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Abstract

Background: Choosing the most performing method in terms of outcome prediction or variables selection is a
recurring problem in prognosis studies, leading to many publications on methods comparison. But some aspects
have received little attention. First, most comparison studies treat prediction performance and variable selection
aspects separately. Second, methods are either compared within a binary outcome setting (where we want to predict
whether the readmission will occur within an arbitrarily chosen delay or not) or within a survival analysis setting
(where the outcomes are directly the censored times), but not both. In this paper, we propose a comparison
methodology to weight up those different settings both in terms of prediction and variables selection, while
incorporating advanced machine learning strategies.

Methods: Using a high-dimensional case study on a sickle-cell disease (SCD) cohort, we compare 8 statistical
methods. In the binary outcome setting, we consider logistic regression (LR), support vector machine (SVM), random
forest (RF), gradient boosting (GB) and neural network (NN); while on the survival analysis setting, we consider the Cox
Proportional Hazards (PH), the CURE and the C-mix models. We also propose a method using Gaussian Processes to
extract meaningfull structured covariates from longitudinal data.

Results: Among all assessed statistical methods, the survival analysis ones obtain the best results. In particular the
C-mix model yields the better performances in both the two considered settings (AUC=0.94 in the binary outcome
setting), as well as interesting interpretation aspects. There is some consistency in selected covariates across methods
within a setting, but not much across the two settings.

Conclusions: It appears that learning withing the survival analysis setting first (so using all the temporal information),
and then going back to a binary prediction using the survival estimates gives significantly better prediction
performances than the ones obtained by models trained “directly” within the binary outcome setting.
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Sickle-cell disease
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Background
Recently, many statistical developments have been per-
formed to tackle prognostic studies analysis. Beyond accu-
rate risk estimation, interpretation of the results in terms
of covariates importance is required to assess risk factors,
with the ultimate aim of developing better diagnostic and
therapeutic strategies [37].
In most studies, covariate selection ability and model

prediction performance are regarded separately. On the
one hand, a considerable amount of studies report
on covariates relevancy in multivariate models, mostly
in the form of ajusted odds ratio [32] (for instance
using logistic regression (LR) model [1, 34]) with-
out reporting on the method’s prediction performance
(goodness-of-fit and overfitting aspects are neglected);
namely disregarding the question: is the model pre-
diction still accurate on new data, unseen during the
training phase? While on the other hand, most stud-
ies focusing on a method’s predictive performance do
not mention its variable selection ability [21], thus mak-
ing it not well suited for the high-dimensional set-
ting. Such settings are becoming increasingly common
in a context where the number of available covariates
to consider as potential risk factors is tremendous,
especially with the development of electronic health
record (EHR).
In this paper, we discuss both aspects (prediction per-

formance and covariates selection) for all considered
methods, with a particular emphasis on the Elastic-Net
regularization method [52]. Regularization has emerged
as a dominant theme in machine learning and statistics. It
provides an intuitive and principled tool for learning from
high-dimensional data.
Then, a lot of studies consider prognosis as a binary

outcome, namely whether the event-of-interest (death,
relapse or hospital readmission for instance) occurs
whithin a pre-specified period of time we denote ε

[4, 41, 44, 47]. In the following, we refer to this frame-
work as the binary outcome setting, and we denote
T ≥ 0 the time elapsed before the event-of-interest
and X ∈ R

d the vector of d covariates recorded at
the hospital during a stay. In this setting, we are inter-
ested in predicting T ≤ ε. Such an a priori choice
for ε is questionable, since any conclusion regarding
both prediction and covariates relevancy is completely
conditioned on the threshold value ε [11]. Hence, it
is hazardous to make general inference on the proba-
bility distribution of the time-to-event outcome given
the covariates from such a restrictive binary prediction
setting.
An alternative setting to model prognosis is the sur-

vival analysis one, that takes the quantitative censored
times as outcomes. The time T is right censored since
in practice, some patients have not been readmitted

before the end of follow-up. In the following, we refer
to this setting as the survival analysis setting [27]
and we denote Y the right-censored duration, that is
Y = min(T ,C) with C the time when the patient is lost
to follow-up. Few studies compare the survival analysis
and binary outcome settings and none of them consid-
ers simultaneously the prediction and the variable selec-
tion aspects in a high dimensional setting. For instance
in [11], only the Cox Proportional Hazards (PH) model
[12] is considered in the survival analysis setting and
a dimentionality reduction phase (or screening) is per-
formed prior to the models comparison, as it is often the
case [5, 13].
Our case study focuses on hospital readmission follow-

ing vaso-occlusive crisis (VOC) for patients with sickle-
cell disease (SCD). SCD is the most frequent monogenic
disorder worldwide. It is responsible for repeated VOC,
which are acute painful episodes, utlimately resulting in
increased morbidity and mortality [9, 38]. Although there
are some studies regarding risk factors of early compli-
cations, only a few of them specifically addressed the
question of early-readmission prediction after a VOC
episode [8, 40].
For a few decades, hospital readmissions have been

known to be responsible for huge costs [18, 28]; they are
also a measure of health care quality. Today, hospitals
have limited ressources they can allocate to each patient.
Therefore, identifying patients at high risk of readmissions
is a paramount question and predictive models are often
used to tackle it.
The purpose of this manuscript is to compare dif-

ferent statistical methods to analyse readmission, with
the final goal to build decision tools for physician to
help them identify patients at high risk of readmission.
To make such comparisons, we consider both the pre-
dictive performance and the covariates selection aspect
of each model, on the same high-dimensional set of
covariates.
In the binary outcome setting, we consider LR [25] and

support vector machine (SVM) [42] with linear kernel,
being both penalized with the Elastic-Net regularization
[52] to deal with the high dimensional setting and avoid
overfitting [23]. We also consider random forest (RF) [7],
gradient boosting (GB) [19] and artificial neural networks
(NN) [50].
We then abstain from the a priori threshold choice

and consider the survival analysis setting. We apply first
the Cox PH model [12]. We also apply the CURE model
[15, 30], that considers one fraction of the population as
cured or not subject to any risk of readmimssion. Finally,
we consider the recently developped high dimensional
C-mix mixture model [10]. The three considered mod-
els in this setting are also penalized with the Elastic-Net
regularization.
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Methods
Motivating case study
We consider a monocentric retrospective cohort study of
n = 286 patients. George Pompidou University Hospital
(GPUH) is an expertise center for SCD adult patients [31].
Data is extracted from the GPUH Clinical Data Ware-
house (CDW) using the i2b2 star-shaped standard [51]. It
contains routine care data divided into several categories
among them demographics, vital signs, diagnoses (ICD-
10 [49]), procedures (French CCAM classification [45]),
EHR clinical data from structured questionnaires, free
text reports, Logical Observation Identifiers Names and
Codes (LOINC), biological test results, and Computerized
Provider Order Entry (CPOE) drug prescriptions. The
sample included all stays from patients admitted to the
internal medicine department for VOC (ICD-10 57.0 or
57.2) between January 1st 2010 and December 31st 2015
and the follow-up was performed on the same period.
Over half of the patients has only one stay during the

follow-up period (see Section 2.1 of Additional file 1). We
hence randomly sample one stay per patient and focus
on the early-readmission risk afterwards. This enables us,
in addition, to work on the independent and identically
distributed standard statistical framework.

Covariates
We extracted demographic data (e.g. sex, date of birth,
last known vital status), as well as both qualitative (e.g.
the admission at any point during the stay to an ICU,
the type of opioid drug received) and quantitative time-
dependent variables (e.g. biological results, vital sign val-
ues, intraveinous opiod syringes parameters) regarding
each stay.
We also extracted all the free text reports from the

patients’ EHR regardless of the source department and
the stay. In order to facilitate variable extraction from
such textual reports, we used a locally developed browser-
accessible tool called FASTVISU [14]. This software is
linked with the CDW, and allowed us to quickly check
throughout these textual reports for highlighted informa-
tion and to vote for variable status (e.g. SCD genotype)
or value (e.g. baseline hemoglobinemia). Keywords using
regular expressions are used to focus on specific mentions
within the text. Variables extracted using this tool were the
following: SCD genotype, baseline hemoglobinemia, med-
ical history (with a focus on previous VOC complications
and SCD-related chronic organ damages), and lifestyle
related information. For time-dependent variables, status
was determined per stay, including the ones that were not
related to a VOC episode (e.g. annual check-ups).
We extracted for the included patients all stays encoded

as VOC to derive time length from and until the respec-
tively previous and consecutive stays. Regarding demo-
graphic data, we derived the patient’s age at admission for

each stay. For each time-dependent covariate, all patient
relative time series have different number of points and
different length.We then propose amethod to extract sev-
eral covariates from each time series, to make the use of
usual machine learning algorithms possible:

• Regarding all vital parameters and oxygen use, we
derived them by calculating the average value and the
linear regression’s slope for the last 48 h of the stay, as
well as the delay between the end of oxygen support
and the hospital discharge.

• Regarding biological variables, we only kept the ones
that were measured at least once for more than 50%
of the stays. We considered the last measured value
for each of them before discharge. Additionally, for
covariates with at least 2 distinct measurements per
stay, we considered the linear regression’s slope for
the last 48 h of the stay. In order to maximize the
amount of biological data, we also retrieved the
biological values measured in the emergency
department, prior to the administrative admission of
the patient.

• For each time-dependent covariate and for each stay,
we fit a distinct Gaussian process on the last 48 h of
the stay for all patient with at least 3 distinct
measurements during this period, and extract the
corresponding hyper-parameters as covariates for
our problem.

Indeed, Gaussian processes are known to fit EHR data
well; see for instance [36], where a distinct Gaussian
process is also fitted for each patient and each time-
dependent covariate, in order to cluster patients into
groups in the hyper-parameter space. In our study, we
instead use the hyper-parameters as covariates in a super-
vised learning way. We use Gaussian process with linear
average function and a sum-kernel composed by a con-
stant kernel which modifies the mean of the Gaussian
process, a radial-basis function kernel, and a white kernel
to explain the noise-component of the signal.
After a binary encoding of the categorical covariates,

the final dimension of the working space (number of con-
sidered covariates) is d = 174. Therefore, the number
of patients is less than 2 times as many as the number
of covariates, making it difficult to use standard regres-
sion techniques. More details on data extraction, missing
data imputation, as well as a precise list of all considered
covariates, are given in Sections 2.2, 2.3 and 2.4 (given in
Additional file 1) respectively.

Statistical methods and analytical strategies
Binary outcome setting
In this setting, we consider as early-readmission any read-
mission occuring within 30 days of hospital discharge after
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a previous hospital stay for VOC, the 30 days threshold
being a standard choice in SCD studies [8, 17]. A first
drawback of this setting (which is rarely mentionned) is
that patients having both a censored time and ci ≤ ε have
to be excluded from the procedure, since we do not know
if ti ≤ ε or not. Figure 1 gives an illustration of this last
point. In our case, 7 patients have to be excluded because
of this issue.
Seven patients had a follow-up period below 30 days

while they were not readmitted during this period. There-
fore, in the binary outcome setting, it was not possible to
label them as readmitted or not since they could have been
readmitted after the end of the study but within their first
30 days after hospital discharge. Consequently, we had to
excluded them in this setting.
For retrospective studies with short ε delay, it is often

possible to label those patients looking at what happened
after the end of the study. But strictly in terms of method-
ology, we act in this paper as if we do not have any infor-
mation after the end of the study (which can be viewed as
the future), following the survival analysis framework [16].
This technical problem always occurs when considering a
threshold delay to obtain binary outcomes from censored
times, but we did not found any paper mentioning it.
We first consider LR [25] and linear kernel SVM [42],

both penalized with the Elastic-Net regularization [52].
For a given model, using this penalization means adding
the following term γ

(
(1 − η)‖β‖1 + (η/2)‖β‖22

)
to the

cost function (the negative likelihood for instance) in
order to minimize it in β ∈ R

d, a vector of coefficients
that quantifies the impact of each biomedical covariates
on the associated prediction task. This means that the
Elastic-Net regularization term is a linear combination of
the lasso (�1) and ridge (squared �2) penalties for a fixed
η ∈ (0, 1), tuning parameter γ , and where we denote

Fig. 1 Illustration of different situations when dealing with censored
data that cannot be labeled when using a threshold ε . δi = 1{Ti≤Ci} is
the censoring indicator which is equal to 1 if Yi is censored and 0
otherwise. In the binary outcome setting, patient 4 would be excluded

‖β‖p =
(∑d

i=1 |βi|p
)1/p

the �p-norm of β . One advan-
tage of this regularization method is its ability to per-
form model selection (for the lasso part) and to pinpoint
the most important covariates relatively to the predic-
tion objective. On the other hand, the ridge part allows
to handle potential correlation between covariates [52].
The penalization parameter γ is carefully chosen using
the same cross-validation procedure [29] for all compet-
ing models. Note that in practice, the intercept is not
regularized.
We also consider other machine learning algorithms in

the ensemble methods class such as RF [7] and GB [19].
For both algorithms, all hyper-parameters are tuned using
a randomized search cross-validation procedure [2]. For
instance for RF: the number of trees in the forest, the
maximum depth of the tree or the minimum number of
samples required to split an internal node. Note also that
regarding the covariates importance for RF and GB, we
use the Gini importance [33], defined as the total decrease
in node impurity weighted by the probability of reaching
that node (which is approximated by the proportion of
samples reaching that node) averaged over all trees of the
ensemble. That is why the corresponding coefficients are
all positive for those two models, which is to be kept in
mind. Finally, we consider NN [50] in the form of a mul-
tilayer perceptron neural network with one hidden layer.
We use stochastic gradient-based optimizer for NN and
rectified linear units activation function to get sparse acti-
vation and be able to compare covariate importance [20].
The regularization term as well as the number of neurons
in the hidden layer are also cross-validated though a ran-
dom search optimization. Note that many studies in the
literature choose hyper-parameters of the models, with-
out mentioning any statistical procedure to determine
them without a priori [39].
For all considered models in this setting, we use the

reference implementations from the scikit-learn
library [35].

Survival analysis setting
The Cox PH model is by far the most widely used in the
survival analysis setting; see [12] and [43] for the penal-
ized version. It is a regression model that describes the
relation between intensity of events and covariates, given
by λ(t) = λ0(t)exp

(
x�β

)
where λ0 is a baseline inten-

sity describing how the event hazard changes over time
at baseline levels of covariates, and β is a vector quan-
tifying the multiplicative impact on the hazard ratio of
each covariate. We use the R packages survival and
glmnet to train this model. An alternative to the Cox
PH model is the CURE model [15] with an Elastic-Net
regularization, that considers one fraction of the popu-
lation as not subject to any risk of readmission, with a
logistic function for the incidence part and a parametric
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survival model. Finally, we apply the C-mix model [10]
that is designed to learn risk groups in a high dimen-
sional survival analysis setting. For a given patient i, it
provides a marker π

β̂
(xi) estimating the probability that

the patient is at high risk of early-readmission. Note that
β̂ denotes the estimate vector after the training phase
for any model. The C-mix (as well as CURE as a partic-
ular case) high-dimensional implementation is available
online as an open-source project at https://github.com/
SimonBussy/C-mix. We point this out since all other
methods used in this manuscript are readily accessible in
almost all development framework, which is not the case
for the C-mix model.
We randomly split data into a training set and a test

set (30% for testing, cross-validation is done on the train-
ing). In both binary outcome and survival analysis set-
tings, all the prediction performances are evaluated on
the test set after the training phase, using the relevant
metrics detailed hereafter. Note also that for all considered
models (except RF and GB), continuous covariates are
standardized through a preprocessing step, which allows
proper comparability between the covariates’ effects
whithin each model.

Metrics used for analysis
In the binary outcome setting, the natural metric used
to evaluate performances is the AUC [6]. In the sur-
vival analysis setting, the natural equivalent is the C-index
(implemented in the python package lifelines), that
is P

[
Mi > Mj|Yi < Yj,Yi < τ

]
with i �= j two independent

patients, τ corresponding to the follow-up period dura-
tion [24], and Mi the natural risk marker of the model for
patient i: exp

(
x�
i β̂

)
for the Cox PH model, the probabil-

ity of being uncured for the CURE model and π
β̂
(xi) for

the C-mix.
To compare the two settings, we use the estimated sur-

vival function Ŝi for each model and patient i in the test
set. Then, for a given threshold ε, we now use the esti-
mated probability Ŝi (ε|Xi = xi) ∈[ 0, 1] for each model to
predict whether or not Ti ≤ ε ∈ {0, 1} on the test set –
relaying to the binary outcome setting – thus assessing
performances using the classical AUC score. Then, with
ε = 30 days, one can directly compare prediction perfor-
mances with those obtained in the binary outcome setting.
We refer to this technique as Ŝmodel in Table 1, with
“model” the appropriate survival analysis model. Details
on the survival function estimation for each model are
given in Section 3.1 of Additional file 1.
Finally, we compute the pairwise Pearson correlation

between the absolute (because of the positive vectors for
RF and GB) covariates importance vectors of eachmethod
to obtain a similarity measure in terms of covariates
selection [26].

Table 1 Comparison of prediction performances in the two
considered settings, with best results in bold

Setting Metric Model Score

Survival analysis C-index

CURE 0.718

Cox PH 0.725

C-mix 0.754

Binary outcome AUC

SVM 0.524

GB 0.561

LR 0.616

NN 0.707

RF 0.738

ŜCURE (ε = 30) 0.831

ŜCox (ε = 30) 0.855

ŜC-mix (ε = 30) 0.940

Results
Table 1 compares the prediction performances of the dif-
ferent methods in both considered settings using appro-
priate metrics. For the binary outcome setting, results
in terms of accuracy and F-measure are also given in
Section 4 of Additional file 1. Corresponding hyper-
parameters obtained by cross-validation are detailed in
Section 3.2 of Additional file 1.
Thus, making binary predictions from survival analysis

models using estimated survival function highly improves
performances. Among all considered survival analysis
models, the C-mix yields the best results. Figure 2 displays
the estimated survival curves for the low and high risk of
early-readmission subgroups learned by this model. Note
the clear separation between the two subgroups.
Based on those early-readmission risk learned sub-

groups, we test for significant differences between them

Fig. 2 Estimated survival curves per subgroups (blue for low risk and
red for high risk) with the corresponding 95% confidence bands

https://github.com/SimonBussy/C-mix
https://github.com/SimonBussy/C-mix
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using Fisher-exact test [46] for binary covariate, and
Wilcoxon rank-sum test [48] for quantitative covariate.
Then, we similarly test for significant difference, on each
covariate, between naively created groups obtained with
the binary outcome setting (ε = 30 days). We also use
the log-rank test [22] on each covariate, directly involv-
ing quantitative readmission delays. Finally, we com-
pared the obtained significance (the p-value) for each
test, on each covariate. The tests induced by the C-
mix model are the most significant ones for almost all
covariates. The top-6 p-values of the tests are compared
in Fig. 3.
Taking the most significant C-mix groups highlighted

in Figs. 3 and 6 shows either boxplot (for quantita-
tive covariates) or repartition (for qualitative covariates)
comparison between those groups. One can now easily
visualize and interpret early-readmission risk data-driven
grouping, and focus on specific covariate. For instance, it
appears that patients among the high risk group tend to
have a lower hemoglobin level, as well as a slightly low-
ering diastolic blood pressure in the last 48 h of the stay
(while slightly uppering for the low risk group). It also
appears that less patients among the low risk group have
visited the emergency department in the last 18 months.
Let us now focus on the covariates selection aspect for

each method. Figure 4 gives an insight on the covariates
importance relatively to each model for 20 arbitrarily cho-
sen covariates (selected on decreasing importance order
for the C-mix model). The result with all covariates can be
found in Section 3.3 of Additional file 1. One can observe
some consistency between methods. Figure 5 gives a
global similarity comparison measure in terms of covari-
ates selection. We observe higher similarities between
methods within a single setting.

Fig. 3 Comparison of the tests based on the C-mix groups, on the
ε = 30 days relative groups and on survival times. We arbitrarily
shows only the tests with corresponding p-values below the level
α = 5%, with the classical Bonferroni multitests correction [3]

Discussion
In this paper, rather than trying to be exhaustive in terms
of considered methods, we choose, accordingly with the
aim of this paper, to offer a methodology for fairly com-
paring methods in the two considered settings. Also, we
do not try different ε values, as it is done in [11] (where
emphasis is on performance metrics), since our focus is to
propose a general comparison and interpretationmethod-
ology, with an analysis that remains valid for any choice of
ε value.
In the binary outcome setting, classifiers highly depend

on how the risk groups are defined: a slight change of
the survival threshold ε for assignment of classes can lead
to different prediction results [11]. In our dataset, only
5.2% of the visits lead to a readmission within 30 days.
We are then in a classical setup where the adverse event
appears rarely in the data at our disposal. In such set-
ting, a vast amount of temporal information is lost since
the model only knows if a readmission occurs before the
threshold delay or not. It appears that taking all the infor-
mation through the survival analysis setting first, and then
going back to a binary prediction using the survival esti-
mate, significantly enhances any binary prediction, which
intuitively makes sense.
Among all methods, the C-mix holds the best results. Its

good performances compared to other methods is already
shown in [10], both in synthetic and real data. While
the Cox PH regression model is widely used to analyze
time-to-event data, it relies on the proportional hazard
ratio assumption. But in the case of VOC for instance,
it is plausible that these early-readmissions are the con-
sequences of the same ongoing crisis (hospital discharge
before the VOC recovery), whereas late-readmissions are
genuine new unrelated crisis (recurrence). This would
suggest that the proportional hazard ratio assumption for
Cox PH model (or its related models like the competing
risks model, the marginal model or the frailty model; for
this reason not considered in this study) is not respected
in this situation. The CURE model main hypothesis being
that a proportion of the patient is cured is questionable
too. Those reasons partly explain the good performances
of the C-mix model that does not rely on any restrictive
hypothesis.
In this study, data extraction was performed with no

a priori on the relevance of each variable. For instance,
we extracted all biological covariates that have been mea-
sured during a patient’s stay, without presuming of their
importance on readmission risk. Selected variables in our
use case are relevant from a clinical point of view, high-
lighting the capacity of regularizationmethods to pinpoint
clinically relevant covariates.
The most important covariates in the survival analysis

setting are linked to the severity of the underlying SCD
(e.g. crisis frequency, baseline hemoglobin), while selected
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Fig. 4 Comparison of the top-20 covariates importance ordered on the C-mix estimates. Note that some time-dependent covariates, such as
average cinetic during the last 48 hours of the stay (slope) or Gaussian Processes kernels parameters, appear to have significant importances

covariates in the binary outcome setting are more related
to the crisis biological parameters (e.g. arterial blood
gas parameters). Some covariates appear to be selected
in both settings (e.g. mean lactate deshydrogenase). All
selected covariates make sens from a clinical point of view,
and the difference between the two settings seems to be
related to the underlying hypotheses of each setting: as
binary setting only takes information on early readmis-
sion, crisis related parameters are favored; meanwhile in
the survival analysis setting, parameters related to the
severity of the underlying SCD are favored. This under-
lines why it is crucial, when working on prognosis anal-
ysis, to use several methods to get an insight of the
most important covariates. Moreover, it insists on the

Fig. 5 Pearson correlation matrix for comparing covariates selection
similarities between methods. Red means high correlations

fact that looking “only” at the diastolic blood pressure for
instance – with an univariate point of view – would not be
of any help to predict early readmission. Now, when con-
sidered within a high dimensional space (aka with a large
number of other covariates) and using recent multivariate
machine learning methods designed to extract and learn
information from such complex high-dimensional setting,
the same diastolic blood pressure could contribute to the
prediction of patients at high risk of early readmission.

Conclusions
In this paper, we compare methods in terms of prediction
performances and covariates selection for different sta-
tistical and machine learning methods on a readmission
framework with high dimensional EHR data. We partic-
ularly focus on comparing survival and binary outcome
settings. Methods from both settings must be considered
when working on a prognosis study. Indeed, important
covariates are possibly different depending on the setting:
for instance in our case study, we highlight important
covariates linked either to the severity of the underlying
SCD or to the severity of the crisis.
Not only do frequent readmissions affect SCD patients’

quality of life, they also impact hospitals’ organiza-
tion and induce unnecessary costs. Our study lays the
groundwork for the development of powerful methods
which could help provide personalized care. Indeed,
such early-readmission risk-predicting tools could help
physicians decide whether or not a specific patient
should be discharged of the hospital. Nevertheless, most
selected covariates were derived from raw or unstruc-
tured extracted data, making it difficult to implement the
proposed predictive models into routine clinical practice.
All results in the binary outcome setting rely on a critical

readmission delay choice, which is a questionable - if
not counterproductive - bias in readmission risk studies.
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Fig. 6 Covariates boxplot comparison between the most significant C-mix groups

Additionally, we point out the idea that learning in the
survival analysis setting, rather than directly from the
binary outcome setting, and then making binary predic-
tions through the estimated survival function for a given
delay threshold can dramatically enhance performances.
Finally, the C-mix model yields the better performances

and can be an interesting alternative to more classical
methods found in the medical literature to deal with prog-
nosis studies in a high dimensional framework. Moreover,
it provides powerful interpretations aspects that could be
useful in both clinical research and daily practice (see
Fig. 6). It would be interesting to generalize our conclu-
sions to external datasets, which is the purpose of further
investigations.
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