X. Li, F. Duan, D. Mba, and I. Bennett, Multidimensional prognostics for rotating machinery: A review, Adv. Mech. Eng, vol.9, pp.1-20, 2017.

R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen et al., Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks, IEEE Trans. Ind. Electron, vol.65, pp.1539-1548, 2018.

S. Wook, C. Lee, J. Lee, J. Hyun, and I. Lee, Fault detection and identification of nonlinear processes based on kernel PCA, Chemom. Intell. Lab. Syst, vol.75, pp.55-67, 2005.

J. Fan and Y. Wang, Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis, Inf. Sci, vol.259, pp.369-379, 2014.

X. Li, F. Duan, P. Loukopoulos, I. Bennett, and D. Mba, Canonical variable analysis and long short-term memory for fault diagnosis and performance estimation of a centrifugal compressor, Control Eng. Pract, vol.72, pp.177-191, 2018.

W. Li and S. J. Qin, Consistent dynamic PCA based on errors-in-variables subspace identification, J. Process Control, vol.11, pp.661-678, 2001.

S. Yin, X. Zhu, S. Member, and O. Kaynak, Improved PLS Focused on Key-Performance-Indicator-Related Fault Diagnosis, IEEE Trans. Ind. Electron, vol.62, pp.1651-1658, 2015.

C. Ruiz-cárcel, Y. Cao, D. Mba, L. Lao, and R. T. Samuel, Statistical process monitoring of a multiphase flow facility, Control Eng. Pract, vol.42, pp.74-88, 2015.

G. Stefatos and A. B. Hamza, Dynamic independent component analysis approach for fault detection and diagnosis, Expert Syst. Appl, vol.37, pp.8606-8617, 2010.

Q. Jiang, S. X. Ding, Y. Wang, and X. Yan, Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis, IEEE Trans. Ind. Electron, vol.64, pp.8148-8157, 2017.

Z. Chen, S. X. Ding, T. Peng, C. Yang, and W. Gui, Fault Detection for Non-Gaussian Processes Using Generalized Canonical Correlation Analysis and Randomized Algorithms, IEEE Trans. Ind. Electron, vol.65, pp.1559-1567, 2018.

Z. Chen, K. Zhang, S. X. Ding, Y. A. Shardt, and Z. Hu, Improved canonical correlation analysis-based fault detection methods for industrial processes, J. Process Control, vol.41, pp.26-34, 2016.

Q. Jiang, F. Gao, H. Yi, and X. Yan, Multivariate Statistical Monitoring of Key Operation Units of Batch Processes Based on Time-Slice CCA, IEEE Trans. Control Syst. Technol, vol.99, pp.1-8, 2018.

K. E. Pilario and Y. Cao, Canonical Variate Dissimilarity Analysis for Process Incipient Fault Detection, IEEE Trans. Ind. Inform, vol.14, pp.5308-5315, 2018.

R. T. Samuel and Y. Cao, Kernel Canonical Variate Analysis for Nonlinear Dynamic Process Monitoring. IFAC-PapersOnLine, vol.48, pp.605-610, 2015.

C. F. Alcala and S. J. Qin, Reconstruction-based contribution for process monitoring, Automatica, vol.45, pp.1593-1600, 2009.

R. Tan and Y. Cao, Deviation Contribution Plots of Multivariate Statistics, IEEE Trans. Ind. Inform, vol.15, pp.833-841, 2019.

X. Zhu and R. D. Braatz, Two-Dimensional Contribution Map for Fault Identification, IEEE Control Syst. Mag, vol.34, pp.72-77, 2014.

B. Jiang, D. Huang, X. Zhu, F. Yang, and R. D. Braatz, Canonical variate analysis-based contributions for fault identification, J. Process Control, vol.26, p.726, 2015.

X. Li, F. Duan, D. Mba, and I. Bennett, Combining Canonical Variate Analysis, Probability Approach and Support Vector Regression for Failure Time Prediction, J. Intell. Fuzzy Syst, vol.34, pp.746-752, 2018.

B. Jiang and R. D. Braatz, Fault detection of process correlation structure using canonical variate analysis-based correlation features, J. Process Control, vol.58, pp.131-138, 2017.
DOI : 10.1016/j.jprocont.2017.09.003

B. Jiang, X. Zhu, D. Huang, J. A. Paulson, and R. D. Braatz, A combined canonical variate analysis and Fisher discriminant analysis (CVA-FDA) approach for fault diagnosis, Comput. Chem. Eng, vol.77, pp.1-9, 2015.
DOI : 10.1016/j.compchemeng.2015.03.001

Q. Lu, B. Jiang, R. B. Gopaluni, P. D. Loewen, and R. D. Braatz, Locality preserving discriminative canonical variate analysis for fault diagnosis, Comput. Chem. Eng, vol.117, pp.309-319, 2018.
DOI : 10.1016/j.compchemeng.2018.06.017

P. E. Odiowei and C. Yi, Nonlinear Dynamic Process Monitoring Using Canonical Variate Analysis and Kernel Density Estimations, IEEE Trans. Ind. Inform, vol.6, pp.36-45, 2010.
DOI : 10.1109/tii.2009.2032654

H. Hotelling, New Light on the Correlation Coefficient and its Transforms, J. R. Stat. Soc. Ser. B, vol.15, pp.193-232, 1953.
DOI : 10.1111/j.2517-6161.1953.tb00135.x

B. C. Juricek, D. E. Seborg, and W. E. Larimore, Fault Detection Using Canonical Variate Analysis, Ind. Eng. Chem. Res, vol.43, pp.458-474, 2004.
DOI : 10.1021/ie0301684

B. K. Flury and H. Riedwyl, Standard distance in univariate and multivariate analysis, Am. Stat, vol.40, pp.249-251, 1986.
DOI : 10.2307/2684560

B. Z. Botev, J. F. Grotowski, and D. P. Kroese, Kernel density estimation via diffusion, Ann. Stat, vol.38, pp.2916-2957, 2010.
DOI : 10.1214/10-aos799

URL : https://doi.org/10.1214/10-aos799