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Using an analytically tractable example, the pseudomorphic inclusion, this

article examines the influence of elastic deformations on the form factor of

polyhedral nanocrystals. A control parameter, the total amplitude of the

variation of the complex density phase, is identified and it is shown that for low

enough deformations the characteristic asymptotic behaviours as a function of

the scattering vector associated with the polyhedral crystal shape are preserved,

leading to a strong contrast in the dependence of the form factor on orientation.

Using the sections method, it is explained why these results can be generalized

to more realistic elastic situations.

1. Introduction

In a previous article, we have established a compact formula

for the form factor of polyhedral crystals (Croset, 2017). We

have shown that the amplitude form factor presents an

asymptotic behaviour in q�1 when the scattering vector, q, is

normal to a face and an asymptotic behaviour in q�2 when the

scattering vector is perpendicular to an edge, the generic

asymptotic behaviour being in q�3. Therefore, the angular

dependence of the form factor exhibits marked contrast for

large enough q. The sections method developed in a subse-

quent article (Croset, 2018) showed that these asymptotic

behaviours and this contrast are intrinsically linked to the

finite character of the crystal which leads to discontinuities of

the density at the crystal surface.

Moreover, coherent diffraction experiments have shown

that elastic deformations modify the scattering pattern around

each Bragg peak of a diffracting nanocrystal (Pfeifer et al.,

2006; Diaz et al., 2010; Xiong et al., 2014; Chamard et al., 2015;

Hruszkewycz et al., 2017; Favre-Nicolin et al., 2018; Hill et al.,

2018; Shin et al., 2018). A standard approximation shows that,

in the calculation of the form factor, the real density, �(r),

must be replaced by a complex one of which the modulus is

the real density and the phase is the scalar product, �Q � u(r),

between Q, the Bragg vector, and u(r), the displacement. Two

cases must be distinguished: the case of plastic deformations

and the case of elastic deformations. In the first case – dislo-

cations, grain boundaries etc. – the displacements present

discontinuities which lead to discontinuities of the complex

density inside the crystal. Therefore, important variations of

the asymptotic behaviour of the form factor are expected in

such a case. In the second case, when compared with the

undeformed case, because of variations of its phase, the

density is no longer constant in the crystal but its disconti-

nuities and singularities still occur solely at the crystal surface.
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We may expect that, in such a case, the modifications of the

form factor asymptotic behaviour are more subtle. A question

emerges: is the contrast in the form factor dependence on q

orientation modified by elastic deformations? This article is

devoted to answering this question.

The study of the influence of elastic deformations on the

form factor implies the calculation of the elastic displace-

ments. In spite of the apparent simplicity of the constitutive

equations of the theory of continuous media linear elasticity,

the calculation of displacements is rarely analytical and

necessitates numerical approaches (molecular dynamics or the

finite element method). In this topic, pseudomorphic inclu-

sions, i.e. crystalline precipitates exhibiting the same crystal-

line parameters as their crystalline host matrix, play a special

role as it has been known since the seminal work of Eshelby

(1957) that the elastic displacements of a strained pseudo-

morphic inclusion can be calculated analytically. We will study

this case as an illustrative example of the behaviour of the

form factor in the presence of elastic deformations. In the first

part, we will describe the analytical calculation of the elastic

displacements of a cubic pseudomorphic inclusion. Then, in

the second part, we will discuss the results of the numerical

computation of the form factor for various orientations of the

stress and of the Bragg vector.

2. Calculations of the elastic displacements in a cubic
pseudomorphic inclusion

In the absence of body forces, the constitutive equations of

linear elasticity are written (Lifshitz & Landau, 1995)

� ¼ C � "; ð1Þ

"ij ¼ 1=2ð@iuj þ @juiÞ; ð2Þ

div � ¼ 0; ð3Þ

F ¼ �out � �inð Þ � n; ð4Þ
where � is the stress tensor, " is the strain tensor, C is the

stiffness tensor and n is the normal to the surface on which

forces F are applied. Following Eshelby (1957), we will search

for the displacement field associated with a pseudomorphic

inclusion in an infinite crystal. A first approximation is to take

the same stiffness tensor in the inclusion and in the crystal. A

second approximation is to take a stiffness tensor corre-

sponding to the isotropic case; it is therefore given by the

knowledge of two elastic constants, the Young modulus, E, and

the Poisson coefficient, �. These two approximations allow one

to perform analytical calculations. Because of different lattice

constants between the pseudomorphic inclusion and the

surrounding crystal, the pseudomorphic inclusion is strained.

Let us denote by "0 the uniform strain due to this difference in

lattice constants. The strain and stress fields, "1ðrÞ and �1ðrÞ,
which are equal to 0 outside the inclusion and to "0 and

�0 ¼ C � "0 inside the inclusion, satisfy equations (1), (2) and

(3). However, these fields do not satisfy equation (4) since the

discontinuity of �1 is unbalanced at the inclusion surface.

Let us consider the surface forces, F1, defined by

F1 ¼ � �1; out � �1; in

� � � n ¼ �0 � n: ð5Þ
Using the linearity of the constitutive equations, if we are able

to find two fields "2ðrÞ and �2ðrÞ which satisfy equations (1), (2)

and (3) and satisfy equation (4) with F = F1, the sum of the

fields 1 and 2 will answer our problem since it presents no

stress discontinuities at the inclusion surface. For �2, equation

(4) can be written

�2; out � �2; in

� � � n ¼ F1 ¼ � �1; out � �1; in

� � � n; ð6Þ
which leads to

ð�1; out þ �2; outÞ � ð�1; in þ �2; inÞ
� � � n ¼ 0: ð7Þ

For an infinite elastic isotropic medium, the Green function,

i.e. the displacement field due to a point force, F �r0 , is known.

We have

uðrÞ ¼ 1 þ �

8�Eð1 � �Þ
ð3 � 4�ÞFþ l ðr� r0Þ½F � lðr� r0Þ�

jr� r0j ; ð8Þ

where l ðrÞ ¼ r=r.
Thanks to our two approximations, equality of the stiffness

coefficients in the inclusion and the surrounding crystal and

isotropy of its stiffness tensor, we can use this Green function

to calculate u2(r). We obtain

u2ðrÞ ¼
R R

S0
Hðr; r0Þ � nðr0Þ d2S0 ð9Þ

with H given by

Hðr; r0Þ ¼ 1 þ �

8�Eð1 � �Þ
ð3 � 4�Þ�0 þ lðr� r0Þ � ½�0 � lðr� r0Þ�

jr� r0j ;

ð10Þ
where � stands for the tensorial product between two vectors.

Using the Gauss theorem, we can write

u2ðrÞ ¼
Z Z Z

V 0

Hðr; r0Þ � div d3v0 ¼
Z Z Z

V0

h
�
lðr� r0Þ�
jr� r0j2 d3v0;

ð11Þ
where each component of h(l) is an odd polynomial of degree

three in the components of l, of which the coefficients are

linear combinations of the �0 components. Since C is

proportional to E, the relation between u2 and "0 is linear with

coefficients only depending on � and on the geometry of the

inclusion but is independent of E. The choice of a cuboid for

the inclusion shape allows us to keep the analyticity of the

calculation one step further than equation (11) since real

antiderivatives can be used to perform each step of the triple

summation of the different terms of h. Finally we obtain

u2ðrÞ ¼ Arð�0Þ; ð12Þ
where Ar is a linear operator acting on �0 of which all the

elements can be analytically computed.

Before leaving this section, an important remark must be

made. Dimensional analysis allows us to show that the
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abandonment of our two approxima-

tions will keep the general form of

Hðr; r0Þ, which will be written

Hðr; r0Þ ¼ D
�
lðr� r0Þ�
jr� r0j � �0: ð13Þ

This allows us to understand why the

deformation landscape based on these

two approximations is generally

admitted to be good. Moreover, careful

examination of equation (11) shows

that, for a given "0 and �0, a homothetic

transformation of the crystal given by

r ! s ¼ r e and V 0 ! W 0 leads to a

displacement field obeying the trans-

formation u2ðrÞ ! e u2ðs=eÞ.

3. Analysis of the numerically
computed form factor

The analytical calculations of the

displacement field allow us to perform

by 3D fast Fourier transform the

numerical computation of the form

factor around a given Bragg peak using

the relation

f ðqÞ ¼ R R R
V

expf�i s � ½rþ u2ðrÞ�g d3v

’ R R R
V

exp½�iQ � u2ðrÞ� expð�i q � rÞ d3v

¼ R R R
V

exp½�i�ðr; Q; �0Þ� expð�i q � rÞ d3v; ð14Þ

where s is the scattering vector, Q is the Bragg vector and q =

s � Q is the ‘reduced’ scattering vector. It is clear that the

dependence of the density phase, �, on Q and �0 will play an

essential role. � depends linearly on Q and we have seen in the

previous section that u2 depends linearly on �0. Therefore, the

shape of the phase landscape is controlled by the directions of

Q and �0 while its contrast is controlled by the product of their

two amplitudes. Consequently, the study of the form factor of

a highly deformed crystal around a low-index Bragg peak is

equivalent to the study of a weakly deformed crystal around a

high-index Bragg peak. In the following, we will discuss the

form factor behaviour for different directions of Q and �0

using for the Poisson coefficient, �, the standard value of 0.3.

In order to keep the origin of the form factor constant, the

displacements used for the calculation of the complex density

are corrected by a linear part corresponding to the average of

the deformation on the crystal. ��, the difference between the

maximum and the minimum of the phase, will be used as a

control parameter. We will see that 2� appears to be a central

value for ��. From a scattering point of view, it is clear that

f(q) will be quite similar to the undeformed crystal form factor

for �� � 2� while deformations will play a dominant role for

�� � 2�. From a physical point of view, for low-index Bragg

peaks a dislocation corresponds to �� = 2� (Stroh, 1958; Ting,
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Figure 2
Dependence of the amplitude form factor maxima on q for different
orientations, for �� = 2� and for (�xx, �yy, �zz) / (0, 1, 0). The form
factor amplitude, f, is normalized by the cube volume, V. The Q direction
is (001). The shear stresses are null. The curves corresponding to different
orientations are grouped and shifted by a multiplicative factor M: q
normal to faces, M = 1000, full lines: black: (001) direction, red: (010)
direction, blue: (100) direction; q perpendicular to h100i edges, M =
10003/4, dotted lines: black: (011) direction, red: (021) direction, blue:
(012) direction; q perpendicular to h010i edges, M = 10001/2, dashed lines:
black: (101) direction, red: (201) direction, blue: (102) direction; q
perpendicular to h001i edges, M= 10001/4, full lines: black: (110) direction,
red: (210) direction, blue: (120) direction; q in a generic direction, M = 1,
full lines: black: (111) direction, red: (112) direction, blue: (121) direction;
green: (211) direction. The three light-green segments correspond to q�1,
q�2 and q�3 curves. The asymptotic behaviours of each direction group –
normal to a face, perpendicular to an edge and generic direction –
correspond to a different q exponent, �1, �2 and �3.

Figure 1
Orientation dependence of the amplitude form factor of a cubic inclusion of size L for qL = 20 and
for �� = 2�. The colour scale is logarithmic and common to all the images. The form factor
amplitude, f, is normalized by the cube volume, V. The Q direction is (001). The shear stresses are
null for all the images. (a) (�xx, �yy, �zz) / (0, 1, 0), (b) (�xx, �yy, �zz) / (0, 0, 1), (c) (�xx, �yy, �zz) /
(1, 1, 1), (d) (�xx, �yy, �zz) / (1, 1, 0), (e) (�xx, �yy, �zz) / (0, 1, 1) and ( f ) (�xx, �yy, �zz) = (0, 0, 0).
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2004) and, therefore, we expect �� < 2� for pseudomorphic

inclusions or pseudomorphic huts, i.e. inclusions on a surface

(Dujardin et al., 2006). Lastly, it is worth noting that a value

around 2� was found by Robinson and co-workers in their

seminal work on coherent scattering by a Pb nanocrystal

(Pfeifer et al., 2006).

For an undeformed cube of size L, the dependence of the

form factor asymptotic behaviour on q orientation leads to a

quite observable contrast in the form factor landscape for qL =

20. Fig. 1 exhibits such a dependence of f on the q orientation

for �� = 2�, Q//(001) and various orientations of the stress �0.

The main characteristics of the landscape are kept: high-

intensity poles which correspond to directions normal to a

face, high intensity on great circles joining these poles which

correspond to directions perpendicular to an edge, weak

intensity in generic directions. Nevertheless, some features

affect this general behaviour: (i) for (�xx, �yy, �zz) / (0, 1, 0)

or (�xx, �yy, �zz) / (1, 1, 0), the intensity overload is kept

around the (010) pole but disappears in the exact pole posi-

tion; the same behaviour occurs for the great circle normal to

the edges h001i; (ii) for (�xx, �yy, �zz) / (0, 0, 1), (�xx, �yy, �zz)
/ (1, 1, 1) and (�xx, �yy, �zz) / (0, 1, 1), this great circle

normal to the edges h001i is almost invisible. As for the case of

undeformed polyhedra, the landscape is closely linked to the
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Figure 4
Dependence of the section area modulus, S, on the section position, t, for
different {100} orientations and for �� = 2�. The position is normalized
by L, the cube size, and the section is normalized by L2. The Q direction is
(001). The shear stresses are null. (�xx, �yy, �zz) / (0, 1, 0). Black: section
normal to the (100) direction, red: section normal to the (010) direction,
blue: section normal to the (001) direction, green: section normal to any
of the {100} directions in the absence of strain. The inset is an enlarged
view of the main discontinuity.

Figure 5
Dependence of the section area modulus, S, on the section position, t, for
different {110} orientations and for �� = 2�. The position is normalized
by L, the cube size, and the section is normalized by L2. The Q direction is
(001). The shear stresses are null. (�xx, �yy, �zz) / (0, 0, 1). Black: section
normal to the (110) direction, red: section normal to the (101) direction,
blue: section normal to the (011) direction, green: section normal to any
of the {110} directions in the absence of strain. The inset is an enlarged
view of the main discontinuity.

Figure 3
Dependence of the amplitude form factor maxima on q for different
orientations, for �� = 2� and for (�xx, �yy, �zz) / (0, 0, 1). The form
factor amplitude, f, is normalized by the cube volume, V. The Q direction
is (001). The shear stresses are null. The curves corresponding to different
orientations are grouped and shifted by a multiplicative factor M: q
normal to faces, M = 1000, full lines: black: (001) direction, red: (010)
direction and (100) direction; q perpendicular to h100i edges, M = 10003/4,
dotted lines: black: (011) direction, red: (021) direction, blue: (012)
direction; q perpendicular to h010i edges, M= 10001/2, dashed lines: black:
(101) direction, red: (201) direction, blue: (102) direction; q perpendicular
to h001i edges, M = 10001/4, full lines: black: (110) direction, red: (210)
direction and (120) direction; q in a generic direction, M = 1, full lines:
black: (111) direction, red: (112) direction, blue: (121) direction and (211)
direction. The three light-green segments correspond to q�1, q�2 and q�3

curves. The asymptotic behaviours of each direction group – normal to a
face, perpendicular to an edge and generic direction – correspond to a
different q exponent, �1, �2 and �3.
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asymptotic behaviour of f(q). Figs. 2 and 3 illustrate this point.

The observable and undisturbed poles are associated with 1/q

asymptotic behaviour, the observable and undisturbed great

circles are associated with 1/q2 asymptotic behaviour, and the

generic directions correspond to 1/q3 asymptotic behaviour. In

contrast, perturbation or suppression of landscape features

corresponds to an increase of the coefficient of the 1/qn

asymptotic behaviour: this is clearly visible for the (010) pole

in Fig. 2 and for directions normal to the edges h001i in both

Figs. 2 and 3. The generalization of the sections method

developed by Croset (2018) allows us to understand these

results. By choosing as Cartesian coordinate system, (X, Y, Z),

a system having its Z axis parallel to q, f can be written

f ðqÞ ¼ R R R
S ðtÞ

exp½�i �ðr; Q; �0Þ� dX d Y

( )
expð�iqtÞ dt

¼ R
AcðtÞ expð�iqtÞ dt; ð15Þ

where S ðtÞ is the section of the crystal by the plane normal to

q at Z = t and Ac(t) is a complex area given by the integral of

the complex density on the section S ðtÞ given by

AcðtÞ ¼
R R

S ðtÞ
exp½�i�ðr; Q; �0Þ� dX dY: ð16Þ

Because of the triangular inequality, we have

jAcðtÞj<
R R

S ðtÞ
dX dY ¼ AðtÞ; ð17Þ

where A(t) is the real area of the section S ðtÞ. This result

indicates that the discontinuities of |Ac(t)| associated with the

entry and the exit of the crystal are weaker for the deformed

crystal when compared with the undeformed crystal case. This

is particularly clear in Fig. 4: in the (010) direction, the entry

discontinuity is a Heaviside step for the undeformed crystal

while it is essentially a slope discontinuity for the deformed

crystal, the Heaviside step only being visible at low scale. In

the same way, in the (110) direction, the slope discontinuity is

replaced with a curvature discontinuity

as shown in Fig. 5.

The sections method allows the study

of the crucial role of ��. Fig. 6 shows

that a decrease from 2� to � for ��
restores the slope discontinuity for the

section in the (110) direction. As clearly

shown in Fig. 7, all the features of the

form factor landscape associated with

the undeformed crystal are visible for a

deformed crystal with �� = �: poles in

directions normal to the faces, great

circles corresponding to directions

perpendicular to the edges. To under-

stand these results, a detailed study of

the displacement field is useful. Let us

take as an example the case Q//(001),

(�xx, �yy, �zz) / (0, 0, 1) and q//(110).

For � L/(2)1/2 < t < L/(2)1/2, the section,

S ðtÞ, is a rectangle with a constant edge

length in the direction [001] and a

variable edge length in the direction

½110� which goes from 0 for t ! L/(2)1/2

to L(2)1/2 for t = 0. Fig. 8 shows the

density phase landscape for various

values of t. Since Q is parallel to (001),
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Figure 6
Dependence of the section area modulus, S, on the section position, t, for
a (110) direction. The position is normalized by L, the cube size, and the
section is normalized by L2. The Q direction is (001). The shear stresses
are null. (�xx, �yy, �zz) / (0, 0, 1). Black: density phase amplitude equal to
2�, red: density phase amplitude equal to �.

Figure 7
Orientation dependence of the amplitude form factor of a cubic inclusion of size L for qL = 20 and
for �� = �. The colour scale is logarithmic and common to all the images. The form factor
amplitude, f, is normalized by the cube volume, V. The Q direction is (001). The shear stresses are
null for all the images. (a) (�xx, �yy, �zz) / (0, 1, 0), (b) (�xx, �yy, �zz) / (0, 0, 1), (c) (�xx, �yy, �zz) /
(1, 1, 1), (d) (�xx, �yy, �zz) / (1, 1, 0), (e) (�xx, �yy, �zz) / (0, 1, 1) and ( f ) (�xx, �yy, �zz) / (0, 0, 0).
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the density phase landscape is identical to the landscape of ux,

the x component of the displacement. Several features can be

seen:

(i) We have �(�X) = ��(X) and �(�Y) = �(Y).

(ii) The amplitude of the phase variation increases with t

and reaches �� for t ! L/(2)1/2.

(iii) The phase variation with Y is almost null for high t

while it presents oscillation for low t.

For t ! L/(2)1/2 and �� = 2�, � varies consequently from

�� to +� from the left side to the right side of the section. The

integral of the first harmonic of the complex density is

therefore null for t ! L/(2)1/2. This effect overlaps with the

variation of the real area of the section. This explains the

substitution of a parabolic shape for a linear shape for the

variation of the area modulus in Fig. 6.

Most of the properties of the density phase landscape

shown in Fig. 8 are generic and are not due to our special

choice of an Eshelby inclusion. There are two reasons for this:

First, since the X axis coincides with the z axis, the change in

sign of the displacement when passing from the left side of the

section to the right side of the section is due to the fact that on

the crystal boundaries the displacements are parallel to the

applied forces. This behaviour is generic since it is due to the

1/r behaviour of the Green function highlighted in the

previous section.

Second, the increase in the displacement when the section is

near an edge which is the case for t ! L/(2)1/2 is due to a tip

effect. This effect, similar to the tip effect in electrostatics, is

generic in cases of linear elasticity and is a consequence of the

constitutive equations being quite similar to the electrostatics

ones [see for example Fig. 13 in Xiong et al. (2014)].

These two remarks are of major importance: whereas for

more complex situations than the pseudomorphic inclusion

the phase landscape of the sections would be less simple, the

behaviour of the first harmonic of the complex density will be

kept. As a result, for �� 	 2� the singularities of the complex

area modulus occurring at the crystal boundaries will be

similar to those obtained for our example. This generality can

be compared with the generality obtained in previous work on

the observation of elastic displacement modes by grazing-

incidence X-ray diffraction (Prévot et al., 2007).

4. Conclusion

Taking, for example, the pseudomorphic inclusion for which

the displacement field can be calculated analytically, we have

been able to study the influence of the elastic relaxations on

the form factor of cubic nanocrystals. We have highlighted the

role of a control parameter, ��, the total amplitude of the

variation of the complex density phase. The asymptotic
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Figure 8
Variation of the density phase in the section S ðtÞ for various values of t. The Q direction is (001) and the q direction is (110). The shear stresses are null
for all the images and (�xx, �yy, �zz) / (0, 0, 1). The colour scale is linear and is the same for all the sections. The varying side of the section is normalized
to 1 by the function g(t) = 1/(2 � 4t2/L2)1/2.
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behaviours of the form factor of undeformed crystals are

preserved for �� < 2� while they are modified in some

directions when �� 
 2�. An a priori guess of the orientation

of the stress allows us to determine the scattering directions

for which the asymptotic behaviours associated with the

crystal shape are preserved and the scattering directions for

which they are strongly modified. Using the sections method

we showed that these results are generic and not due to the

simplicity of our example. Thanks to the development of

X-ray free-electron laser facilities, coherent scattering studies

of the shape and the deformations of nanocrystals will become

easier in the near future (Vartanyants et al., 2007). Our results

may help to define a measuring strategy when performing such

studies.
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Carbone, D., Metzger, T. H. & Bauer, G. (2010). New J. Phys. 12,
035006.
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