. a) Optical forces measured at the modulation frequency
f0 = 43333 Hz as a function of the ratio between the modulation
of the pushing beam amplitude IMod set by the function generator
and the static pressure contribution IStatic. The force is measured ei-
ther by the intensity peak on the PSD (pink crosses) or with a lock-in
amplifier (blue circles, see Supplementary Material, Sec. A for de-
tails). The force, as expected, varies linearly (blue shade) with the
pushing laser modulation intensity. Significant external forces down
to ∼ 3 fN are measured using both the lock-in amplifier and the PSD
with the relevant spectral bins populated by the external force and
distributed over ∆ fAC. Note that the force resolution is independent
from the static DC radiation pressure component FDC. The smallest
force measured Fmin

AC turns out to be almost 50 times smaller than
FDC determined to be ca. 160 fN from the slope of the force vs.
modulation ratio. b) Evolution of the smallest measured force using
both PSDs and lock-in measurements at different drive frequencies
f0 (going from ∼1 kHz to ∼100 kHz). The smallest measured force
stays constant at ca. 3 fN throughout the whole drive frequency range
(two full orders of magnitudes) with both methods. Dark and light
shaded areas represent 1 or 2 thermal forces Fth respectively at the
chosen bandwidth (0.1 Hz).

PSD Sd
z [ f ] of the driven trapped bead as

Sd
z [ f ] =

1(
f 2 + f 2

T

) ( D
π2 +

F2
AC

8π2γ2 δ ( f − f0)

)
. (4)

In a first series of experiments, we exert optical forces on
the NP with a sufficiently strong Pmod modulation so that
the peak associated with FAC clearly emerges above the PSD
noise level. Because of the electronics, the spectral density
of the peak is in fact distributed over a finite frequency range
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∆ fAC which is smaller than 0.4 Hz. The peak intensity I =∑i Ii
is therefore determined by adding all the spectral contribu-
tions Ii spread from both sides of f0 over ∆ fAC and from which
the thermal contribution Sz[ f ] (see Eq. (2)) is subtracted. This
provides an estimation of the force sensitivity (in N/

√
Hz),

given by
√

8π2γ2I
(

f 2
0 + f 2

T

)
according to Eq. (4).

Taking the minimal measurable peak spectral density Imin
as one standard deviation σz[ f ] of the PSD, the sensitivity of
the optical force microscope is expected to be thermally lim-

ited at
√

8π2γ2σz[ f ]
(

f 2
0 + f 2

T

)
which equals 2

√
2kBT γ , using

the property that for a continuous response driven by a Gaus-
sian white noise, the standard deviation of the power spectral
density equals its value (σz[ f ] = Sz[ f ]) [27]. With a Gaussian
white noise, therefore, the thermal force sensitivity is only de-
pending on the fluid properties and the radius of the NP via
the Stokes drag, just like for AFM, where reducing dissipa-
tion sources is a key target in order to improve resolution lev-
els [36]. In this respect, the possibility for trapping Au NP
of radius R = 75 nm is a good compromise between the

√
R

dependence of the Stokes drag contribution important to re-
duce as much as possible in order to improve on the thermally
limited force sensitivity, and the R3 dependence of the absorp-
tion cross-section that determines the strength of the radiation
pressure.

In practice, starting with large FAC values, one first mea-
sures over the optimal bandwidth ∆ fopt the AC force signal
at f0 through a high peak spectral intensity I � σz[ f ]. Fig.
3 (a) gathers such force measurements obtained, with single
trapped Au NP, for relatively large optical modulation ratio.
We stress that all f0 peak spectral intensities Sd

z [ f ] have been
measured on a PSD (or a lock-in amplifier, as discussed in
Supplementary Material, Sec. A) acquired with a bandwidth
of ∆ fopt, hence at similar noise levels as the one of the PSD
shown in Fig. 2.

Reducing the optical modulation ratio, one faces the rel-
ative increase of unavoidable noise (thermal, external, vibra-
tions, etc) with respect to the force signal. This noise contribu-
tion is analyzed through the Allan deviation analysis. After 10
s, this deviation (seen in the inset of Fig. 2) reaches, at worst,
twice the thermal contribution. This sets the optimal experi-
mental sensitivity to 2× (2

√
2kBT γ) = 9.2 fN/

√
Hz for our

experimental conditions (single Au NP, radius 75 nm, trapped
in water at room temperature) [37]. It is worth insisting that
this sensitivity value is valid only for experiments shorter than
τopt.

Working at the optimal bandwidth ∆ fopt = 0.1 Hz, we ex-
pect in these conditions a resolution of 2.9 fN that corresponds
to the minimal force value that can be measured by our micro-
scope. All measurements of external forces below 2×Fth will
be discarded, because the corresponding force signal cannot
be discriminated from the noise [38]. Remarkably, as seen
in the inset of Fig. 3 (a), our system enables us to measure,
directly from the f0 modulation peak on the PSD, significant
radiation pressure values down to 3 fN, i.e. at the level of
the expected resolution. In agreement with these values, a

Mie computation with field intensities estimated at the exper-
imental limit yields a force of 4 fN exerted on the 150 nm Au
sphere, a value in good agreement with our measurements.

The accuracy of these values also depends on the precise
determination of the bead radius. We use manufacturer spec-
ifications and have a 8% dispersion in the bead size. This
variation of size induces a change in the viscosity that sys-
tematically shifts all force values, including the thermal one.

We have also verified that the experimental resolution is
independent from the modulation frequency f0, as expected
from a Lorentzian PSD. Fig. 3 (b) gathers the smallest exter-
nal forces measured from PSDs and with a lock-in amplifier
for modulation frequencies taken below, at, and above the roll-
off frequency fT of the optical trap. Remarkably, the values
stay at around 3 fN, i.e. ca. 2× larger than the thermal limit,
regardless of the modulation frequency, i.e. both in the con-
fined f0 < fT and in the freely diffusing f0 > fT regimes of
the trap.

POSITION NOISE

Measuring Sd
z [ f ] by selecting spectral bins on the PSD over

a sufficiently narrow spectral bandwidth ∆ fAC� f0, or equiv-
alently operating through a lock-in amplifier, as described in
the Supplemental Material, Sec. A, corresponds to a band-
pass filter centered on the modulation frequency f0. In such
conditions, the position noise is given by δ zmin∼

√
∆ f ·Sz[ f0]

[39]. Contrasting with the thermal limit for force measure-
ments, position noises therefore depend on the modulation
frequency.

Displacements associated with the smallest measured ex-
ternal forces are displayed on Fig. 4. As clearly seen, they
lie within the PSD noise levels, separated only by a factor ca.
2 from the Lorentzian fits. The f0 dependence yields δ zmin
that rapidly decrease with f 2 as soon as the free Brownian
regime is dominant for f0 > fT . Furthermore, the large fT
values provide sub-Å levels of resolution in position for all
drive frequencies f0 and displacements of 10−11 m reached at
f0 ∼ 100 kHz.

CONCLUSION

The careful assessment of the conditions of stability of our
experiment through the Allan deviation analysis validates our
setup as a high resolution optical force microscope. Over ther-
mally limited 0.1 Hz bandwidths, we have been able to consis-
tently measure radiation pressure forces down to ∼ 3 fN. This
result should also be appreciated in relation with a dynamical
range FAC/FDC of ca. 2 orders of magnitudes. This range,
together with the capacity to reach fN force resolution levels
in water, at room temperature on relatively short acquisition
times, in the absence of any induced heating, is particularly
important when aiming at studying new types of optical force
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FIG. 4. Isometric representation of the PSD as a function of the ex-
ternal drive frequency f0 (going from ∼1 kHz to ∼100 kHz). The
resolutions in position measured by the lock-in amplifier (and con-
verted back to noise powers) are superimposed on the graph as red
crosses as a function of f0. The smallest measured displacement
amplitude is below 1 Å and diminishes even further as the drive
frequency departs from the Lorentzian plateau and reaches the free
brownian regime ( f−2 at high frequencies on the PSD). The fit line
(in orange) on each PSD represents the thermal contribution to the
displacement. All measurements have been acquired over thermally
limited acquisition time τopt = 10 s. Experiments were performed
with different nano-spheres and at different distances from the mir-
ror. This results in different trap stiffnesses for the different acquired
series. The roll-off frequencies are of 17 kHz for f0 = 1331 Hz, 18.5
kHz for f0 = 10331 Hz, 8 kHz for f0 = 43333 Hz and 7.2 kHz for
f0 = 97579 Hz.

fields [40], in particular in the context of surface plasmon op-
tics [41], optical spin-orbit interactions [42] and chiral optical
forces [43–45].

The concomitant sub-Å resolution in displacements offered
by our setup also opens new possibilities in the context of
short-distance forces, such as Casimir-like interactions [1] or
optical binding effects [46], where adjustable roll-off frequen-
cies allow tuning the diffusion volume of the trapped NP, and
thereby giving a capacity of localization on nm scales. This
capacity could be important for resolving non-linear force sig-
nals, such as found at the level of self-organized supramolecu-
lar assemblies in mechanochemistry [47]. In this context, the
reliability and resolution provided by our force microscope
could help in exploring connections between optical force and
chemical signals.
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APPENDIX A: LOCK-IN DETECTION METHOD

FIG. 5. Schematized structure of the experimental setup used to mea-
sure Sd

z [ f0] -Eq. (4) above. The voltage recorded by the photodi-
ode (PIN) is sent to a low-noise pre-amplifier (Stanford Research,
SR560). The signal is filtered to remove its DC component with a
high-pass filter at 0.03 Hz. It is then sent to both a 16-bit acqui-
sition card (National Instruments, NI-6251) and a lock-in amplifier
(SR830). A function generator (Agilent 33220a) produces a sinu-
soidal output of amplitude and frequency controlled by a computer.
The sine function is sent simultaneously to the pushing laser con-
troller and the lock-in amplifier as the reference.

When measuring forces, in particular via the determination
of the position noise Sd

z [ f0] (see Eq. (4) above), it becomes
convenient to resort to a time-domain measurement such as a
lock-in detection method [48]. Experimentally, Sd

z [ f0] is mea-
sured from the intensity signal passing through a low-noise
pre-amplifier which signal is then sent to both an acquisition
card and a lock-in amplifier, as described in Fig. 5.

The lock-in amplifier immediately yields the spectral power
signal Sd

z [ f0]. However, its estimation from the complete bead
displacement PSD can be computed off-line directly from the
recorded intensity time-trace saved on a computer. The lock-
in method becomes a viable alternative only when its output
signal is calibrated.

This calibration is not straightforward since the lock-in am-
plifier mixes, in the time domain, both the contributions of the
thermal fluctuations and of the external AC drive that cannot
therefore be isolated from one another. But the lock-in cali-
bration can be performed through the results obtained with the
self-calibrated PSD approach at high modulation amplitudes
-modulation ratios larger than 0.1 in Fig. 3 (a) in the main
text -where all noise contributions to the signal can be ne-
glected. Both methods (PSD and lock-in amplitude) provide
values proportional to Sd

z [ f0]. In this regime of strong drive,
the linearity of the lock-in output signal is calibrated to the
linearity of the power spectral intensity peak at f0 measured
on the PSD and converted, as FAC, in Newton, as discussed
above. The experimental output signals are displayed in Fig.
3 in the main text and superimposed to those obtained by the
PSD method. The calibrated lock-in may relieves the con-
strain of identifying spectral bins populated by the external
excitation, but in our case, both approaches are strictly equiv-
alent. Spectral bins are well identified, even for low external
drives. This equivalence clearly appears on Fig. 3 in the main
text where PSD values match well with lock-in values.

When the modulation amplitude of the pushing laser is re-
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duced, we still measure a proportional force amplitude up to a
few fN, as observed in the inset of Fig. 3 (a) in the main text.
In these conditions, it becomes possible to perform measure-
ments down to the 2×Fth limit, below which noise sources
dominate over the external force. Fig. 3 (a) in the main text
shows that the smallest significant external force we measure
using the lock-in amplifier is at the 3 fN level, i.e. similar than
the level reached directly on the PSD.

APPENDIX B: FORCE MEASUREMENTS AT DIFFERENT
MODULATION FREQUENCIES

The external force is measured at different modulation
(driving) frequencies f0 corresponding to confined ( f0 < fT )
or freely ( f0 > fT ) diffusing Brownian motion within the trap.
For an overdamped Brownian particle solely driven by ther-
mal fluctuations, the measured external force, and in our case,
the minimal measurable external force, is expected to remain
constant regardless of the modulation frequency. This is ver-
ified experimentally with modulation frequencies f0 equal to
1331, 10331, 43333 and 97579 Hz, spanning two orders of
magnitude and crossing through the trap roll-off frequency.
The results are shown in Fig. 6.

For these experiments, an external driving force is applied
on single 150 nm Au NPs trapped a few µm away from the
mirror. The amplitude of the drive is modulated with respect
to the mean intensity of the optical pushing beam (λ = 639
nm). Pink crosses indicate external force values extracted
from the PSDs and blue circles represent forces measured by
the lock-in amplifier after its response is linearly calibrated
for strong external drives (see Sec. A above). We stress
that each value has been recorded over the same bandwidth
∆ f = 0.1 Hz. The linearity of measured forces with modula-
tion amplitudes is apparent and quantified by an uncertainty
interval (a deviation to linearity to ±1σ ) on the whole mea-
surement series in blue shades. Grey areas correspond to ther-
mal force noise floors at 1 and 2 standard deviations for dark
and light regions respectively.

All recorded series display significant external forces that
are measured above the stringent resolution criterion of 2×Fth
that we selected, i.e. 2.9 fN. Remarkably, while the bandwidth
was chosen to account for a worst-case stability scenario for
a single NP, the good linearity of the overall series (taking up
to a few minutes) suggests that longer acquisition times do
not deviate much, for good series, from the Allan variance
at 10 s. This could allow for even shorter bandwidth when
considering single measurements, although such a possibility
must be asserted through a long-time Allan stability analysis
of the system. This however turns difficult to implement with
our colloidal suspensions and our acquisition card.

APPENDIX C: HEATING EFFECTS

Heating effects due to temperature elevation at the surface
of the metallic sphere under laser irradiation. The rise in tem-
perature can be estimated considering the radius R and the ab-
sorption cross-section σabs of the sphere, as well as the water
thermal conductivity ks and the irradiance I: [49]

∆T =
σabsI
4πksR

. (5)

Such effects have been measured experimentally, by look-
ing, for instance, at trap stiffness variations [50], shifts of
the localized plasmon resonances [51] or thermal damaging
of supporting membranes [52]. These experiments provide a
value of thermal elevation of ca. 500 K/W for Au spheres of
100 nm under a Gaussian illumination at a 1064 nm wave-
length. These values are in relatively good agreement with
Eq. (5).

Adjusting this value for our 150 nm spheres illuminated
at 785 nm provides temperature elevations over 1500 K/W,
which corresponds to an increase of 40 K with our ∼25 mW
laser. The viscosity of water η = η(T ) being strongly de-
pendent on temperature variations, this increase is expected
to lead to a factor 2 change in the viscosity -η(T = 300 K) =
0.85 and η(T = 340 K) = 0.42- that necessarily would alter
our external force estimation by the same factor.

But such a change is not observed in our experiments. We
carefully checked this by varying, through a rotating optical
density, the trapping laser power for single Au NPs (150 nm)
trapped at different distances from the mirror. As clearly seen
in Fig. 7, the roll-off frequencies for all trapping conditions
follow a linear behavior. This behavior is expected in the ab-
sence of heating effects, considering that the trapping roll-off
frequency fT is directly proportional to the trapping laser in-
tensity. Looking at the trap stiffness κT = 12π2η(T )R fT , this
linear dependence shows that the viscosity η(T ) of water in-
side the trap must remain constant throughout the variations of
intensity. We can therefore conclude that no significant heat-
ing effect is at play on the dynamics of the trapped object in
our experiments.

Trapping of spherical Au NP in a standing wave optical trap
is characterized by complex patterns of stability regions [53].
In our experiments, the absence of heating leads to infer that
the NP is trapped outside field intensity maxima of the stand-
ing wave. Our system thus appears analogous to a cage with
optical walls along the optical axis, preventing the NP to cross
anti-nodes of the interference pattern, while being confined
transversally by the residual gradient contributions of the trap-
ping beam.

Finally, no changes were observed in the trap stiffness with
the external DC force present. The external pushing field is
a few orders of magnitude weaker than the trapping beam
and does not induce changes in the fluid properties despite
its higher absorption cross-section at the pushing laser wave-
length.
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FIG. 6. Measured external forces driven at f0 exerted on optically trapped single Au NPs of 150 nm at frequencies: 1331, 10331, 43333 and
97579 Hz. The amplitude of the drive is modulated with respect to the mean intensity of the optical beam (λ = 639 nm). Pink crosses are
measured external forces from the PSDs and blue circles represent forces measured from the lock-in approach after its response is linearly
calibrated from strong external drives. Each value has a bandwidth ∆ f = 0.1 Hz. The linearity of measured forces with modulation amplitudes
is quantified throught an uncertainty interval (a deviation to linearity to ±1σ ) on the whole measurement series. Dark and light shaded areas
represent 1 or 2 thermal forces Fth respectively at the chosen bandwidth (0.1 Hz).

APPENDIX D: SINUSOIDAL FORCING

In our experiments, external forces applied on the opti-
cally trapped metallic nanospheres are generated by sinu-
soidal forcing. This means that, relatively to a mean posi-
tion set by the static (DC) contribution of the forcing, the si-
nusoidal modulation effectively pushes and pulls the particle
every half period. This is achieved experimentally by mod-
ulating the intensity of the pushing laser sinusoidally around
a mean value. The resulting beam intensity thus includes a
static (DC) and a dynamic (AC) components. The static con-
tribution FDC will push the sphere and displace it with respect
to the initial trapping potential. The Gaussian dynamics of
the sphere displacements is preserved but the equilibrium po-
sition is shifted along the optical axis. This amounts to defin-
ing a new (shifted) effective attractive potential for the bead
motion, drawn as a dashed line in. Fig. 8. The dynamic con-
tribution FAC to the force moves the particle back and forth
sinusoidally in this new effective potential.

It is worth insisting that this description matches perfectly
the dynamics observed experimentally. It is clear on Fig. 2 in

the main text that even for high external modulation strengths,
no harmonics to the drive frequency f0 are observed in the
spectral signatures of the PSD. This contrasts with previous
work where the periodic excitation is created by a chopper in
order to modulate the signal on/off [3, 4]. In this case, odd
harmonics to f0 are necessarily present in the PSD and the
measured Sd

z [ f ] amplitude has to be corrected from those, in
order to account for the square nature of the driving signal.
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