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ARTICLE INFO ABSTRACT

Akinesia is a major manifestation of Parkinson's disease (PD) related to difficulties or failures of willed move-
ment to occur. Akinesia is still poorly understood and is not fully alleviated by standard therapeutic strategies.
One reason is that the area of the clinical concept has blurred boundaries referring to confounded motor
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g;roimaging symptoms. Here, we review neuroimaging studies which, by providing access to finer-grained mechanisms, have
MR the potential to reveal the dysfunctional brain processes that account for akinesia. It comes out that no clear

common denominator could be identified across studies that are too heterogeneous with respect to the clinical/
theoretical concepts and methods used. Results reveal, however, that various abnormalities within but also
outside the motor and dopaminergic pathways might be associated with akinesia in PD patients. Notably, nu-
merous yet poorly reproducible neural correlates were found in different brain regions supporting executive
control by means of resting-state or task-based studies. This includes for instance the dorsolateral prefrontal
cortex, the inferior frontal cortex, the supplementary motor area, the medial prefrontal cortex, the anterior
cingulate cortex or the precuneus. This observation raises the issue of the multidimensional nature of akinesia.
Yet, other open issues should be considered conjointly to drive future investigations. Above all, a unified ter-
minology is needed to allow appropriate association of behavioral symptoms with brain mechanisms across
studies. We adhere to a use of the term akinesia restricted to dysfunctions of movement initiation, ranging from
delayed response to freezing or even total abolition of movement. We also call for targeting more specific neural
mechanisms of movement preparation and action triggering with more sophisticated behavioral designs/event-
related neurofunctional analyses. More work is needed to provide reliable evidence, but answering these still
open issues might open up new prospects, beyond dopaminergic therapy, for managing this disabling symptom.

1. Introduction

The terms akinesia, hypokinesia, and bradykinesia are classically
used to describe the wide range of motor dysfunctions characteristic of
Parkinson's disease (PD). According to their etymology, akinesia refers
to the total absence of movement, hypokinesia to decreased amplitude
of movement, and bradykinesia to slowness in movement execution.
However, the terminologies have evolved over time and are now in-
consistently used in the literature (Schilder et al., 2017). Among these
clinical manifestations, akinesia is certainly the most problematic term

and the least understood feature of PD (Rodriguez-Oroz et al., 2009). It
is particularly disabling, affects a wide range of actions and has no
satisfying therapeutic option (Gauntlett-Gilbert and Brown, 1998;
Schrag et al., 2000).

At a clinical level, akinesia is often used interchangeably with the
terms bradykinesia and hypokinesia (Abdo et al., 2010; Berardelli et al.,
2001; Donaldson et al., 2012; Fahn, 2003; Ling et al., 2012; Rodriguez-
Oroz et al., 2009; Schilder et al., 2017). Notably, bradykinesia often
represents an umbrella term for all these motor symptoms, as en-
couraged by the UPDRS. However, to establish the link between these
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motor symptoms and the associated pathophysiological mechanisms, it
is necessary to refine terminologies so that they refer not only to the
symptoms but also to the underlying neural mechanisms. The definition
proposed by Hallett and colleagues (e.g., Hallett, 1990), a failure of
willed movement to occur, has been successful for addressing this need.
This definition clearly states that: (1) akinesia shall not be confounded
with bradykinesia -slowness of movement that is ongoing-, (2) akinesia
is related to dysfunctions of brain mechanisms that are responsible for
movement preparation and initiation, and (3) akinesia is best char-
acterized at a behavioral level by the time needed to initiate a move-
ment. In other words, this definition refers to slowness or failure in
movement initiation that can go up to the total abolition of movement
(e.g., Jahanshahi et al., 2015b; Krack et al., 1999). It is both an ex-
tension of the original greek terminology and a substantial limitation of
the common clinical use of the term.

A common belief is that akinesia is mainly a motor deficit related to
dopaminergic (DA) depletion (Holtbernd and Eidelberg, 2012). Ac-
cording to the traditional view, the main symptoms of PD are related to
dysfunctions of the motor circuit, which links the motor cortices to
specific territories within the basal ganglia (BG) nuclei (Alexander and
Crutcher, 1990; DeLong, 1990; Jahanshahi et al., 2015a, 2015b). The
loss of DA in PD may cause dysfunctions in the balance between the
direct pathway (hypoactivation) and the indirect pathway (hyper-
activation), resulting in increased subthalamic nucleus and internal
globus pallidus activities, and consequent excessive thalamic inhibition.
Accordingly, it has long been assumed that the resulting dysfunction of
the thalamocortical loop produces akinesia through its action upon
motor cortical regions (Escola et al., 2003; Haslinger et al., 2001;
Jahanshahi et al., 2015a, 2015b). However, this view fails to explain
several clinical and experimental observations, such as the fact that
lesions of the motor thalamus do not result in akinesia (Canavan et al.,
1989), that globus pallidus lesions do not improve it (Marsden and
Obeso, 1994), or that akinesia is not fully alleviated by standard
pharmacological treatments using levodopa or DA agonists (Favre et al.,
2013; Fox, 2013; Jahanshahi et al., 1992; Schubert et al., 2002). In
other words, the classic pathophysiological model of the BG does not
explain the origin of akinesia (see Rodriguez-Oroz et al., 2009 for re-
view).

In an attempt to understand these contradictions, some authors have
suggested that akinesia might also have non motor or non DA origins
(Ballanger et al., 2007; Criaud et al., 2016b; Favre et al., 2013;
Rodriguez-Oroz et al., 2009). In particular, it was suggested, mainly
from behavioral laboratory studies, that executive dysfunction could
play a role in akinesia (Albares et al., 2015b; Favre et al., 2013;
Jahanshahi and Rothwell, 2017; Michely et al., 2012, 2015; Obeso
et al., 2011). Executive processes refer to mechanisms dedicated to the
higher-order control of behavior. This includes the ability to initiate,
execute, monitor, and inhibit actions. However, the mechanisms un-
derlying executive dysfunction are difficult to understand in PD because
they are often masked by, or confounded with, motor features
(Rodriguez-Oroz et al., 2009).

To sum up, the blurred borders of the clinical concept of akinesia
and the difficulty to disentangle motor and executive processes make it
particularly difficult to determine the neural bases of movement in-
itiation disorders on the sole basis of clinical, neuropsychological and
behavioral evaluations. By giving access to finer-grained mechanisms,
functional imaging studies have the potential to reveal the dysfunc-
tional brain processes that account for akinesia, within and beyond the
motor circuitry. Here, we propose a critical review of the topic based on
a systematic analysis of the available neuroimaging studies. Our hope is
to identify common neural denominators across studies, despite the
heterogeneous functions, definitions and methods used. No such review
is currently available. It is intended to complement other recent reviews
of the pathophysiology of akinesia focusing on DA denervation
(Antonelli and Strafella, 2014; Jellinger, 2014) and subthalamic beta
oscillations (Weinberger et al., 2009).
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2. Methods
2.1. Literature selection

An electronic search was performed using the Web of Science and
PubMed databases to collect studies on the neurofunctional bases of
akinesia in PD until November 2018. The following search terms were
used: ((Akin*) AND (Parkinson) AND (Imaging OR fMRI OR PET OR
Activation OR Blood flow)) and all variants of these terminologies.

The inclusion criteria for this review were:

1) Brain activation abnormalities using PET rCBF or fMRI studies,

2) Including PD patients with akinetic-rigid subtypes (AR) or assessing
akinetic symptoms,

3) Including a control group with healthy subjects (HC) and/or tremor-
dominant PD patients (TD).

4) Performing at least one of the four contrasts AR > HC, HC > AR,
AR > TD or TD > AR.

The exclusion criteria were:

1) Review articles,

2) Behavioral studies,

3) Conference abstracts,

4) Animal studies,

5) Case reports,

6) Metabolism or neurotransmission PET studies,

7) Studies focusing only on treatment x group interactions.

2.2. Data extraction and criterion-referenced assessment
Papers were analyzed according to four sets of criteria:
1) Characteristics of the Clinical groups

This includes the number of subjects, the clinical subtypes of PD
patients (AR, TD), and the treatment status (ON/OFF Levodopa or Drug
naive).

2) Neuroimaging methods

The neuroimaging methods used to characterize dysfunctional
neural activity were analyzed as a function of:

- The neuroimaging tool used (fMRI/SPECT/PET) and the nature of
the signal captured (BOLD or rCBF);

- The control group used to infer the neural correlates of akinesia in
AR patients (HC and/or TD)

- The data processing method used to infer neural activity (functional
connectivity, task-related activation/block design, event-related
activation);

- The strategy of analysis of the neural correlates (whole brain or
regions of interest).

3) Characteristics of the behavioral task and rationale

Studies assessing the neural bases of akinesia associate clinical
symptoms with discrete deficits in specific neural systems. This can rely
on different strategies:

- Studies using no behavioral task: Resting state recordings allow
linking clinical symptoms of akinesia to global and non-specific
brain activity changes in defined neural systems, by assessing the
intensity of spontaneous brain activity or resting state functional
connectivity.

- Studies using a behavioral task: Task-based recordings allow
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isolating the neural mechanisms of interest through specific beha-
vioral designs, either by assessing specific event-related brain ac-
tivity changes (event-related fMRI) or task-related motor activation
(block designs) that differ between AR and HC.

We used several criteria informing about the strategy used by the
authors: the author's explicit rationale and the behavioral task used to
isolate the psychological mechanisms under scrutiny.

4) Neuroimaging results

For each study, the list of brain regions including the global maxima
of the significant clusters was reported for the contrasts HC > AR and
AR > HC. When available, results of the contrasts TD > AR and
AR > TD were also reported. Resting state studies were analyzed apart
from studies using behavioral tasks for task-related or event-related
neuroimaging designs.

3. Results
3.1. Literature selection

1829 records were identified through database searching, including
1058 duplicates. 754 texts were excluded with respect to our criteria.
Finally, only 17 full-texts (21 experiments) were included (Fig. 1).

3.2. Systematic analysis
Detailed results are presented in Table 1.
1) Characteristics of the Clinical groups

Most studies selected AR patients based on the mean AR score cal-
culated with the corresponding items of the motor section of the Unified
Parkinson's disease Rating Scale (UPDRS part III) (N = 8) (#1-3; #5-7;
#12, #14). The other studies simply excluded PD patients with tremor
(N =7) (#9-11; #13; #15-17), considering akinesia as a major
symptom of the disease. One study measured akinesia based on item
#31 of the UPDRS-III (assessing global spontaneity of movements; #4).
Only one study tested directly slowness in movement initiation in PD
patients with a specific behavioral design (#8). Taken together, these
studies comprised in average 19.1 * 11.5 AR patients and
20.7 = 16.9 HC. Detailed characteristics of the clinical groups are
provided in Supplementary Table 1.

2) Neuroimaging methods

Fourteen studies used fMRI, two used SPECT and one used PET
imaging. Seven studies performed resting state fMRI recordings (#1-7),
while two recorded event-related activity (#8-9) and eight recorded
task-related activity (block-design) (#10-17). Eight studies searched
for the neural bases of akinesia with no a priori about brain regions
(#1-2; #6; #10-13; #17); while nine studies searched for alterations in
specific regions of interest (ROI) based on their rationale (#3-5; #7-9;
#14-16).

3) Characteristics of the behavioral task and rationale
- Studies using no behavioral task:

Among the seven experiments collecting resting state data, three
searched for alterations of intrinsic connectivity in akinetic PD patients
with no a priori about specific psychological dysfunctions or brain re-
gions (#1-2; #6), using Functional Connectivity Density (#1), Regional
Homogeneity (ReHo) (#2) or Voxel-Mirrored Homotopic Connectivity
(#6). One experiment searched for connectivity changes of regions
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involved in movement initiation (#4 - seed-based functional con-
nectivity). One experiment focused on the functional connectivity of the
BG network (#5). Two experiments probed the functional integrity of
default mode network (DMN-), either by assessing the intensity of its
spontaneous activity (#7) or by measuring its functional connectivity at
rest (#3 — seed-based functional connectivity). These last two studies
clearly assumed cognitive dysfunctions in akinetic PD patients (#3;
#7).

- Studies using a behavioral task:

Most studies (N = 10) set-up behavioral experiments specifically
designed to test the hypothesis that akinesia is a motor symptom. These
studies used a motor task to reveal movement-related activations
(joystick movements/sequential finger-to-thumb opposition move-
ments/sequential finger tapping task/thumb pressing movements/
timed movements), either by means of task-related (#10-17a) or event-
related (#9) neuroimaging designs. Motor alterations associated with
akinesia were evidenced using the HC > AR contrast in 8 experiments.
Compensatory mechanisms of akinesia were revealed using the
AR > HC contrast in 8 experiments.

Only two experiments tested the hypothesis that akinesia includes
both motor and executive components (#8, #17b). Both studies focused
on the pre-movement phase in order to capture the brain activity as-
sociated with motor preparation and executive control of movement
initiation. One of the two experiments (whole brain PET) used a motor
imagery task (#17b) while the other (ROI event-related fMRI) used a
real, simple motor task (#8).

4) Neuroimaging results

Detailed clinical scores and neuroimaging data are displayed in
Table 1.

- Studies using no behavioral task:

Resting state alterations in AR with respect to HC are found in a
widely distributed, poorly reproducible network including the cere-
bellum, various frontal areas (primary motor cortex -M1-, medial pre-
frontal cortex -mPFC-, middle frontal gyrus -midFG-, inferior frontal
gyrus -iFG-), parietal areas (inferior parietal cortex -IPC-, angular gyrus,
cuneus), and different subcortical regions (putamen, caudate nucleus,
thalamus, amygdala) (Fig. 2). The precuneus (#2-3, #5a), the posterior
cingulate gyrus -PCC- (#2-3; #7), the occipital lobe (#3-5a), the tha-
lamus (#2, #4-5a) and the insula (#2-4) were detected more con-
sistently. Whole brain studies (#1-2, #6) with no a priori on the brain
regions failed to find reproducible areas accounting for akinesia, with
the exception of the midFG evidenced in two studies (#1-2). The two
studies focusing on the DMN to test cognitive integrity in AR patients
also failed to reveal reproducible dysfunctional brain regions, with the
exception of the PCC (#3-7).

The direction of the effect in AR with respect to HC is also variable.
Among the brain regions found in at least two different studies, con-
tradictory results are reported in nine out of 15 cases. For instance,
among the studies showing brain activity differences in the IPC, one
reports increased activity in AR with respect to HC while two others
report increased activity in HC with respect to AR.

An overlapping network is observed when considering TD patients
rather than HC as a control population. Differences are found in the
cerebellum, the PCC, the IPC, the primary somatosensory cortex, the
superior and the inferior frontal gyri (only brain regions observed at
least in two different studies are listed. For complete results, see Fig. 3).
The direction of the effect is, however, as variable as in the AR vs. HC
comparisons. There are two notable exceptions: The hypoactivity or
hypoconnectivity of the cerebellum in AR found in four different studies
(while the opposite pattern was found only once), and the hypoactivity
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Literature search
Database: Pubmed, Web of Science
Search terms: ((Akin*) AND (Parkinson) AND

(Imaging OR fMRI OR PET OR Activation

OR Blood flow))

Search results (n=771)

y

HC or HC > AR
Exclusion criteria: review articles, behaviora

only on treatment x group interactions.

Articles screened on basis of title and abstract

Inclusion criteria: brain activation abnormalities using PET rBCF or fMRI, including PD
patients with akinetic-rigid subtype (AR) or testing akinetic symptoms, including a
control group of healthy subjects (HC), performing at least one of the two contrasts AR >

studies, case-reports, metabolism or neurotransmission PET studies, studies focusing

| studies, conference abstracts, animal

Al
“1

Excluded (n=735) |

A 4

Full-text articles assessed for eligibility (n=36) |

y

Manuscript review

A 4

Excluded (n=19)

No PD patients with AR (n=8)
No HC group (n=5)

No PET rCBF or fMRI (n=1)
No contrast AR <> HC (n=5)

| Studies included in the analysis (n=17) |

|

v

| Resting state (n=7) |

y

| Task-based activations (n=10) |

y v

| ‘L J

€

| mRip=14) | |

SPECT(=2) | | PET(=1) |

Fig. 1. Flow chart of publication selection for review, following PRISMA guidelines (Liberati et al., 2009).

of the PCC (reported in two different studies).
- Studies using a behavioral task:

Movement-related brain activity changes were found in a large
network including the motor and supplementary motor cortices, the
medial cortex (ACC, precuneus), the prefrontal cortex (dIPFC, iFG,
frontal operculum), the visual cortex (lingual gyrus), the insula, the
cerebellum, and subcortical regions (thalamus, insula, BG). Yet, these
observations are poorly reproducible (Fig. 4). Consistent results were
reported only for the cerebellum and the dIPFC, respectively found
more activated in AR than HC (in four experiments; #12a-13; #16) and
more activated in HC than AR (in four experiments; #11; #13; #17a-b).
While changes in SMA activity were frequently reported (nine times;
#8-13; #15-16), results are not fully consistent regarding the direction

of the effect.

Only one study using a behavioral task has considered TD patients
rather than HC as a control population (#14). No significant result was
reported.

4. Discussion
The present systematic review pinpoints incompleteness and con-

founds that impede the identification of the neurofunctional bases of
akinesia.

4.1. The terminology of akinesia

The first thing to come out from the present systematic analysis is
that most papers (15 out of 17) are not backed up by a clear definition
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RESTING STATE STUDIES
Akinetic Rigid Patients (AR) vs. Healthy Controls (HC)

% AR patients ON medication HC > AR contrast | AR > HC contrast

HYPO-activity or -connectivity | HYPER-activity or -connectivity

No changes Rz 11707000707/ — No changes
Cerebellum Lz — Cerebellum
Occipital Lobe < Pz ZzzZ Occipital Lobe
Cuneus | " Rz Cuneus
Precuneus % Precuneus
Post cingulate gyrus V. 22777, Post cingulate gyrus
Angular/supramarginal gyrus Angular/supramarginal gyrus
Superior parietal cortex * Superior parietal cortex
Inferior parietal cortex < R 2 7 Inferior parietal cortex
Intraparietal sulcus * Intraparietal sulcus
Caudate Nucleus prr02002; Caudate Nucleus
Putamen * Putamen
Pallidum * Pallidum
Thalamus 2% ZZZA Thalamus
Amygdala Amygdala
Middle cingulate gyrus Middle cingulate gyrus
Fusiform gyrus < ez Fusiform gyrus
Insula <« Lz Insula
Middle temporal gyrus . oo ez Middle temporal gyrus
Anterior/superior temporal lobe > Anterior/superior temporal lobe
Primary somatosens. cortex * Primary somatosens. cortex
Primary motor cortex — % Primary motor cortex
Supplementary motor area A Supplementary motor area
Post. medial frontal cortex * Post. medial frontal cortex
Dorsal premotor cortex & Dorsal premotor cortex
Middle frontal gyrus <— g e Middle frontal gyrus
Inferior frontal gyrus 78 7 zzZs Inferior frontal gyrus
Medial prefrontal cortex ///////////]_’/////////A = Medial prefrontal cortex
Dorsolat. prefrontal cortex * Dorsolat. prefrontal cortex
Whole brain DMN Basal Ganglia Movementinitiation network
#1a B#2 #6 743 7#T  Z#5a  Z#5b Z#4
Functional  Regional Voxel- Seed-based Intensityof  Network- Eigenvector Seed-based
connectivity homogeneity  mirrored functional spontaneous based centrality  functional
density homotopic connectivity brainactivity functional connectivity
connectivity connectivity

Fig. 2. Results of the neuroimaging studies using resting state approaches and comparing AR to HS subjects to assess the neural bases of akinesia. Arrows between
two distinct brain regions indicate abnormal connectivity in seed-based functional connectivity studies. Studies assessing AR patients ON medication are indicated by
red stars.

of akinesia (Table 1, supplementary Table 2). Rather, akinetic symp- explains part of the variability and contradictions regarding the dys-
toms are just considered along with other predominant motor signs functional neural networks associated with akinesia identified in the
(Zaidel et al., 2009) to roughly distinguish AR from HC or AR from TD present review (Figs. 2-4). On the other hand, only one study has used a
subtype of patients with PD (Buhmann et al., 2003; Cerasa et al., 2006; clear terminology based on Hallett's definition (Hallett, 1990) in com-
Guan et al., 2017; Haslinger et al., 2001; Hou et al., 2017; Hu et al., bination with a behavioral design intended to capture specific markers
2015, 2017; Karunanayaka et al., 2016; Lewis et al., 2011; Rascol et al., of movement initiation disorders (Criaud et al., 2016b). Obviously, the
1994, 1997; Sabatini et al., 2000; Samuel et al., 2001; Yu et al., 2007; results issued from this single study need to be reproduced to reach
Zhang et al., 2015). Most of the studies reviewed here were intended to stronger scientific evidence (see limitations in supplementary Table 2).
assess the neural correlates of these two disparate clinical subtypes of To summarize, although akinesia is considered a major feature of one of
PD. In that respect, the use of derivatives of the term akinesia in these the most common and well documented neurodegenerative diseases, a
papers does not require, indeed, more detailed description. It is, how- definitive and unambiguous picture of its neural bases cannot emerge
ever, still a problem for our purpose that the mean AR score confounds so far from the current literature. But there are both common de-
bradykinesia, hypokinesia and akinesia, and that it is not always nominators and interpretable differences between studies that raise
computed from the same items across studies. A considerably more important issues for future investigations.

circumscribed definition is mandatory when it comes to relate specific
akinetic clinical symptoms to behavioral markers and to neural and

psychological mechanisms. On the one hand, studies comparing AR to 4.2. Resting state modulations
TD and even more AR to HC highlight brain functional differences that
cover a wide range of dysfunctions, beyond akinesia. That certainly The way networks are active or functionally connected during rest

has the potential to inform about the functional integrity of human

11



C. Spay et al.

RESTING STATE STUDIES
Akinetic Rigid Patients (AR) vs. Tremor Dominant Patients (TD)

NeuroImage: Clinical 21 (2019) 101644

Fig. 3. Results of the neuroimaging studies using
resting state approaches and comparing AR to TD
subjects to assess the neural bases of akinesia.

Arrows between two distinct brain regions indicate
TD > AR contrast | AR > TD contrast abnormal connectivity in seed-based functional
' ' connectivity studies. Studies assessing AR patients
HYPO-activity or -connectivity | HYPER-activity or -connectivity ON medication are indicated by red stars.
/4000000000000 0 No changes
L Cerebellum
zz Occipital lobe
Z. 2 Posterior cingulate gyrus
* icati . :
AR patients ON medication 7 Inferior parietal cortex
Putamen
Thalamus
Insula
Superior temporal gyrus
Primary somatosensory cortex
Primary motor cortex
Superior frontal gyrus
Middle frontal gyrus
Inferior frontal gyrus
Whole brain DMN Basal Ganglia
/#15/ #2 /!#6 VT#7 //\#58 W#Q
Functional  Regional Voxel- Intensity of Network-  Eigenvector
connectivity homogeneity  mirrored spontaneous based centrality
density homotopic  brain activity functional
#1b connectivity connectivity
Seed-based
functional
connectivity

brain architecture in general, and about akinesia-related dysfunctional
networks in PD in particular. We have identified only one study in-
vestigating spontaneous brain activity and six studies investigating
different forms of functional connectivity at rest in AR patients.

Differences in the intensity of spontaneous brain activity between
AR and HC but also AR and TD (Karunanayaka et al., 2016) can be
observed in the left IPC and PCC (less intensity in AR). This represents
an important advance with regard to former variable results about DMN
functional integrity in PD (Delaveau et al., 2010; Ibarretxe-Bilbao et al.,
2011; Krajcovicova et al., 2012; van Eimeren et al., 2009). Un-
fortunately, whole brain analyses have not been performed and dif-
ferences have only been tested within the DMN. In other words, Kar-
unanayaka's study (2016) has been very useful in identifying non-motor
components of akinesia-related brain dysfunctions, but provided no
clue about changes in the motor circuitry of AR patients with respect to
other PD patients, which is not a closed issue.

Differences between AR and HC (or TD) in functional connectivity
are observed in distributed but poorly reproducible brain areas, with
the notable exception of the precuneus/PCC node, the insula, the tha-
lamus and the occipital lobe. Besides common problems of imaging
(heterogeneous data processing and paradigms, sample size, etc. See
supplementary Table 2), the variability in the goals and methods used
to probe altered intrinsic connectivity in AR patients (Table 1) is likely
to explain part of the variability observed in the list of dysfunctional
brain regions supporting differences between PD subtypes or between
akinetic PD patients and matched controls. Abnormal local synchroni-
zation of spontaneous fMRI signals (ReHo) was found within various
clusters in the medial cortical wall (mPFC, midFG, middle cingulate
gyrus, supramarginal gyrus, PCC, precuneus, fusiform gyrus) and in
subcortical regions (amygdala, putamen, thalamus) (Zhang et al.,
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2015). Alterations of large scale functional connectivity of the DMN
(seed-based approach) were found between the mPFC and the IPC with
the cerebellum, between the iFG and the mPFC, between the PCC with
the insula and the iFG, between the precuneus and both the middle
temporal gyrus and the lingual gyrus/cuneus (Hou et al., 2017).
Quantitative aspects of synchronization as measured by means of
functional connectivity density also highlight differences between AR
and HC patients (Hu et al., 2017). Increased functional connectivity
density in AR was found in the frontal lobe (midFG, iFG), in the tem-
poral lobe (middle temporal gyrus), and in the cerebellum. Decreased
connectivity between the hemispheres was found in AR at the level of
the precentral gyrus (Hu et al., 2015). Reduced global connectivity -the
correlation of each voxel time course with all other voxel time courses-
was observed in the thalamus, the occipital lobule, and the precuneus
within the BG network (Guan et al., 2017). Enhanced connectivity as
indexed by eigenvector centrality values (i.e., the relative influence of a
node in a network) was observed in the right caudate nucleus and the
right thalamus (Guan et al., 2017). Although all these measures clearly
represent different aspects of abnormal functional connectivity, one
observation emerges from the global map provided these studies
(Figs. 2, 3): it is likely that akinesia is not just a purely motor dys-
function, as all studies have identified AR-related dysfunctions that go
way beyond the motor circuitry. The fact that the most reproducible
results pinpoint dysfunctions of integrating hubs interacting with
multiple brain networks involved in nonmotor aspects of behavioral
control, like the precuneus/PCC node, the insula or the thalamus, is
particularly supportive of this hypothesis. These key regions play a
significant role in PD (e.g., Criaud et al., 2016a). Moreover, since an
overlapping ensemble of brain regions has been identified in the studies
which tested not only AR vs. HC contrasts but also AR vs. TD contrasts
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TASK BASED STUDIES
Akinetic Rigid Patients (AR) vs. Healthy Controls (HC)

HC > AR contrast
'
HYPO-activity or -connectivity

AR > HC contrast
'
HYPER-activity or -connectivity

V. 7 7 7% Z No changes
L 77 Cerebellum
Occipital lobe
% AR patients ON medication Precuneus

Inferior parietal cortex

Z Basal ganglia
28 Thalamus
Insula
7 2. Primary somatosensory cortex
/%% Primary motor cortex
Lateral premotor cortex
Y - A% Supplementary motor area
Anterior cingulate cortex
Inferior Frontal Gyrus
Dorsolateral Prefrontal Cortex
Motor task Motor imagery task
Whole Motor CTC/STC  Proactive inhibitory Whole
brain system circuits network brain
W#10 W#11 BD#12a  Z#15 Z#16 4#9 Z#14 7 #8 #17b

W#12b M#13 W#17a

: Block designs

Event-related designs

Fig. 4. Results of the neuroimaging studies using task-based approaches and comparing AR to HS subjects to assess the neural bases of akinesia. Studies assessing AR

patients ON medication are indicated by red stars.

(Fig. 3), it is likely that the changes described above are not simply a
broad effect of the disease, but actually an effect of PD subtype. Besides,
studies performing whole-brain analyses (Hu et al., 2017; Hu et al.,
2015; Zhang et al., 2015) did not even evidence consistent changes in
the motor system.

4.2.1. Dysfunctional vs compensatory mechanisms

For a substantial part of the observations, resting activity and in-
trinsic functional connectivity results may appear contradictory be-
tween AR > HC and HC > AR contrasts (Fig. 2) or AR > TD and
TD > AR contrasts (Fig. 3). However, these patterns are not necessa-
rily in contradiction. Indeed, while decreased activity/functional con-
nectivity is usually interpreted as a direct effect of the disease or con-
dition, increased activity/functional connectivity is most often
interpreted as the result of compensatory mechanisms by which BG-
thalamo-cortical loop dysfunctions are overcome by the recruitment of
other pathways (Hou et al., 2017). According to this debatable inter-
pretation (Blesa et al., 2017), compensatory mechanisms would involve
a widely distributed and poorly reproducible network (Fig. 2), in-
cluding notably the cerebellum, the mPFC and the midFG (two
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occurrences each).

4.2.2. Treatment status

It is tempting to speculate that part of the inconsistencies mentioned
above might be accounted for essentially by the treatment status: three
studies tested patients OFF medication (Hu et al., 2015, 2017; Zhang
et al., 2015), one study tested drug naive de novo patients (Hou et al.,
2017), one tested patients OFF medication or drug naive (Guan et al.,
2017), and two studies tested patients ON medication (Hensel et al.,
2018; Karunanayaka et al., 2016). This is a substantial issue. Indeed, on
the one hand DA medication is known to modulate the metabolism of
the functional circuits subserving akinesia and rigidity (globus pallidus,
thalamus, premotor cortex -PMC-, SMA and parietal association re-
gions; Holtbernd and Eidelberg, 2012), and to improve the motor
functions that partly contribute to reduce movement initiation latency
(e.g., Favre et al., 2013). But on the other hand DA medication is also
known for not reinstating a full normal pattern of movement initiation
(Favre et al., 2013). The recent neuroimaging studies reviewed here
testing AR patients ON medication (Hensel et al., 2018; Karunanayaka
et al., 2016) report that DA medication does not reinstate a normal
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pattern of brain activity and functional connectivity either (Figs. 2, 3).
In other words, it is likely that there are other, non-DA dysfunctional
neural mechanisms that contribute to akinesia (Albares et al., 2015b;
Spay et al., 2018). Much more pharmacological neuroimaging in-
vestigations of resting states modulations building on the papers iden-
tified here are required to clarify this point, in particular studies testing
directly the effect of DA medication.

4.2.3. Conclusion

The variability observed in the methods and in the results of resting
state studies does not allow for any overall conclusions regarding the
neural bases of akinesia. However, various clues are reported that raise
the idea that abnormalities outside the motor network might be related
to executive deficits in akinetic PD patients. Indeed, results pinpoint
brain regions which are known to support executive control of move-
ment initiation, including notably the PCC/Precuneus (Chikazoe et al.,
2009; Criaud et al., 2017), the IPC (Criaud et al., 2017; Jaffard et al.,
2008; Zandbelt et al., 2013), the insula (Chikazoe et al., 2009; Criaud
et al., 2017), the mPFC (Jaffard et al., 2008) and the iFG (Aron, 2011;
Aron et al., 2003; Jahfari et al., 2012; Zandbelt et al., 2013). Interest-
ingly, most of these regions are also known to involve non-DA systems
when engaged in these functions (Borchert et al., 2016; Buddhala et al.,
2015; Chamberlain et al., 2009; Fox, 2013; Spay et al., 2018; Ye et al.,
2015). This tentative explanation is consistent with previous studies on
the neural bases of executive deficits in PD (Huang et al., 2007; Mattis
et al., 2016; Pereira et al., 2014; van Eimeren et al., 2009).

4.3. Task-related and event-related brain activity changes

4.3.1. Dysfunctional mechanisms (akinesia-related hypoactivation)

Most experiments that recorded task-based modulations (eight out
of twelve) searched for motor alterations, based on the common belief
that akinesia is mainly a motor deficit (Buhmann et al., 2003; Cerasa
et al., 2006; Haslinger et al., 2001; Rascol et al., 1994, 1997; Sabatini
et al., 2000; Samuel et al., 2001; Yu et al., 2007). According to the BG-
thalamocortical circuit model, DA depletion in the nigrostriatal system
induces hypoactivation in the motor and premotor circuits in akinetic
PD patients compared to healthy controls, including the SMA, the lat-
eral PMC and M1 (Alexander et al., 1990; Holtbernd and Eidelberg,
2012). This hypothesis has been tested in the eight experiments men-
tioned above by means of the HC > AR contrast, akinesia being simply
associated with the absence of tremor. Results are quite inconsistent for
most of the brain regions showing task-based and event-related brain
activity changes (Fig. 4). Motor alterations are found in a widely dis-
tributed, poorly reproducible network including the motor/premotor
cortices and associated subcortical areas (thalamus, BG), but also in the
cerebellum, in different prefrontal areas (dIPFC, iFG) as well as in the
ACC and in the insula. In these experiments, akinesia-related motor
dysfunctions (hypoactivation in AR patients) are only consistent for the
SMA across 6 experiments (Buhmann et al., 2003; Haslinger et al.,
2001; Rascol et al., 1994, 1997; Sabatini et al., 2000), and for the dIPFC
across half of the whole brain experiments (Sabatini et al., 2000;
Samuel et al., 2001; Yu et al., 2007). Again, despite inconsistencies
about the extent of the observed modulations, studies using motor tasks
to probe task-related and event-related brain activity changes in AR
patients suggest that akinesia is not a purely motor dysfunction.

Only two experiments (out of twelve) considered the hypothesis
that akinesia includes both motor and executive components. By fo-
cusing on the preparatory phase of movement (Criaud et al., 2016b;
Samuel et al., 2001), they revealed akinesia-related alterations in the
motor system (including the caudate nucleus and the lateral PMC), but
also in other brain regions embracing the precuneus, the thalamus, the
ACC and the dIPFC. Importantly, these regions are known to be part of
an executive network involved in the inhibitory control of movement
initiation (Blasi et al., 2006; Chikazoe et al., 2009; Jaffard et al., 2008;
van Belle et al., 2014; Zandbelt et al., 2013). More precisely, Criaud and
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collaborators (2016b) proposed that akinesia in PD is associated with
abnormal proactive inhibitory control, an executive function which
supports the gating of movement triggering to avoid inappropriate or
premature responses in uncertain contexts (Jahanshahi et al., 2015a;
2015b). According to this view, akinesia could be considered as a de-
automation symptom resulting partly from an impairment of the ability
to switch from controlled to automatic action (Albares et al., 2015b;
Favre et al., 2013; Hikosaka and Isoda, 2010; Isoda and Hikosaka, 2007;
Jahanshahi et al., 1995; Jahanshahi et al., 2015a; 2015b; Siegert et al.,
2002). However, this hypothesis has been overlooked so far in neu-
roimaging studies of PD akinesia and requires further evidence.

An important part of the observed variability may be due to dif-
ferences in the nature of the behavioral tasks used in the different
studies. In particular, the differences observed between studies based
on simple motor tasks (self-paced or internally triggered) and stimulus-
response tasks (externally triggered) might be enlightening (Table 1).
Simple motor tasks seem to induce effects confined to the SMA (hy-
poactivation in AR patients), the cerebellum and the primary sensor-
imotor cortex (hyperactivation in AR patients), or no changes at all
(Cerasa et al., 2006; Lewis et al., 2011; Rascol et al., 1994, 1997).
Conversely, stimulus-response tasks (externally triggered) involve a
variety of brain regions outside the motor network (Cerasa et al., 2006;
Criaud et al., 2016b; Samuel et al., 2001; Yu et al., 2007). Un-
fortunately, there is a strong bias, as identified in the quality check
section (Supplementary Table 2). Studies using a simple motor task also
applied ROI analyses centered on the motor system, making it im-
possible to conclude that only the more complex stimulus-response
tasks involve dysfunctions outside the motor network.

It is noteworthy that most of the reviewed studies (Buhmann et al.,
2003; Cerasa et al., 2006; Sabatini et al., 2000; Samuel et al., 2001; Yu
et al., 2007) have been performed in the OFF-medication state. Only
three studies have compared ON and OFF states but reported discordant
results. Two of these studies (Rascol et al., 1994, 1997) suggest that DA
restores normal SMA activity patterns in patients ON medication state
with respect to OFF medication state and to healthy control subjects.
The third one conversely suggests that residual deficits in M1 activity
can be observed in the ON medication state (Haslinger et al., 2001).
This, again, raises the issue of the purely motor and DA origins of
akinesia. On the one hand, if one considers as Rascol et al. (1994, 1997)
that DA restores normal activity in motor circuits, then the fact that
akinesia is unsuccessfully alleviated by standard pharmacological
treatments at a behavioral level (Favre et al., 2013; Fox, 2013;
Jahanshahi et al., 1992; Schubert et al., 2002) strongly suggests a non-
motor origin. On the other hand, if one considers as Haslinger et al.
(2001) that the functional cortical deafferentation of motor regions
associated with decreased input from the subcortical motor loop (see
also Escola et al., 2003) is only partly reversible by levodopa treatment,
then it is likely that non-DA dysfunctions are involved in akinesia.
Unfortunately, all of these studies have used ROI approaches and fo-
cused on motor cortical dysfunctions. Future studies combining phar-
macological approaches, whole brain analyses, and behavioral designs
disentangling executive and motor functions might help addressing this
open issue.

4.3.2. Compensatory mechanisms (akinesia-related hyperactivation)
Many studies which recorded task-based activations (eight out of
twelve) also looked for hyperactivation of brain regions in akinetic PD
patients compared to healthy subjects (contrast AR > HC), assuming
that BG-thalamo-cortical loops dysfunctions are compensated for by the
recruitment of parallel pathways (Sabatini et al., 2000). Again, some
results are poorly reproducible (Fig. 4), like those pinpointing the
motor cortex (M1, lateral PMC), the prefrontal cortex (iFC, dIPFC), the
lateral and medial parietal cortex (iPC and precuneus), the visual cortex
(lingual gyrus), the ACC and the insula. Yet, highest reproducibility is
observed for the cerebellum (4 occurrences out of six studies per-
forming cerebellar recordings: Cerasa et al., 2006; Lewis et al., 2011;
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Rascol et al., 1997; Sabatini et al., 2000; Yu et al., 2007). These data are
consistent with more general observations about compensatory me-
chanisms (Blesa et al., 2017). They are also consistent with the hy-
perconnectivity of the cerebellum observed at rest (Hou et al., 2017; Hu
et al., 2017; Fig. 2). However, as highlighted in the recent review from
Blesa et al. (2017), the substantiation of putative compensatory me-
chanisms remains weak. This might especially be the case for motor
dysfunctions. For instance, Ballanger et al. (2009) observed that PD
patients are able to improve dramatically motor performance, including
movement initiation, by recruiting the contralateral cerebellum in ex-
ternally driven urgent situations. However, by testing healthy controls,
the authors also demonstrated that this form of compensatory me-
chanism, so-called paradoxical kineses, are not a hallmark of PD but a
general property of the motor system (Ballanger et al., 2006). In other
words, how specific to the disease and how specific to akinesia these
mechanisms are is still highly disputable.

4.3.3. Conclusion

Although task-related and event-related brain activity changes are
not highly reproducible across studies, results suggest that abnormal-
ities within but also outside the motor pathways might induce motor
and executive deficits that could contribute jointly to akinesia in PD
patients.

5. Limitations

The reviewed studies represent a useful step towards refining the
concepts and methods classically used to assess akinesia. However, the
following limitations should be kept in mind as findings are interpreted.

Despite the scale of the problem and the total number of papers on
the general topic of akinesia, few studies reached the criteria for being
included (Fig. 1). This prevented us from performing any quantitative
meta-analysis. The conclusions of this systematic analysis cannot rely
on the use of statistical techniques for summarizing the results of all
available studies into a single estimate. This weakens interpretation
when common denominators are found between studies (i.e., move-
ment-related hypoactivation in the motor cortex of AR patients).
However, meta-analytical statistical methods would have ignored the
brain activity which is poorly reproducible in terms of location, but
which makes sense regarding the frequency of observation of the phe-
nomenon (e.g., functional changes in different parts of the executive
system). Often, variability in the exact location of brain functional
differences is likely to be accounted for by the variability of the nature
of the modulations that were assessed (e.g., intensity of intrinsic ac-
tivity vs. functional connectivity density vs. ReHo vs. seed-based
functional connectivity for resting state studies).

Due to the level of inaccuracy and confusion related to the termi-
nology of akinesia, there are strong potential confounds in the imaging
results. Most studies are referring to the AR subtype of PD, defined by
paucity and slowness of movement accompanied by muscle stiffness.
However, the set of dysfunctions which are specific of this subtype form
a syndrome (Donaldson et al., 2012) that includes more disorders than
the sole dysfunction of movement initiation mechanisms. Yet, there is
no mean to disentangle these confounds in the reviewed studies. Ac-
cordingly, the results pinpoint neural correlates rather than compre-
hensive neural bases of akinesia, and the causal links between brain
dysfunctions and clinical symptoms inferred from these studies remain
speculative.

6. Open issues and future directions

Given the inconsistency of concepts and results, tentative conclu-
sions on the neural bases of akinesia would be somewhat hazardous.
However, the clues provided by the neural correlates analyzed in this
review raise major issues for future studies.
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6.1. Characteristics of the clinical group: how to define akinesia?

A consensus on the neurofunctional bases of akinesia requires a
unified use of terminology for this specific disturbance of voluntary
movement, but there are still obstacles to overcome. First, the term
akinesia is used at different conceptual levels: as a classifying term to
identify subtypes of movement disorder like most of the studies re-
viewed here, and as a descriptive term to depict particular symptoms.
Second, from a clinical point of view there is a tendency to group
clinical signs, and consequently to use unique terminology whereas
these signs represent clusters of symptoms (Schilder et al., 2017; Pel-
legrino and Thomasma, 1981). From an epistemological point of view,
this contributes to form a substantial obstacle (Smith, 2016) in clinical
research. This is often the case, for instance, when direct links between
DA depletion and movement disorders are assessed. A clear definition
of akinesia would help targeting more precisely the multiple mechan-
isms that are potentially dysfunctional in this multifaceted disease. It
would help developing more sophisticated models for assessing brain-
behavior relationships in PD neuroimaging studies.

6.2. Neuroimaging methods: How to reveal akinesia?

Appropriate behavioral designs and markers are required to isolate
the neural mechanisms that play a direct role in movement initiation,
and to measure their efficiency. Using advanced psychological models
-and associated designs- of movement preparation and executive con-
trol should help making predictions about the nature, the dynamics or
the localization of the brain signals that are most likely to inform about
the neural correlates of akinesia (e.g., Criaud et al., 2017). This is
crucial for setting-up adapted event-related neuroimaging designs. In
particular since the present review has pinpointed: (1) the underuse of
this type of approach, and (2) the possibility that akinesia does not only
rely on motor dysfunctions. For instance, assessing the executive me-
chanisms that gate movement initiation in uncertain contexts in order
to avoid premature or erroneous responding — a function which might
cause akinesia when disturbed (Jahanshahi et al., 2015a, 2015b)- re-
quires: (1) the manipulation of the relative probability of the stimuli in
the experimental design, and (2) the analysis of the brain activity oc-
curring before a movement is initiated (e.g., Criaud et al., 2016b).
Additionally, specific behavioral markers like reaction time or omission
rate can be used as covariates in functional data processing in order to
select the brain modulations that play a direct role in behavioral
changes (e.g., Albares et al., 2015a; Albares et al., 2014). The same
rationale applies to standard clinical scores, which must also be in-
cluded in data processing models in order to relate the clinical severity
of PD symptoms to behavioral manifestations and specific brain activity
changes. Only then should the large and inconsistent inventory of
neural correlates of akinesia be reduced to a shorter list of reliable
candidates forming the neural bases of akinetic symptoms.

Finally, the hypothesis of an executive origin of akinesia raised in
the present review calls for using complementary neuroimaging tools.
Indeed, executive control strongly relies on inhibitory functions
(Heyder et al., 2004; Hofmann et al., 2012; Miyake et al., 2000; Norman
and Shallice, 1986). However, no single neuroimaging method based on
blood flow measurements can disentangle the time-course of concurrent
excitatory and inhibitory mechanisms (Logothetis, 2008). Disen-
tangling the executive and motor dysfunctions of akinetic symptoms
may require the use of other techniques such as MEG and EEG, which
offer the possibility to identify inhibitory activity through spectral
analyses (Albares et al., 2015a). Since recent developments now offer
optimal solutions for separating and localizing the brain electrical
sources of activity that are mixed on the scalp (e.g., Lio and Boulinguez,
2013, 2018), EEG might represent a promising alternative to the stan-
dard neuroimaging methods reviewed here, at least for identifying
cortical dysfunctions.
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6.3. Pharmacological neuroimaging: How to reveal the neurochemical bases
of akinesia?

It is clear that other neurotransmitters than DA play a role in the
pathophysiology of PD (Bohnen et al., 2018; Braak et al., 2004;
Delaville et al., 2012; Faggiani and Benazzouz, 2017; Fornai et al.,
2007; Pahapill and Lozano, 2000; Politis et al., 2014). Yet, non-DA
therapeutic strategies are still difficult to develop (Fox, 2013; Freitas
and Fox, 2016). It is likely that the lack of neurocognitive footing in
clinical neuroimaging studies does not help for distinguishing the
neural mechanisms that rely on DA neurotransmission from those that
rely on other systems. We especially think about the noradrenergic
system, which might be involved in the functioning of BG-thalamo-
cortical loops and executive functions (Albares et al., 2015b;
Chamberlain et al., 2009; Faggiani and Benazzouz, 2017; Spay et al.,
2018), but also about the serotoninergic (Carli and Invernizzi, 2014;
Miguelez et al., 2014) and the cholinergic (Bohnen and Albin, 2011)
systems. Here, we suggest that future pharmacological neuroimaging
designs, whatever goal they are intended for —e.g., testing dose-de-
pendent effects in DA-medicated patients or non-DA pharmacological
agents in healthy subjects-, should comply with the general re-
commendations described above to reveal the neurochemical bases of
movement initiation and related disorders. Given the multidimensional
complexity of movement disorders in general, and akinesia in parti-
cular, future neuroimaging studies should not settle on linking vague
clinical subtypes and/or pharmacological challenges to broad and un-
specific brain activity modulations. Rather, future studies should target
specific neural mechanisms by means of adapted empirical designs and
behavioral markers. More sophisticated behavioral tasks (e.g., Criaud
et al., 2016b, Criaud et al., 2017) combined with the use of movement
analysis technologies (e.g., Dai et al., 2015; Salimi-Badr et al., 2017;
Varriale et al., 2018) to detect and quantitate akinesia might prove
useful to better isolate, and then image, the processes that are directly
linked to movement initiation disorders. With these conditions in place,
future studies will get more chances to extricate the complex interac-
tions that form the neural and neurochemical bases of akinesia.
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