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Abstract: This study puts forward a novel diagnostic approach based on canonical variate residuals
(CVR) to implement incipient fault diagnosis for dynamic process monitoring. The conventional
canonical variate analysis (CVA) fault detection approach is extended to form a new monitoring index
based on Hotelling’s T2, Q and a CVR-based monitoring index, Td. A CVR-based contribution plot
approach is also proposed based on Q and Td statistics. Two performance metrics: (1) false alarm rate
and (2) missed detection rate are used to assess the effectiveness of the proposed approach. The CVR
diagnostic approach was validated on incipient faults in a continuous stirred tank reactor (CSTR)
system and an operational centrifugal compressor.

Keywords: slowly evolving faults; fault detection; fault identification

1. Introduction

Rotating machines, such as centrifugal compressors, are widely used due to their high
performance and robustness [1]. These machines typically operate under adverse conditions such as
high pressures and speeds. Therefore, performance deterioration and failure are unavoidable. In order
to solve this problem, data-driven machine health monitoring systems (MHMS) [2] were introduced to
realize predictive maintenance. Data-driven MHMS comprises four main steps: extracting features
from collected data, detecting an incipient fault, determining the variables mostly associated with
the fault and implementing a prognostic model to predict machine degradation. It is clear that these
technical processes are crucial for the safe, efficient and sustainable operation of any rotating machinery.
Therefore, it is not surprising that automated data-driven machine health monitoring has become
increasingly popular in recent years.

Failures of rotating machinery can cause unnecessary maintenance operations and large economic
losses, and it is crucial to find ways to monitor the status of rotating machines in real time.
Early diagnostics of process faults enables the implementation of an appropriate maintenance strategy,
alleviating the consequences of unplanned down-time and equipment failure. Multivariate statistical
process monitoring (MSPM) algorithms have recently seen improvements in diagnosing process
abnormalities. MSPM techniques such as principal component analysis (PCA) [3], independent
component analysis (ICA) [4] and canonical variate analysis (CVA) [5] have been widely applied for
the detection of process abnormalities in industrial plants and systems. In addition, alternatives to
the standard multivariate monitoring methods [6–9], which take into consideration the correlations
between timestamps in the past and the future, have also been put forward for dynamic processes
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monitoring. Amongst the aforementioned MSPM techniques, CVA-based approaches were shown to
be superior to other monitoring methods in terms of lead time and false positive rates [8]. Demand for
facilitating fault prognosis has driven increased attention towards the development of incipient fault
detection techniques, and great efforts have been made to improve the detectability of slow evolving
faults [10–13]. The challenge lies in whether an advanced index (which is suitable for early detection
of incipient faults) can be constructed based on process measurements to monitor dynamic processes
operating under varying operational conditions. Recently, a canonical variate dissimilarity (CVD)
index (hereafter referred to as Td) was put forward to address the challenge of early fault detection of
incipient faults under changing operating conditions [14]. However, the CVD index tends to incur
higher false alarm rates than traditional health indicators when system dynamics change rapidly [14].
In this study, the traditional CVA approach is extended to form a new monitoring index based on
Hotelling’s T2 and Q monitoring indices and the canonical variate residuals-based monitoring index Td.
According to [15], the results of the canonical variate analysis between the future and past observations
are referred to as canonical variate residuals (CVR). CVR measures the distinctions between past
and future observations and is potentially a more sensitive index for monitoring incipient faults
than indices using only past measurements. The performance of the proposed monitoring index is
demonstrated on an operational compressor and a continuous stirred tank reactor (CSTR) system.
The experimental results indicate that the proposed health index can detect slowly developing faults
earlier than Hotelling’s T2 and Q statistics while still maintaining an acceptable false alarm rate.

Another major task of data-driven MHMS is to find the influential variables that are most likely
related to a detected fault. As an essential stage in process monitoring, data-driven fault identification
techniques have evolved quickly owing to the prosperity of MSPM approaches. A reconstruction-based
contribution method was proposed in [16] to improve the diagnosability of the traditional PCA-based
contributions. A deviation-based PCA contribution method was put forward [17] to enable the
monitoring of nonlinear systems. While useful, the traditional one-dimensional contribution charts
only demonstrate the variable contributions at one time instant, and multiple contribution charts are
required when applied to slowly developing faults. In an effort to solve this problem, the concept
of using 2-D contribution maps for identifying process variables was proposed in [18]. The concept
of using CVA-based 2-D contribution maps for identifying process variables associated with specific
fault occurrences was first proposed in [19]. This method was later utilized in [5,20] to identify
faulty variables responsible for compressor faults. CVA was utilized together with cause-and-effect
relationships among process variables to perform fault-root cause analysis in [21]. However, a causal
relationship of the underlying process is commonly scarce for real industrial processes. CVA was also
used as a fault classification tool in [22,23] for fault diagnosis. However, fault classification techniques
normally require available historical failure data in respect to different types of faults and are therefore
not ideal for real industrial systems, since the known event logs may not be available for some plants.
Most of the aforementioned fault diagnostic techniques were validated on abrupt faults and CVA’s
applicability for fault identification of slowly developing faults has not been fully investigated. In this
study, a canonical variate residuals-based (CVR-based) contribution plot method based on Td and
Hotelling’s Q statistics for isolating faulty variables (specifically for incipient fault identification tasks)
has been developed. To the authors’ best knowledge, this is the first time CVR-based contributions
have been derived and utilized for the fault identification of incipient faults.

The major contributions of this paper are as follows:

• The development of a new monitoring index Tc based on statistics, T2, Q and Td. The combined
index Tc is seen to be more sensitive than T2 and Q for slowly developing faults while still
maintaining satisfactory missed detection rates.

• The development of a CVR-based contribution method for the monitoring of slowly evolving
faults. To our best knowledge, it is the first time that it is the first time that CVR-based contribution
has been derived and used for fault identification.



Energies 2019, 12, 726 3 of 16

• The use of the proposed diagnostic method for incipient fault diagnosis using data captured from
a CSTR simulation program and an operational industrial centrifugal compressor.

2. Methods

2.1. CVA-Based Diagnosis

2.1.1. CVA Revisited

ya,t =


yt−1

yt−2
...

yt−a

 ∈ Rna (1)

yb,t =


yt

yt+1
...

yt+b−1

 ∈ Rnb (2)

ya,t and yb,t are then normalized to the zero-mean vectors ŷa,t and ŷb,t in order to avoid the domination
of variables with excessive values. Then, the normalized future and past vectors ŷa,t and ŷb,t are
rearranged as follows:

Ŷa = [ŷa,t+1, ŷa,t+2, . . . , ŷa,t+N ] ∈ Rna×N (3)

Ŷb = [ŷb,t+1, ŷb,t+2, . . . , ŷb,t+N ] ∈ Rnb×N (4)

in order to generate the reshaped matrices Ŷa and Ŷb. In Equations (3) and (4), N = M− a− b + 1 and
M denotes the length of yt. Then the covariance matrices of Ŷa and Ŷb, namely ∑a,a and ∑b,b as well as
the cross-covariance matrix ∑a,b can be computed from:

∑a,a = ŶaŶT
a /(N − 1), ∑b,b = ŶbŶT

b /(N − 1), ∑b,a = ŶbŶT
a /(N − 1) (5)

The vector of canonical correlations ∑ = diag(λ1, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk > 0 is achieved
by performing singular value decomposition (SVD) on the Hankel matrixH:

H = ∑b,b
−1/2 ∑b,a ∑a,a

−1/2
= U ∑ VT (6)

Suppose that two data sets Ŷa ∈ Rna×N and Ŷb ∈ Rnb×N are available for diagnosing possible
anomalies. The remaining issue is to compute the diagnostic observers that can achieve satisfactory
fault diagnostic performance with a given threshold. In conventional CVA-based approaches, only past
data vectors ŷa,t are used to construct test statistics:

zt = Kŷa,t = VT
q ∑−1/2

a,a ŷa,t (7)

et = Gŷa,t = VT
na−q ∑−1/2

a,a ŷa,t (8)

2.1.2. T2 and Q Indices

Two widely used indices, Hotelling’s T2 and the Q indices [24,25], are computed based on the
state and residual space information zt and et, respectively.

T2 = zT
t zt (9)



Energies 2019, 12, 726 4 of 16

Q = eT
t et (10)

2.1.3. Td Index

Motivated by the fact that CVA is able to find maximum correlations between two data sets,
practitioners can detect small changes by examining how far away future canonical variates are
deviated from past canonical variates (e.g., by examining the usual correlation between past and
future). This leads to a diagnostic observer called canonical residuals that quantifies the distinctions
between the past and future measurements. Canonical residuals are generated as:

rt = LT
q ŷb,t −∑q JT

q ŷa,t (11)

where LT
q denotes the first q rows of the projection matrix LT , and LT = ∑−1/2

b,b UT
q . Similarly, JT

q is the

first q rows of the projection matrix JT , and JT = ∑−1/2
a,a VT

q . ∑q = diag
(
λ1, λ2, . . . , λq

)
is a diagonal

matrix with its diagonal elements being the first q canonical correlations calculated as Equation (6).
Canonical residuals are measures of the discrepancies between the past and future measurements and
are able to provide more effective feature representation of small shifts in the early stage of emerging
faults compared with diagnostic statistics derived from the traditional CVA approach [26].

Since the condition monitoring data are mean-variance normalized, the mean of the canonical
residuals rt is:

E(rt) = LT
q E(ŷb,t)−∑q JT

q E(ŷa,t) = 0 (12)

The covariance of rt can be calculated as:

∑r = E
(
rrT) = JT

q E
(
ŷa,tŷT

a,t
)

J + ∑ LT
q E
(

ŷb,tŷT
b,t

)
LT

q ∑T −JT
q E
(

ŷa,tŷT
b,t

)
LT

q ∑T

−∑ LT
q E
(
ŷb,tŷT

a,t
)

J = I + ∑ ∑T −∑ ∑T −∑ ∑T = I −∑ ∑T
(13)

The distinctions between the past and future measurements are centered around a zero mean
under healthy conditions. Hence, diagnostic test statistics can be calculated as the multivariate
standard distance of the discrepancy features from zero [27]:

Td = f
(

c(rt − 0)TS−1(rt − 0)
)
=

∣∣∣c(rt−0)TS−1(rt−0)
∣∣∣

|c|
[
(rt−0)TS−1SS−1(rt−0)

]
=
[
(rt)

TS−1(rt)
]1/2

=
[
rT

t

(
I −∑ ∑T

)
rt

]1/2
(14)

where c is a normalizing constant, and S = I−∑ ∑T is the covariance matrix of the test and the healthy
data. The roots of the multivariate standard distance between two random vectors can be traced back
to the results presented in [27], which is described as follows:

Given two random vectors x1 and x2, the univariate standard distance between the two vectors is
defined as:

f (a) =
∣∣∣aTx1 − aTx2

∣∣∣/(aTSa
)1/2

(15)

where a is a vector of unit length and aTa = 1. aTx1 and aTx2 are the orthogonal projections of the
vectors x1 and x2 on the linear space spanned by a, respectively. S is the covariance matrix of x1 and x2.
Thus, f (a) denotes the univariate standard distance between vectors x1 and x2 in the one-dimensional
subspace spanned by a. According to [27], the multivariate standard distance between x1 and x2 is
attained for a = c(x1 − x2)

TS−1(x1 − x2) and takes the value:

Td = f
(

c(x1 − x2)
TS−1(x1 − x2)

)
=
[
(x1 − x2)

TS−1(x1 − x2)
]1/2

(16)
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2.1.4. Combined Index Tc

In this study, fault detection is carried out using a new health index Tc that combines Hotelling’s
T2 and Q statistics and the CVR-based monitoring index Td.

Tc =
T2

σT2 +
Q
σQ +

Td
σTd

(17)

where σT2
, σQ and σTd denote the control limit of T2, Q and Td index, respectively.

Equation (17) generalizes the combined expression by Alcala and Qin [16] to include Td. Fault
detection is implemented by comparing the values of the new monitoring index with a pre-defined
threshold. In this study, all control limits are calculated from an adaptive kernel density estimator
based on a linear diffusion process [28]. A non-parametric density estimator can provide an estimate of
density for any given random data and has been widely applied for fault diagnosis. In the traditional
CVA methods, fault thresholds are obtained based on the assumption that the density of the T2, Q
and Td indices are Gaussian, which may not hold true in real-world applications due to the presence
of system nonlinearities. Later on, a kernel density estimation method was put forward [24] to solve
this problem. However, this method lacks local adaptivity, which may result in high sensitivity
to outliers [28]. Moreover, the kernel density estimation method involves a bandwidth selection
procedure, which requires a preliminary normal model to be determined. The adaptive kernel density
estimator which is used in this study completely avoids the bandwidth selection process and is thus
strictly non-parametric and suitable for online monitoring. Furthermore, the adaptive density estimator
improves local adaptivity as the estimator is regarded as a transition density of a linear diffusion
process. After the probability density functions are estimated from the sample data of the T2, Q or
Td indices, the threshold for individual health indicators is calculated from the probability density
function (PDF) for a given significance level α as follows:

∫ T2
α

−∞
p(I)dI = α (18)

where I denotes indices σT2
, σQ or σTd , p(I) denotes the PDF of a health indicator, and T2

α is the
calculated fault threshold.

The determination of an appropriate fault threshold is crucial because selecting a threshold too
large will lead to the index being too insensitive, while selecting a threshold too small will lead to
the index being over sensitive to outliers. The adaptive kernel density estimation approach used in
this paper is a promising alternative to conventional estimators that involve a bandwidth selection
process as the bandwidth is chosen automatically. For a fair comparison with the T2 and Q indices,
fault thresholds for Td are calculated with the same settings as those for T2 and Q indices.

Figure 1 illustrates how the observation window of vectors [ya,t, yb,t] is updated at each sampling
time. For the CVR-based online monitoring, each new observation enters the future observation
window of length b, while the past observation window slides by a single increment in order for
updating the samples covered by the past window. The past and future observation window updates
recursively as a new measurement becomes available.
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Figure 1. Illustration of how the future and past windows are updated when a new measurement
becomes available.

2.2. CVA-Based Fault Identification

2.2.1. CVA-Based Contributions

The following definition of CVA-based variable contribution was proposed by Jiang et al. [19]:

CT2 = T2 = zTz = zTKŷa,t =
n

∑
i=1

q

∑
j=1

zjKj,i ŷa,i =
n

∑
i=1

Ci,T2 (19)

CQ = Q = eTe = eTGŷa,t =
n

∑
i=1

na−q

∑
j=1

ejGj,i ŷa,i =
n

∑
i=1

Ci,Q (20)

CT2,Q = 0.5CT2 + 0.5CQ (21)

where CT2 and CQ denote the variable contribution (or fault score) calculated based on the state and
residual space information in the CVA model, respectively. Ci,T2 is the contribution of variable ŷi to the
monitoring statistic T2 and Ci,Q is the contribution of ŷi to the monitoring statistic Q. zjKj,i ŷa,i is the
contribution of variable ŷi to the jth canonical variate zj. Similarly, ejGj,i ŷa,i denotes the contribution of
variable ŷi to the jth canonical residual variate ej. The combined contribution according to [19] uses
equal weights for the state and residual space contribution CT2,Q = 0.5CT2 + 0.5CQ.

The proposed CVR-based contribution is calculated as follows:

CTd = rt
T
(

I −−2
q

)−1
rt =

n

∑
i=1

q

∑
j=1

rj∑−1
dd j

(
Lj,i ŷb,i −−j Jj,i ŷa,i

)
=

n

∑
j=1

Ci,Td (22)

where ∑−1
dd =

(
I −−2

q

)−1
, and CTd ∑−1

dd =
(

I −−2
q

)−1
denotes the state space contribution.

CTd ,Q = 0.5CTd + 0.5CQ (23)

where CQ is the residual space contribution, and CTd ,Q denotes the proposed CVR-based combined
contribution.

3. Results

3.1. Fault Description

3.1.1. CSTR Fault Description

The proposed method is first evaluated using data created from a CSTR system. The CSTR
Simulink model utilized in this study was generated by the authors of [14], which was designed
especially for simulating incipient faults. The CSTR model is simulated using Matlab Simulink. Table 1
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summarizes the process variables for this CSTR system. Among these variables, the system inputs
are Ci, Ti and Tci, and the system outputs are C, T, Tc and Qc. The schematic of the CSTR is shown
in Figure 2. A detailed description of the process can be found in [14]. The CSTR process’ dynamic
model is formulated as:

dC
dt

=
Q
V
(Ci − C)− a1kC + v1 (24)

dT
dt

=
Q
V
(Ti − T)− a1

(∆Hr)kC
ρCpV

(T − Tc) + v2 (25)

dTc

dt
=

Qc

Vc
(Tci − Tc) + b1

UA
ρCCpcVc

(T − Tc) + v3 (26)

where Q is inlet flow rate, ∆Hr represents heat of reaction, UA is the heat transfer coefficient, ρ and
ρC are fluid density, Cp and Cpc are fluid heat capacity, and V and Vc are tank and jacket volume,
respectively.

Healthy and unhealthy data sets were obtained from the CSTR model for 1200 min of operation.
All data were obtained at a sampling rate of one sample per minute. As shown in Figure 3, the
operating conditions were deliberately varied by perturbing the system inputs around their mean
values every sixty samples. For faulty data sets, each testing dataset started with no fault, and the fault
starts after 200 min of operation. The name of different process variables is summarized in Table 1.
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flow rate; Ci is the concentration in the reactor.
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Figure 3. Sample dataset (healthy) of system inputs from CSTR simulation.

Three fault scenarios were utilized to assess the effectiveness of the proposed fault detection
approach. The different types of faulty conditions considered are summarized in Table 1. The parameter
a1 was set to one during normal operating conditions. During faulty conditions, a1 decayed gradually
from one toward zero. All faults were introduced after 1400 min of normal operation. The faulty
variables sample dataset for fault 1, 2, and 3 are shown in Figures 4–6. It is worth noting that fault
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2 and fault 3 become visible at different times because the decaying rates were deliberately varied.
Measured variables of the CSTR process are summarized in Table 2.

Table 1. Slowly evolving fault scenarios in the continuous stirred tank reactor (CSTR) system.

Fault ID Fault Description Decaying rate Fault Type

1 Tc = Tc,0 + αt α = 0.1 Additive
2 a1 = a0 exp(−αt) α = 0.0006 Multiplicative
3 a1 = a0 exp(−αt) α = 0.003. Multiplicative
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Table 2. Measured variables of CSTR process.

Variable ID Variable Units

1 Ci (noise-free) mol/L
2 Ti (noise-free) K
3 Tci (noise-free) K
4 Ci mol/L
5 Ti K
6 C mol/L
7 T K
8 Tc K
9 Tci K

10 Qc L/min

3.1.2. Compressor Fault Description

In order to further assess the ability of the proposed diagnostic technique to effectively detect
incipient faults and identify faulty variables, the model was tested using data captured from an
operational industrial compressor. This machine is a high-pressure centrifugal compressor running
at a large refinery in Europe (hereafter referred to as compressor A). The measured time series from
compressor A consisted of 2199 observations and 22 variables. Table 3 summarizes the names of
different process variables. For this study, all data were captured at a sampling rate of one sample per
hour. As shown in Figure 7, the root-cause variables are the two different bearing–vibration sensors;
the machine continued to run until the 2199th sampling point.Energies 2019, 12, x FOR PEER REVIEW 9 of 16 
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rate is minimized during cross-validation. For the purpose of finding the optimal number of 𝑞 which 
gives the lowest false alarm rate, a healthy dataset containing 1200 observations was used to test the 
trained CVA diagnostic model. The false alarm rate was plotted against different values of 𝑞 in 
Figure 8. For low and high values of dimensionality, the false alarm rate is high due to large number 
of 𝑇  threshold violations. 𝑞 = 15 was finally adopted in this work as it resulted in the lowest 
number of false positives.  

Figure 7. Trend of two different bearing vibration sensor measurements of compressor A. DE is short
for drive end.

Table 3. Measured variables of compressor A.

ID Variable Name ID Variable Name

1 Stage 1 Suction Pressure 12 Stage 1–2 DE Radial Vibration Overall Y *
2 Stage 1 Discharge Pressure 13 Stage 1–2 NDE Radial Vibration Overall X *
3 Stage 1 Suction Temperature 14 Stage 1–2 NDE Radial Vibration Overall Y *
4 Stage 1 Discharge Temperature 15 Stage 1–2 Thrust Position Axial Probe 1
5 Stage 2 Suction Pressure 16 Stage 1–2 Thrust Position Axial Probe 2
6 Stage 2 Discharge Pressure 17 Stage 3 DE Radial Vibration Overall X *
7 Stage 2 Suction Temperature 18 Stage 3 DE Radial Vibration Overall Y *
8 Stage 2 Discharge Temperature 19 Stage 3 NDE Radial Vibration Overall X *
9 Stage 3 Suction Pressure 20 Stage 3 NDE Radial Vibration Overall Y *
10 Stage 3 Discharge Pressure 21 Stage 3 Thrust Position Axial Probe 1
11 Stage 1–2 DE Radial Vibration Overall X * 22 Stage 3 Thrust Position Axial Probe 2

* DE is short for drive end, and NDE is short for non-drive end.
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3.2. Fault Detection

3.2.1. CSTR Fault Detection

The CVR-based diagnostic approach is first trained using a data set collected from normal
operating conditions. The scale of time lags a and b were estimated through the autocorrelation
analysis [5] of the root summed squares of all variables in the training data set. Here the number of
time lags a and b were set to five. Since the underlying process data is non-stationary and non-linear,
and does not follow a Gaussian distribution, a kernel density estimator based on a linear diffusion
process [28] was adopted here to determine the upper control limits of the test statistics. All upper
control limits for healthy operational conditions in this investigation were calculated at the 99%
confidence level (i.e., the probability the test statistics are smaller than the predefined threshold is
99%). A key step in CVA is to determine the order of the reduction, that is, its number of retained
states q. In this study, the optimal number of retained states q was selected such that the false alarm
rate is minimized during cross-validation. For the purpose of finding the optimal number of q which
gives the lowest false alarm rate, a healthy dataset containing 1200 observations was used to test
the trained CVA diagnostic model. The false alarm rate was plotted against different values of q in
Figure 8. For low and high values of dimensionality, the false alarm rate is high due to large number of
Tc threshold violations. q = 15 was finally adopted in this work as it resulted in the lowest number of
false positives.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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The fault detection results are depicted in Figures 9–11. Two performance metrics: (1) detection
time (DT) and (2) missed detection rate (MDR) are utilized to evaluate the performance of the proposed
Tc index and its counterparts. MDR is computed as:

MDR =
∑ samples (I < Ithreshold| f ault)

total no. o f samples
(27)

where I denotes a monitoring index and Ithreshold denotes the corresponding upper control limit.
It is visible from Figure 9 that the combined index detects the fault at 1544 min of sampling

time, providing ample time to plan maintenance activities, while T2 and Q become sensitive to the
fault only after 1614 min of sampling time. In Figures 10 and 11, both T2 and Q struggle to cross the
fault threshold, leading to a higher MDR (see Table 4), while Tc appears to be more sensitive to small
changes at the initial stage of the fault. Table 4 summarizes the performance of the fault detection
methods studied. The bold values show the fault cases where CVR presents a superior performance
than T2 and Q statistics. It is observed that the combined index Tc is more sensitive than T2 and Q for
slowly developing faults, leading to earlier fault detection times. Also, the Tc index resulted in lower
missed detections than the other two statistics under faulty operating conditions, thereby making it a
promising alternative to existing indices.

As mentioned previously, the performance of CVA is superior to other dimension reduction
techniques when validated using a multiphase flow facility [3] working under changing operating
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conditions. The proposed diagnostic method inherits the strength of CVA in handling varying
operating conditions, leading to low false alarm rates for all the faulty cases studied (see Table 5).

Table 4. Monitoring results for the CSTR and pump faults.

Fault Type T2 Q Tc

CSTR fault 1
Detection time (min) 1626 1619 1544
Missed detection rate (%) 8.75% 9.04% 6.5%

CSTR fault 2
Detection time (min) 1882 1869 1841
Missed detection rate (%) 20.08% 19.29% 18.42%

CSTR fault 3
Detection time (min) 1502 1502 1490
Missed detection rate (%) 4.37% 4.17% 4.04%

Compressor Detection time (min) 1641 1976 1579
Missed detection rate (%) 2.82% 19.37% 0.55%

Table 5. False alarm rate of Tc index.

Fault Type CSTR Fault 1 CSTR Fault 2 CSTR Fault 3 Compressor

False alarm rate 1.13% 0.71% 2.76% 3.25%Energies 2019, 12, x FOR PEER REVIEW 11 of 16 
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3.2.2. Compressor Fault Detection

Similar to the procedure described in Section 3.2.1, the scale of time lags a and b were estimated
through the autocorrelation analysis and were both set to 10 in this study. The optimal number of
retained states q in the CVA model was estimated by inspecting the false alarm rate against different
number of retained states. According to the results shown in Figure 12, the number of q was set to
17 in the CVA diagnostic model. Figure 13 shows the results obtained in terms of fault detection.
The combined monitoring index Tc is able to distinguish normal operating conditions from real faults
incurring dynamics anomalies and thereby results in the early detection of faults with a short time
delay. In this case, T2 struggles to cross the threshold between 1641 min samples and 1579 min samples,
leading to a high MDR as shown in Table 4. The Q statistic, however, is insensitive to the fault and can
only detect the fault at the late stage of degradation. The fault detection time and missed detection
rate for different indices are demonstrated in Table 4.
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3.3. Fault Identification

After fault detection, the proposed CVR-based method is applied to identify the influential
variables associated with the detected faults. The resultant contribution plots for the CSTR and
compressor fault cases are depicted in Figure 14. In each contribution plot, the sampling time denotes
the horizontal axis and the variable index denotes the vertical axis. The stronger the contribution of
a variable is, the larger the fault-related deviations associated with the specific variable is. At each
faulty condition, faulty variables will show continuously strong bands of contribution after the fault is
detected by the combined health index.

CSTR fault case 1 simulates sensor drifts on the measured variable Tc, and thus variable 10 is
the only fault influential variable. Fault 2 and fault 3, however, simulate catalyst decay at different
decaying rates; therefore the associated faulty variables are variables 7, 8 and 10. It is observed in
Figure 14a that the contributions of variable 10 are higher than the normal variables for the CVR-based
contribution, indicating that variable 10 is successfully identified as the faulty variable for fault 1.
Based on the information provided by the CVR-based contributions for CSTR fault case 2, variables 7
and 10 show continuously strong bands of contribution throughout the degradation process, making
them distinct from fault-free variables. Although variable 8 only demonstrates large contributions at
around 2260–2280 min samples in Figure 14b, its contribution is still much higher on average over all
faulty samples than the normal variables (see Figure 15; the fault scores of variable 8 are much higher
than those of variables 1–6 and 9). Further investigation is required into the process so as to verify
the observations.
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(d) compressor fault.

It is observed in Figure 14c that variables 7, 8 and 10 are successfully identified as faulty variables
because of their continuously strong contributions throughout the deterioration process. State space
and residual space contribution plots for CSTR fault 3 are also shown in Figure 16a,b, respectively.
Most faulty variables (except variable 8) are identified through Figure 16b, with variable 7 being
the most influential variable. Figure 16a identifies all faulty variables, with variable 10 being the
most influential variable. The combined contribution plot shown in Figure 14c identifies all faulty
variables and enhances the contributions from variable 7, leading to a more accurate contribution map
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for CSTR fault 3. This observation highlights the advantages of the combined contribution plot in
identifying influential variables compared with state space/residual space contribution map. State
space contributions are calculated using the canonical residuals rt and the first q canonical correlations
∑q as per Equation (22), while residual space contributions are calculated based on the last na− q
columns of V as per Equation (20). Influential variables identified in the state space are associated
with the large deviations of the states that present during healthy operational conditions. The residual
space contributions, however, are related to the new states which are not described by the healthy
CVR model. It is observed from Figure 14d that the influential variables are stage 3 drive end (DE)
vibration sensors, which agrees with the time-domain observations.Energies 2019, 12, x FOR PEER REVIEW 14 of 16 
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4. Conclusions

The CVR-based diagnostic method proposed in this paper extended the concept of CVA in
fault detection and identification of abrupt faults to the situation of diagnosis of slowly involving
faults. The consideration of canonical variate residuals resulted in a more sensitive monitoring
index compared with T2 and Q statistics. When validated on simulation and industrial case studies,
our proposed Tc index outperformed T2 and Q statistics in terms of both fault detection time and
missed detection rate. Moreover, by considering the deviations between past and future data in
the canonical state space, the proposed CVR-based contribution plots successfully identified faulty
variables for most of the fault cases studied. The importance of the combination of state and residual
space contributions was also highlighted.

The CVR-based contribution method appeared to be less sensitive to small changes in the data
because it tends to give low fault scores during the early degradation process. A consideration for
future study is whether the fault scores at early degradation stages would be improved if deviations
between past and future data in the residual space were used for the identification of faulty variables.
The removal of the smearing effect caused by normal variables is also a future research direction.
The challenge of using CVR for fault detection can be the change of the operating conditions, which
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are not easily discriminated from failures even though the overall false alarm rate is low. In the future,
we will explore approaches that can distinguish between the change of operational conditions and
system failures.
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