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Ultrasound-modulated optical tomography (UOT) is an imaging technique that couples light and ultrasound in
order to perform in-depth imaging of highly scattering media. In previous work, we introduced plane wave UOT,
an imaging method analogous to x-ray tomography based on the filtered backprojection for image reconstruction.
Angle-limited measurements, however, led to drastic loss of lateral spatial resolution. Here, we present a new
structured ultrasonic plane wave UOT method that allows partial recovery of the resolution. For image
reconstruction, we present a generalization of the Fourier slice theorem along with a generalized filtered back-
projection formalism. The method is successfully tested on simulated and experimental data. © 2019 Optical

Society of America

https://doi.org/10.1364/AO.58.001933

1. INTRODUCTION

Ultrasound-modulated optical tomography [1–3] (UOT) is an
imaging technique which couples light and ultrasound (US) to
perform in-depth optical imaging of highly scattering media.
For depths typically greater than 1 mm, multiple light scatter-
ing of biological tissues makes conventional optical imaging
techniques inadequate. In UOT, an optically diffuse medium
is illuminated with a single longitudinal mode laser at frequency
f L. The propagation of ballistic US inside the medium induces
a modulation of the light temporal phase through the acousto-
optic (AO) effect [4]. Photons having undergone this phase
modulation are said to have been “tagged.” A few-cycle US
pulse focused into the medium propagates in a straight line
across its Rayleigh range at a velocity cs ∼ 1500 m∕s. If the
detection of modulated light is fast enough to track US propa-
gation, the detection of tagged photons provides a direct map-
ping of the local absorption and/or diffusion contrast along
the line with US spatial resolution [5]. Fast detection tech-
niques include extended Fabry–Perot cavities [5], spectral hole
burning [6], or, as used in the present work, self-adaptive wave-
front holography [7,8].

By using an US transducer array, two-dimensional UOT
images are constructed line by line by sweeping electronically

the US propagation axis along the transducer array. For each
position, the AO signal is recorded and stacked to build the
UOT image [9,10]. We refer to this as “focused waves”
(FW) UOT. In previous work, we introduced an alternative
approach using “plane waves” (PWs) [11], thereby reducing
the overall acquisition time by an order of magnitude. In
PW-UOT, one acquisition is performed by sending a few-cycle
plane US wave at a fixed angle, and reproducing this for a large
angular span from which the original image can be recon-
structed. This approach is identical to x-ray computed tomog-
raphy (CT), positron emission tomography, or electron
tomography, which all rely on the Radon inversion principle
[12–14]. The PW emission angle is, however, limited to
�20° because of the finite directivity of US probes, leading
to a substantial loss in lateral resolution. This lack of resolution
stems from the ill-posed nature of the problem consisting in
reconstructing an object from a limited number of its projec-
tions. This so-called limited-angle tomography problem is en-
countered in various fields of physics, such as non-destructive
testing [15] limited by geometrical congestion, or in CT scans
where exposure time is reduced for safety reasons [16]. The
corresponding inversion problem has been massively described
and investigated [17–20], and the image reconstruction fidelity

Research Article Vol. 58, No. 8 / 10 March 2019 / Applied Optics 1933

1559-128X/19/081933-08 Journal © 2019 Optical Society of America

https://orcid.org/0000-0001-5332-1324
https://orcid.org/0000-0001-5332-1324
https://orcid.org/0000-0001-5332-1324
https://orcid.org/0000-0002-8365-9438
https://orcid.org/0000-0002-8365-9438
https://orcid.org/0000-0002-8365-9438
mailto:maimouna.bocoum@espci.fr
mailto:maimouna.bocoum@espci.fr
mailto:maimouna.bocoum@espci.fr
https://doi.org/10.1364/AO.58.001933
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.58.001933&amp;domain=pdf&amp;date_stamp=2019-03-04


varies from one procedure to the other. In most practical cases,
however, the filtered-backprojection method is preferred
because of its simplicity of implementation and low computa-
tional cost.

The particularity of PW-UOT over standard tomography
resides in our ability to control the shape of the acoustic
envelope sent into the medium. In this paper, we show that
the final resolution of an imaged object after reconstruction is
increased when adding structure to the US wavefront. The
idea of using structured waves (SWs) to improve spatial res-
olution is not new and was applied, for example, in super-
resolved confocal microscopy [21–23]. In other work related
to UOT, temporal structure was used on the acoustic field to
recover a spatial resolution in the direction of US propagation
[24–26]. Here, we present a generalization of the angle-
limited tomography problem when spatial structure is trans-
versely added to the acoustic wave. This leads to a generalized
form of the Fourier slice theorem (FST) as well as an analytic
backprojection inversion. We finally show experimentally the
ability of the method to partially recover the lateral resolution
of an image.

2. PRINCIPLE OF THE METHOD

In PW-UOT, all piezo-elements of the probe emit a few-cycle
US pulse with a linear phase delay resulting in the propagation
of a uniform acoustic wavefront at angle θ. In the plane defined
by the position of the US probe, we define I�x, z� as the
distribution of signal density, which accounts for laser illumi-
nation, the qualitative absorption properties of the medium, as
well as collection and detection of tagged photons. PW-UOT
aims at reconstructing I�x, z� from a finite number of its
angular projections. The principle is illustrated in Fig. 1(a)
for an arbitrary θ > 0.

To first order approximation, the flux of tagged photons is
known to be quadratic with the US temporal envelope [27],
which gives a theoretical expression in Eq. (1) for the recorded
signal s�cst, θ�, where t is the time following the US burst
emission, P̃�cst , x, z� is the pressure field envelope normalized

to its maximum value in order to be dimensionless, and
cs ∼ 1500 m∕s is the sound velocity. We consider the US pulse
with spatial envelope h0 as infinitely short in time such that the
acoustic temporal profile is represented by a Dirac function.
Within the scope of this paper, h0�x� takes discrete values
equal to either 0 or 1, such that h20�x� � h0�x�, which leads
to a simple expression Eq. (2) for the recorded signal:

s�cst , θ� �
Z
x,z

I�x, z�P̃2�cst , x, z�dxdz (1)

≈
Z
x,z
I�x,z�h0

�
x cosθ−z sinθ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

x 0

�
δ

�
z cosθ�x sinθ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

z 0

−cst
�
dxdz,

(2)

where x 0 � x cos θ − z sin θ and z 0 � z cos θ� x sin θ are
the Cartesian coordinates after a rotation of angle θ. In the case
of plane waves, we have h0 � 1. Therefore, by writing s̃�ft , θ�,
the Fourier transform of s�cst, θ� along parameter cst, we get

s̃�ft , θ� �
Z
x,z

I�x, z�e−2iπft �x sin θ�z cos θ�dxdz (3)

� Fx,z�I��ft sin θ, ft cos θ�, (4)

where Fu�:� refers to the Fourier transform along parameter u.
In the following, ft designates the spatial frequency dual to var-
iable cst and (fx , fz ) the dual frequencies of variable �x, z�.
Equation (4) leads to the FST formally known as

Fcs t�s�cst, θ�� � F x,z�I��ft sin θ, ft cos θ�, (5)

which provides a relation between each measurement at a given
θ angle with a line along one polar direction of the Fourier
plane of object I�x, z�. Inverting Eq. (5) when the problem
is well-posed, i.e., for θ ∈ �0, 2π�, is easily done using polar
coordinates in the Fourier domain [17], and yields

I�x, z� �
Z

2π

0

Z
∞

ft�0

s̃�ft , θ�e2iπz
0ft f tdftdθ: (6)

Experimentally, θ is limited in all scans by θm, the maximum
angle allowed by the US probe directivity. As well-described in
the literature [17], Eq. (6) is the starting point in the derivation
of the filtered backprojection (FBP), the final expression of
which is given using following Eq. (7):

I rec�x, z� �
Z

θm

−θm

Z
∞

ft�−∞
jft jSf c

�ft�s̃�ft , θ�ei2πz
0ftdftdθ, (7)

where Sfc �:� is a low-pass Ram-Lak filter [28] required to reduce
non-physical influence of frequencies above the cutoff
frequency fc, and I rec�x, z� designates the reconstructed image.
In all reconstructions presented in this paper, we use the FBP
with an angular window centered around 0°, with θm � 20°.
As already explained in [11], I rec�x, z� suffers from a strong
degradation of its lateral resolution because all spectral compo-
nents outside the �θm finite cone in the Fourier domain are
lost (cf. blue cone represented in Fig. 2).

Fig. 1. PW-UOT where a short acoustic burst propagates along di-
rection z 0 at velocity cs ∼ 1500 m∕s. (a) PW-UOT used in [11] with
pulse envelope h0�x 0� � 1, meaning all piezo-elements are active.
(b) SW-UOT where h0 is a periodic spatial step function of frequency
f s created by turning either on or off the piezo-elements along the
transducer array.
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A. Generalization of the FST Using Structured
Acoustic Waves
For each angle θ, the acquisition is done by spatially structuring
the acoustic field emitted by the US probe, as depicted in
Fig. 1(b). In this respect, piezo-elements are turned either
on or off such that the acoustic envelope profile is a periodic
step function of frequency fs � 1∕λs, where λs is the structur-
ing period. In order to access complex information in the
Fourier plane of object I�x, z�, an acquisition is repeated four
times in quadrature for a given structure. This approach is sim-
ilar to multiple-phase spatial or spectral holography [29–31].
We call ϕ the absolute phase of the structured wavefront asso-
ciated with the spatial modulation of frequency fs. The Fourier
decomposition of function h0�x 0� is the sum of a positive con-
stant equal to its average over one period λs and harmonic terms
of frequency fc. For the sake of clarity, we use an approximated
expression for the envelope limited to its first harmonic such
that h0�x 0� ≈ 1

2 � 2
π cos�2πfsx 0 � ϕ��. This approximation is

justified because the first harmonic contains ∼80% of the over-
all harmonic energy. The corresponding UOT measurement,
according to Eq. (2), is given by

sϕ�cst, θ, fs� �
Z
x,z

I�x, z�
�
1

2
� 2

π
cos�2πfsx 0 � ϕ�

�

× δ�z 0 − cst�dxdz: (8)

By performing four distinct measurements with ϕ � 0; π2 ; π
and 3π

2 , we retrieve the Fourier component of the object along
direction x 0 using the linear combination:

s�cst, θ, fs� �
�s0 − sπ� − i�sπ2 − s3π2 �

2∕π

�
Z
x,z

I�x, z�e−2iπfsx 0
δ�z 0 − cst�dxdz, (9)

where i2 � −1. Taking the Fourier transform of Eq. (9) with
respect to variable cst, we find the following generalized FST
relation:

F cs t�s�cst, θ, fs�� � F x,z�I��ft sin θ� fs cos θ, ft cos θ

− fs sin θ�: (10)

In Fig. 2, we represent the accessible Fourier plane region in
SW-UOT when −20° ≤ θ ≤ 20°, derived from Eq. (10).
The PW-UOT cone (i.e., the non-structured case where
fs � 0) is represented in blue. For the same angular span
and with an arbitrary value fs � 1 mm−1, the SW-UOT do-
main is represented in orange and corresponds to the vertical
line tangent to a circle of radius fs. Because we explore the
Fourier transform of a real object, components corresponding
to θ and θ� π are directly known through conjugated sym-
metry. This shows how structuring the acoustic envelope allows
the exploration of the lateral region of the Fourier domain,
thereby recovering spatial information in the direction orthogo-
nal to propagation. The question that naturally arises is how
to reconstruct the object from its partial projections in
the Fourier domain when performing an arbitrary SW-UOT
measurement.

We introduce two methods to reconstruct the object. The
first method, designated as iRadon, is derived using the polar

coordinates of the object in the Fourier domain, a natural
choice when varying θ while keeping a fixed structuring fre-
quency fs. This is illustrated in Fig. 3 for fs � 1 mm−1 and
− π
2 ≤ θ ≤ π

2. This method constitutes a generalization of
FBP expressed in Eq. (7). The second method, designated
as iFourier, is derived using Cartesian coordinates in the
Fourier domain. It is well adapted to the ideal case where
US waves are structured for multiple discrete values of fs while
θ is fixed. Both methods are fully described hereafter.

3. ANALYTIC INVERSION ALGORITHMS

A. iRadon Inversion Method
We adapt the demonstration of the FBP [17] by now supposing
that fs is fixed, while θ can take any value between 0 and 2π in
order to generalize Eq. (6). The first step is to switch from a
polar to a Cartesian coordinate system. To do so, we calculate
the Jacobian matrix J associated with the change of variable
defined by Ffs :

Ffs∶�ft , θ� ∈ R × �0, 2π�

→

�
fx�ft , θ� � ft sin θ� fs cos θ
fz�ft , θ� � ft cos θ − fs sin θ

: (11)

Fig. 2. Exploration of the Fourier plane for the angle-limited case
where −20° ≤ θ ≤ 20° and f s � 0 mm−1 (blue) and f s � 1 mm−1

(orange).

Fig. 3. Exploration of the Fourier plane for the ideal case where θ ∈
�−π∕2, π∕2� and f s � 1 mm−1.
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We find that det�J� � −ft , which, bearing in mind Eq. (10),
allows us to writeZ

2π

θ�0

Z
ft>0

s̃�ft , θ, fs�e2iπ�xfx�zfz �ftdftdθ

�
Z
Ω
F x,z�I��fx , fz�e2iπ�xfx�zfz �dfxdfz , (12)

where Ω is the image of R� × �0, 2π� by function Ffs . As illus-
trated in Fig. 3, Ω is equal to the Fourier plane deprived from a
disk of radius fs. To fully reconstruct the object, the contribu-
tion over the disk is added as expressed in Eq. (13):

I�x, z� �
Z
Ω
F x,z�I��fx , fz�e2iπ�xfx�zfz �dfxdfz

�
Z
R2nΩ

F x,z�I��fx , fz�e2iπ�xfx�zfz �dfxdfz : (13)

The second term of this equation can be recovered using the
unstructured signal s̃�ft , θ, 0�, leading to a full expression of the
original object:

I�x, z� �
Z

2π

0

Z
∞

0

s̃�ft , θ, fs�e2iπz
0ft e2iπx 0fs ftdftdθ

�
Z

2π

0

Z
fs

0

s̃�ft , θ, 0�e2iπz
0ft ftdftdθ: (14)

The integral is then split into two terms
R
π
θ�0 and

R
2π
θ�π followed

by a change of variable θ ← θ − π on the second term. Making
use of the relation s̃�ft , θ� π, fs� � s̃�ft , θ, fs�	, and limiting
the integration domain to �−θm, θm� as it is performed in FBP,
Eq. (14) leads to the generalized FBP expression:

I rec�x, z� �
Z

θm

−θm

2R

�Z
R�

s̃�ft , θ, fs�e2iπz
0ft e2iπx 0fs

�
ftdftdθ

�
Z

θm

−θm

Z
fs

−fs
s̃�ft , θ, 0�e2iπz

0ft ftdftdθ, (15)

where R designates the real part. When using this expression,
both s̃�ft , θ, 0� and s̃�ft , θ, fc� are multiplied by a Ram-Lak
filter [similarly to the FPB described in Eq. (7)], with a cutoff
frequency f c � 1 mm−1.

B. iFourier Inversion Method
We now suppose an acquisition is performed for all fs ∈ R at a
fixed θ value, as illustrated in Fig. 4. We start with the integral,
which defines the inverse Fourier transform using Eq. (10), and
define the rotation operator of angle θ:

Rθ∶�fs, ft� ∈ R2 →

�
fx�fs, ft� � ft sin θ� fs cos θ
fz�fs, ft� � ft cos θ − fs sin θ

:

(16)

Rθ is a unitary operator, and therefore the determinant of its
Jacobian matrix is equal to one. This allows a simple change of
integration variables in the following expression:

F −1
fs ,ft

�s�ft ,θ,fs���
Z
R2

s̃�ft ,θ,fs�e2iπ�xfs�zft �dfsdft

�
Z
R2

F x,z�I��fx ,fz�e2iπ�x
0fx�z 0fz �dfxdfz

� I�x 0,z 0�: (17)

In other words, a full reconstruction of the object at an arbitrary
θ value is easily performed by (i) taking the inverse Fourier
transform of the signal s�ft , θ, ks�, and (ii) rotating the recon-
structed object by an angle θ to match the original coordinate
system. Because the result is independent of θ, the retroprojec-
tion formula is the sum of all reconstructed images, divided by
the number N θ of discrete values in the angular window
�−θm, θm�. The inversion formula therefore writes

I rec�x, z� �
1

N θ

Xθm
−θm

�Z
R2

s̃�ft , θ, fs�e2iπ�x
0fs�z 0ft �dftdfs

�
:

(18)

To test the validity if both iRadon and iFourier methods, we
wish to calculate Eqs. (15) and (18) when the inversion prob-
lem is well-posed. This means either calculate s�cst , θ, fs� for all
angle θ when using iRadon, or for all structuring frequencies fs
in the test object support bandwidth when using iFourier.
We simulate an acquisition on a test object I�x, z� represented
in Fig. 5(a). It corresponds to the product of a two-dimensional
Gaussian beam with a 0.5 mm wide cross with a α � 30° inner
angle, and left-shifted from the center by 2 mm to break the
symmetry of the object.

The iRadon reconstruction method is tested by evaluating
s�cst , θ, fs� over a full angular span θ ∈ �−π∕2, π∕2� in the triv-
ial case where fs � 0 (which corresponds to standard FBP)
and in the case where fs � nsdfs mm−1 with ns � 10 and
dfs � 0.24 cm−1. In both cases, the cross is reconstructed
and respectively shown in Figs. 5(b) and 5(c).

The same approach is used to validate the iFourier inversion,
where s�cst , θ, fs� is evaluated for fs � nsdfs where ns varies in
steps of one in the [0, 80] interval. The cross is reconstructed
for θ � 0° in Fig. 5(d) and θ � 20° in Fig. 5(e), thereby
validating the iFourier method. Without further proof, we
propose hereafter to test both methods on actual experimental
data, and compare our results with simulations.

4. EXPERIMENT

A. Experimental Setup
Our experiment was conducted using an Agar gel matrix with
dimensionsHxLxW � 5 × 5 × 2 cm3 with 10% concentration

Fig. 4. Exploration of the Fourier plane in the ideal case where
θ � 0, f s � 0.2ns mm−1, with ns an integer between 0 and 10.
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of intralipid. The gel reduced scattering coefficient μ 0
s ∼10 cm−1

is similar to that of biological tissues [32]. The method used
to make this phantom is described in [9]. Two absorbing
inclusions of respectively 2 mm and 3 mm inner diameters
were embedded in the middle of the scattering phantom gel
and separated by a distance a ≈ 4 mm. Our light source is a
single longitudinal mode tapered-diode centered at 780 nm in-
jected into an amplifier (MOPA, Sacher Lasertechnik GmBH).
The laser is then divided into two arms with a polarizing beam
splitter. On the first arm, the sample is illuminated with
350 mW for a beam diameter ∼7 mm, while the other arm
is used as a reference beam in our holographic setup, as illus-
trated in Fig. 6. The acoustic wave used to tag photons is
generated with a two-dimensional commercial probe (SL10-2,
Supersonic Imagine, Aix en Provence, France) driven by a pro-
grammable ultrafast US scanner (Aixplorer, Supersonic
Imagine), where each piezo-element can be arbitrarily ad-
dressed. This allows to easily choose among focused, plane,
or structured waves by changing the number of active elements
along with their relative phase delay. Whichever the selected US
spatial structure, the US temporal profile is always one and a
half cycle centered at 6 MHz, which corresponds to ∼400 μm
resolution in the direction of US propagation. Tagged photons
are detected in transmission through the gel as depicted in
Fig. 6(a) and filtered with a photorefractive holographic setup

described in [33]. The AC signal recorded with a Si-photodiode
(Thorlabs Det36A - 10MHz bandwidth) is sampled at 10MHz
with an acquisition card (Gage Digitizer).

In our experiment, we wish to compare images obtained us-
ing FW, PW, and SW. The FW will be considered as our refer-
ence. We then demonstrate the increase of spatial resolution
when switching from PW to SW. In a SW sequence, θ is varied
between -20° and 20°, in steps of 1°, and for each θ value four
phases are acquired (cf. Section 2.A) for different integer values
ns, such that fs � nsdfs, where ns is an integer and dfs �
0.24 cm−1 is the sampling frequency. A full sequence is loaded
to the US probe operating at 2 kHz, and each sequence is re-
peated several times to increase the signal-to-noise ratio (SNR)
through averaging.

B. Simulation of the Experiment
To test the validity of our reconstruction method, we simulated
the propagation of US pulses using FIELDII open source soft-
ware [34]. Using the geometrical characteristics of our US
transducer array, we use FIELDII to calculate the pressure field
profile in the imaging plane �x, z�. The software relies on a far-
field calculation method fully described in [35]. The scattered
laser light in that plane is modeled with a Gaussian profile of
waist w0 � 9 mm centered at z � 19.5 mm, where z is the
direction of US propagation defined in Figs. 6(b) and 6(c),
and z � 0 is set by the US probe transducers position. The
position of the Gaussian in our simulation was chosen to match
the observed experimental data in the FW configuration.

Fig. 5. (a) Original test image where the test object is a 30° angled
absorbing cross superimposed on a Gaussian light profile.
(b),(c) Reconstruction using iRadon method expressed by Eq. (15)
for (b) ns � 0 and (c) ns�10 with f s � nsdf s and df s �
0.24 cm−1 over full angular span. (d),(e) Reconstruction using
iFourier method expressed by Eq. (18) where ns ∈ �1, 80� when
(d) θ � 0° and (e) θ � 20°.

Fig. 6. Experimental setup. (a) Photorefractive detection based on
two-wave mixing (reference pulse and transmitted speckle) inside SPS
crystal. Signal is collected in transmission of the crystal and focused
onto a photodiode for processing. (b) Principle of focused waves,
(c) principle of plane waves.
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To model absorbing inclusions, we subtract to this former pro-
file two 80%-deep Gaussian holes with 1 and 1.5 mm respec-
tive waists and separated by a � 4 mm. MATLAB routines
were developed to reproduce the AO experiment by recording
the tagged photon signal s�cst, θ, ns� using the relation defined
in Eq. (1). One of the motivations behind simulating our ex-
periment is to generate noise-free data to test both our iRadon
and iFourier inversion algorithms.

5. EXPERIMENTAL RESULTS AND
COMPARISON TO SIMULATIONS

A. Lack of Resolution in PW Reconstruction
We first image the absorbing inclusions using FW. The elec-
tronic focus was set to z � 20 mm, and lines are acquired by
scanning direction x in 0.2 mm steps. Each line is averaged
1000 times. This corresponds to an overall acquisition time
of 76 s. The result is shown in Fig. 7(a). We observe an excel-
lent qualitative agreement with the simulated image shown
Fig. 7(b). A line profile plotted along the black-dotted line
is shown in Fig. 7(c) where both inclusions are properly re-
solved. We measure a � 4.1� 0.2 mm in the simulation
and a � 3.8� 0.6 mm in the experiment. Leaving the posi-
tion of the test phantom unchanged, we then perform a
PW measurement for −20° ≤ θ ≤ 20° where each line is also
averaged 1000 times, corresponding to an acquisition time
of 21 s. Although here PW acquisition is about 4 times faster
than FW, the image resulting for standard FBP reconstruction
[described by Eq. (7)] suffers from a strong degradation of
its lateral resolution, as visible in Fig. 7(d). This behavior is
reproduced on simulated data, as shown in Fig. 7(e). This is

particularly visible on the line profile plotted in Fig. 7(f ) where
absorbing inclusions are no longer resolved.

B. Experimental and Simulated Results Using SW
Here, we perform an experiment and simulations with SW for
the same angular span as with PW (i.e., −20° ≤ θ ≤ 20°, with
1° steps) with structuring frequencies fs � nsdfs, where ns is an
integer varied between 1 and 12 and dfs � 0.24 cm−1 is the
sampling frequency. In order to resolve the two inclusions sep-
arated by distance a, structuring frequencies should be around
1∕a ∼ 0.25 mm−1, which corresponds to ns ∼ 10. Because four
frames are acquired at each angle and each ns according to
Eq. (9), we reduce the averaging number to 50 (as opposed
to 1000 in the previous experiment), resulting in an overall ac-
quisition time of 51 s. Most of the object spatial information is
contained in the acquired raw data. For ns > 12, uncontrolled
diffraction effects start to appear on the acoustic wavefront,
which leads to degradation of the image (not shown here).
This ultimately limits the maximum resolution of this approach
to ∼3 mm in the present case, as opposed to 1 mm for FW.
Here, the SW measurement is performed using enough ns val-
ues to reconstruct the object. The iFourier imposes as the natu-
ral method to use since the problem is well-posed in that case.

The experimental image reconstructed using the iFourier
method is shown in Fig. 8(a) and compared to the simulation
in Fig. 8(b). Inclusions appear clearly in both images. By plot-
ting in Fig. 8(c) the profile along the black-dotted lines, we
measure a separation distance of a � 4.3� 0.6 mm in the ex-
periment and a � 4� 0.2 mm in the simulation. This dis-
tance is, within the error bar, equal to the value previously
measured with FW.

Fig. 7. (a),(b): Respectively experimental and simulated AO image
of two embedded absorbers with focused waves (FW). Line profiles
along the back dotted line are plotted in (c) in a normalized scale.
(d),(e) Respectively experimental and simulated PW reconstructed
images for −20° ≤ θ ≤ 20° using standard FBP inversion method.
Line profiles along the back dotted line are plotted in (f ) in normalized
scale.

Fig. 8. (a),(b),(d),(e) Respectively experimental and simulated
AO image of two embedded absorbers with structured waves (SW)
where ns ∈ �1, 12� and −20° ≤ θ ≤ 20° using (a),(b) iFourier or
(d),(e) iRadon reconstruction methods (on the same acquired raw
data). (c),(f ) Line profiles along black dotted line for (c) iFourier
and (f ) iRadon methods.
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On the other hand, when the reconstruction is done using
iRadon, we observe an elongation of the image in the lateral
dimension, as shown in Fig. 8(d). This deformation is repro-
duced in the simulation shown in Fig. 8(e). Indeed, because the
reconstruction problem is now ill-posed, whichever the number
of frequencies fs used, we expect the reconstruction fidelity of
iRadon to be lesser than iFourier. If we plot their respective pro-
files along the black-dotted lines, it is nevertheless possible to
identify two inclusions, as shown in Fig. 8(f ) which, as shown
in the previous paragraph, cannot be resolved using PW-UOT.
We measure a � 3.2� 0.2 mm in the experiment and
a � 3.9� 0.6 mm in the simulation. This result validates
our generalized iRadon approach exposed in Section 3.A and
proves that structuring the US field allows restoration of the
lateral resolution of the reconstructed image in spite of the
ill-posed nature of the problem.

In a particular application of SW-UOT, one would like to
acquire an image with improved lateral resolution while min-
imizing the number of necessary ns values. Here, we repeat a
SW-UOT acquisition sequence with the same angular span as
in the previous paragraph (i.e., −20° ≤ θ ≤ 20°, with 1° steps)
while using only one structuring frequency fs � nsdfs, where
ns is fixed to a unique value. We test the reconstruction for
ns � 8; 9; 10, and 12 and compare each profile after the
reconstruction with that obtained in FW configuration.
Each acquisition line is averaged 1000 times, such that the ac-
quisition time is 104 s, namely 5 times the PW acquisition
time, or 1.4 the FW acquisition time mentioned in
Section 5.A, where the same number of averaging was used.
In previous works [11], it was shown that the increase in
SNR when switching from FW to PW allows us to decrease
the number of required averaging by an order of magnitude.
This indicates that SW can still operate at a faster acquisition
rate than FW when only one ns value is used for imaging.
Quantitative analyses with respect to SNR and acquisition time
regarding SW shall be discussed in future work.

Because only one ns value is now used to make an image,
both iRadon and iFourier methods address an ill-posed prob-
lem. Given the geometry, iRadon nonetheless appears to be
the natural choice for the reconstruction. Experimental re-
sults are shown in Fig. 9, where we plot the reconstructed
intensity profile along the inclusions for the different choice

of ns. The profile obtained using FW is plotted as a reference
in plain-blue. The first striking result is that both inclusions
can be resolved when ns � 8, 9, and 10, and we respec-
tively measure a � 3.8� 0.2 mm, a � 3.2� 0.4 mm, and
a � 3� 0.4 mm. When ns � 12, inclusions are no longer
visible. This is expected since the US structuring frequency
contains very few of the object spectral content. The second
striking observation is the existence of small modulations all
along the plotted SW profiles. In fact, by choosing only one
structuring frequency to perform an image, we prevent out of
phase frequency components to interfere destructively along
the object profile.

6. CONCLUSION

In conclusion, we have demonstrated the possibility to improve
the lateral resolution of PW-UOT by adding structure to the
spatial envelope of the plane wave used to tag photons. The
new formalism behind SW-UOT, which takes into account
the US envelope structure, was derived to properly address
the problem of image reconstruction. In this respect, we gen-
eralized the Fourier slice theorem (only valid for PW) and
derived an analytical expression to reconstruct the image.
This method was referred to as iRadon and corresponds to a
generalization of the filtered backprojection method.

Because the angle-limited problem is in general ill-posed,
the result of reconstruction is not expected to match the initial
object (FW reference image in our case). To test SW-UOT
when the problem is well-posed, i.e., when structuring frequen-
cies are covering enough of the object bandwidth, we intro-
duced an alternative inversion method designated as
iFourier. This method is based on the traditional inverse
Fourier transform of the image and appropriate rotation of
the image. The successful reconstruct of the object using this
method validated the principle of PW-UOT.

Our last experiment and simulations showed it was then
possible to resolve two absorbing inclusions separated by
4 mm embedded in a scattering phantom gel using only
one structuring frequency of the object bandwidth. Those in-
clusions could not be resolved with PW-UOT, or for a struc-
turing frequency out of the object bandwidth. One artifact to
the reconstruction was, however, a modulation of the image
intensity at the structuring frequency along its lateral dimen-
sion. This naturally raises the question of improving the
reconstruction strategy, for example, by switching from an
analytic to an algebraic reconstruction approach. This question
remains open and left for future work.
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