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ABSTRACT

A two-step synthesis approach was utilized to grow CaMnO3 on M-, R- and

C-plane sapphire substrates. Radio-frequency reactive magnetron sputtering

was used to grow rock-salt-structured (Ca, Mn)O followed by a 3-h annealing

step at 800 �C in oxygen flow to form the distorted perovskite phase CaMnO3.

The effect of temperature in the post-annealing step was investigated using

x-ray diffraction. The phase transformation to CaMnO3 started at 450 �C and

was completed at 550 �C. Films grown on R- and C-plane sapphire showed

similar structure with a mixed orientation, whereas the film grown on M-plane

sapphire was epitaxially grown with an out-of-plane orientation in the [202]

direction. The thermoelectric characterization showed that the film grown on

M-plane sapphire has about 3.5 times lower resistivity compared to the other

films with a resistivity of 0.077 Xcm at 500 �C. The difference in resistivity is a

result from difference in crystal structure, single orientation for M-plane sap-

phire compared to mixed for R- and C-plane sapphire. The highest absolute

Seebeck coefficient value is - 350 lV K-1 for all films and is decreasing with

temperature.
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Introduction

Materials for thermoelectric generation are widely

researched due to their capability to convert waste

heat into electricity [1]. They have no moving parts

and do not require any chemical reactions to operate

which make them ideal for waste heat recovery.

However, the most utilized thermoelectric modules

are based on toxic and rare materials such as tel-

lurium [2]. In addition, there are issues with chemical

stability and low oxidation resistance at elevated

temperatures. Oxides are therefore promising mate-

rials due to their high chemical stability and good

oxidation resistance, and an additional advantage is

that they are largely based on abundant and low-to-

moderate cost materials. Ca3Co4O9 is a good candi-

date as a p-type thermoelectric material with a

reported dimensionless figure of merit ZT = rS2T
J-1 around unity near 1000 K [3, 4], where r, S,

T and J are the electrical conductivity, Seebeck

coefficient, absolute temperature and thermal con-

ductivity, respectively. To realize full oxide modules,

the n-type oxides need improvement to achieve

similar ZT as p-type oxides. The most investigated

n-type thermoelectric materials are CaMnO3, ZnO,

SrTiO3 and In2O3, although these materials have so

far shown only modest ZT values [5–7]. The per-

ovskite CaMnO3 suffers from low electric conduc-

tivity and relatively high thermal conductivity,

yielding low ZT. In the CaMnO3 system, the best ZT

value reported is 0.32 for Nb-doped CaMnO3 [8].

However, CaMnO3 can be a promising n-type can-

didate if the power factor (rS2) is enhanced by opti-

mal doping, since for high output power from a

thermoelectric device the power factor is more

important than the efficiency [9, 10], especially, in

thin films for low-power applications.

For thin film growth of oxide materials, both

chemical, e.g., chemical vapor deposition (CVD)

[11, 12], chemical solution deposition (CSD) [13–16],

and physical methods, e.g., physical vapor deposition

(PVD) [17–19], have been reported. CVD exhibits a

high growth rate with a high film uniformity, but

high processing temperatures combined with by-

products that are generally toxic, explosive and cor-

rosive in nature limit the technique. CSD is a fast and

cheap method for growing films. Magnetron sput-

tering is a versatile PVD method and can be suit-

able for industrial upscaling. However, growing

oxide thin films is a challenge which can be handled

in several different ways. A few options are oxide

targets sputtered in RF mode, metallic target using

reactive gas operated in poisoned mode using RF or

pulsed DC or metallic targets using reactive gas

operated in metallic mode. Using oxide targets or

running metal targets in poisoned mode results in

slow growth rates. Running the system in metallic

mode usually results in under stoichiometry of oxy-

gen in the grown film. The optimal process parame-

ters, where high deposition rates combined with

desired stoichiometry are achieved, are often in a

narrow window between metallic and poison mode.

Careful process control is needed to remain in this

narrow window [20].

In this study, we report a growth method which

circumvents the above-mentioned problems for

CaMnO3 thin films by a modified sputtering tech-

nique using a two-step sputtering/annealing tech-

nique [21–23] to maintain high deposition rates

keeping the stoichiometry of the films. First, single-

phase cubic (Ca, Mn)O thin films are deposited by co-

sputtering from elemental metallic targets of Ca and

Mn in an oxygen-containing environment. Followed

by annealing in air with additional oxygen to form

the final phase of perovskite CaMnO3. This has the

benefit of a high deposition rate, since the sputtering

yield from metallic targets is always higher than that

from the respective oxide targets. An additional

advantage is that it allows perfect control of the

composition of the films by controlling the target

power. The phase transformation mechanism, from

initial cubic (Ca,Mn)O phase to the final perovskite

CaMnO3 phase, has been studied. Evaluation of the

thermoelectric properties of the films is performed in

terms of their power factor.

Experimental details

(Ca, Mn)O thin films were deposited onto Al2O3

(0001, C-plane), (1�102, R-plane) and (1�100, M-plane)

substrates from elemental Ca (99.5% purity) and

elemental Mn (99.9% purity) targets. Prior to depo-

sition, the substrates were cleaned in an ultrasonic

bath in acetone followed by isopropanol for 10 min

each. The vacuum chamber at 4 9 10-8 torr base

pressure is described elsewhere [24]. Oxygen and

argon were used as sputtering gases at a flow ratio of

O2 (O2 ? Ar) -1 = 1.5% resulting in a total sputtering
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gas pressure of 0.27 Pa. The substrate was kept for

10 min at 400 �C prior a 30-min deposition resulting

in film thicknesses around 250 nm. The two mag-

netrons used unbalanced magnetic field configura-

tions that were coupling to each other, and both were

operated in RF mode at a power of 60 W. The sub-

strate table was kept electrically isolated from

ground. The Ca/Mn ratio was determined using

energy-dispersive spectroscopy (EDS) in a scanning

electron microscope (SEM, LEO Gemini 1550, Zeiss)

at different regions of each sample.

The post-deposition ex situ annealing study was

performed in a tube furnace in an air with O2 gas

flowing atmosphere. The study was performed in

steps where prior to sample insertion, the tempera-

ture of the furnace was stabilized at set temperature.

The sample was removed from the furnace when it

reached the intended annealing temperature. Prior to

x-ray diffraction (XRD) measurements, the sample

cooled down to room temperature. This process was

repeated for increasingly higher temperature from

400 �C to 1000 �C. The post-deposition annealing for

the samples investigated more in depth was based on

the ex situ annealing study, and 800 �C for 3 h was

used at the same gas condition as in the ex situ

annealing study.

XRD h–2h measurements were performed using a

Philips PW1710 powder diffractometer with a copper

anode source (Cu Ka, k = 1.54 Å), operated at 40 kV

and 40 mA. A Ni filter was used directly after the

X-ray source to remove Cu Kb. A 0.5� divergence slit

was positioned after the Ni filter. In the diffracted

beam path, a 2-mm antiscatter slit, a 0.5� receiving

slit, a curved Ge-crystal monochromator and a pro-

portional Xe-gas-filled detector to detect the intensity

were used.

The temperature-dependent in-plane electrical

resistivity and Seebeck coefficient were simultane-

ously measured using an ULVAC-RIKO ZEM3 sys-

tem in a low-pressure helium atmosphere. The

instrumental error is less than 7%.

Samples for transmission electron microscopy

(TEM) were prepared by ion beam milling. For cross-

sectional TEM, two pieces of the sample were glued

together face-to-face and clamped with a Ti grid and

then polished down to 50 lm thickness. Finally, the

polished sample was ion-milled in a Gatan precision

ion polishing system at an Ar ? energy of 5 kV and a

gun angle of 5�, with a final polishing step at 2 kV

Ar ? energy. The TEM analysis was performed using

a FEI Tecnai G2 TF20 UT instrument with a field

emission gun operated at 200 kV and with a point

resolution of 1.9 Å.

Thermal conductivity of the films was obtained

using modulated thermoreflectance microscopy

(MTRM). In brief, a pump beam at 532 nm delivered

by a Cobolt MLD laser, intensity modulated by an

acousto-optical modulator at a frequency f, is focused

on the surface of the sample with an objective lens

(N.A. = 0.5). In order to prevent effects from possible

changes in the optical properties versus the Mn

concentration, the layers were covered by a 250-nm

gold film, this top layer ensuring a heat source loca-

ted at the surface. Then, thermal waves are excited in

the sample and monitored by the reflectivity surface

change recorded around the pump location by

another focused laser beam. We use a 488-nm Oxxius

laser to maximize the probe sensitivity to the thermal

field in the gold cap layer. A photodiode and a lock-

in amplifier record the AC reflectivity component, in

a frequency range between 1 kHz and 1 MHz.

Finally, the amplitude and phase experimental pro-

files were fitted according to a standard Fourier dif-

fusion law to extract the thermal conductivity of the

CaMnO3 films [25–28]. More details on the procedure

of fit and extraction of the thermal conductivity of the

film with a low thermal conductivity layer in between

the gold and sapphire substrate can be found else-

where [29].

Results and discussion

As-deposited films

Figure 1 shows h–2h x-ray diffractograms of as-de-

posited Ca0.5Mn0.5O films, cubic Fm-3m space group,

grown on M-, R- and C-plane sapphire substrate. The

XRD patterns matches the ICDD file for Ca0.559-
Mn0.441O [ICDD file #01-077-2373], but with slight

peak shifts. These peak shifts and the corresponding

variation of lattice parameters might have been either

from developed stress in the films or due to the slight

variation of Ca-to-Mn ratio in the films within the

uncertainty limit of EDS. The lattice parameters for

pure CaO and MnO, both in cubic Fm-3m space

group, are reported to be 4.8106 Å (ICDD file 00-037-

1497) and 4.4460 Å (ICDD file 01-075-6876), respec-

tively, and from Vegard’s law, the lattice parameter

of Ca0.5Mn0.5O is calculated to be 4.628 Å. From XRD
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peak positions, the lattice parameters are calculated

to be 4.65 Å, 4.64 Å and 4.63 Å, for the films grown

on R-, M- and C-plane sapphire, respectively, which

closely match with the calculated value for

Ca0.5Mn0.5O.

The XRD pattern for film grown on M-plane sap-

phire, shown in Fig. 1a, shows a peak corresponding

to the 220 peak of rock-salt-structured Ca0.5Mn0.5O

and the substrate peak 30�30. The film grown on R-

plane sapphire substrate, shown in Fig. 1b, shows

strong reflections from the (111) and (200) planes and

a weak reflection from the (222) planes of Ca0.5-
Mn0.5O. The 01�12 and 02�24 peaks from the sapphire

substrate are also seen. The film grown on C-plane

sapphire substrate, shown in Fig. 1c, shows 111, 220

and 222 peaks from Ca0.5Mn0.5O along with the

substrate 0006 peak.

Figure 2a shows the TEM images of the as-de-

posited Ca0.5Mn0.5O films grown on M-plane sap-

phire. The high-resolution (HR) TEM image in Fig. 2b

shows that the rock-salt-structured (Ca,Mn)O film is

epitaxially grown on M-plane sapphire substrate,

with domains as usual for rock-salt-structured

materials on this surface of a-Al2O3. The rock-salt

structure is closely related to the hexagonal struc-

tured a-Al2O3 where the difference in structure can

be explained by the stacking order (A–B–C for

(Ca,Mn)O and A–B–A for a-Al2O3). Because of the

close relation between these two structures, it is well

known how these two materials are grown on each

other, a typical example of this is shown by Eklund

et al. [30]. The film is single phase with the crystal-

lographic relationship Ca0.5Mn0.5O (220) || Al2O3

(1�100) and Ca0.5Mn0.5O [001] || Al2O3 [1�210], as

confirmed by the selected area electron diffraction

(SAED) patterns in Fig. 2c, d. Figure 3b shows the

TEM images of the as-deposited Ca0.5Mn0.5O films

grown on C-plane sapphire. The films grown on

C-plane sapphire are polycrystalline, which is also

the case for the films grown on R-plane sapphire (not

shown here). Figure 3c–e shows the SAED patterns of

the C-plane sapphire where (d), corresponding to the

film, shows elongated spots (almost forming rings)

confirming the polycrystalline nature of the film.

In summary, the XRD and TEM results show that

the as-deposited films grown on M-plane sapphire

are phase-pure containing epitaxial domains with a

well-defined microstructure. Films grown on C- and

R-plane sapphire show similar structural properties

where both are polycrystalline with less well-defined

microstructure than those grown on M-plane

sapphire.

Figure 1 h–2h x-ray diffractogram of as-deposited Ca0.5Mn0.5O

films grown on M-, R- and C-plane sapphire, corresponding to a–

c, respectively. The substrate peaks are marked with a star.

Figure 2 TEM images of as-deposited films on M-plane sapphire

substrate where a and b are low- and high-resolution TEM

images. c–e are SAED pattern of substrate, film and

substrate ? film, respectively.
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Phase transformation

To study the phase transformation mechanism from

initial Ca0.5Mn0.5O film to the final phase of per-

ovskite CaMnO3, ex situ x-ray annealing was per-

formed in air with O2 flowing at increasing

temperature from 450 �C to 1000 �C. Between each

annealing step, the sample was cooled down to room

temperature and measured using XRD. The general

trend is similar for both samples, and Fig. 4a, b

shows the h–2h x-ray diffractograms from the

annealing study for the films grown on M- and

R-plane sapphire, respectively. Above 500 �C, the

phase transformation from Fm-3m to Pnma is almost

complete, as the peak from rock-salt structure dis-

appears and 101, 202, 121 and 242 peaks of CaMnO3

gradually appear at 2h angles 23.83�, 34.07�, 48.90�
and 71.70�, respectively. With further increase in

temperature, the peaks of CaMnO3 become more

intense with gradual decrease in full width at half

maximum (FWHM), which indicates the improve-

ment of crystal quality with temperature. Pole fig-

ure analyses of the films annealed at 800 �C confirm

the texture quality of the film (see figure S1 and S2 in

supplementary information). Above 800 �C, the

diffraction peaks shift to higher 2h values, which

implies macroscopic stress in the sample. Appear-

ance of low intense peaks is also clear from Fig. 4a, b,

which is attributed to the partial presence of sec-

ondary orientation in both the films on M- and

R-plane sapphire substrates. The overall trend on

films grown on R-plane sapphire is similar for films

grown on C-plane sapphire (not shown here).

From the above study, it is clear that the annealing

temperatures in the range 500–800 �C facilitate the

formation of single-phase and singly oriented

CaMnO3 films, and annealing temperature of 800 �C
is favorable to produce films with a well-defined

microstructure.

Figure 3 TEM images of as-deposited films on C-plane sapphire

substrate where a and b are low- and high-resolution TEM

images. c–e are SAED pattern of substrate, film and

substrate ? film, respectively.
Figure 4 h–2h x-ray diffractograms of CaMnO3 film grown on

M-plane sapphire (a) and R-plane sapphire (b), annealed at

different temperatures. Stars, triangles and plus-signs correspond

to substrate (ICDD file 00-046-1212), CaMnO3 (Ref. [31] ICDD

file 01-076-8574) and Ca0.5Mn0.5O (ICDD file 01-077-2373),

respectively.
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Structure of post-annealed films

Figure 5 shows the h–2h x-ray diffractograms of

annealed CaMnO3 films grown on M-, R- and

C-plane sapphire. For M-plane sapphire (a), the film

exhibits the 101 and 202 peaks from CaMnO3 and a

minor contribution from a secondary (121) orienta-

tion as indicated by the low-intensity 121 peak. The

films grown on R- and C-plane sapphire, (b) and (c),

show the 121 and 242 peaks from CaMnO3 with a

contribution from 202. The diffraction peaks match

the bulk CaMnO3 in Ref. [31] (ICSD 01-076-8574)

with, at most, a 0.2% difference in 2h angle.

TEM images and diffraction patterns of annealed

samples grown on M- and R-plane sapphire substrate

are shown in Fig. 6a–d, respectively. The film grown

on M-plane sapphire no longer shows the well-de-

fined diffraction spots of the as-deposited film, but it

is still highly textured with an out-of-plane (101)

orientation. The film on M-plane sapphire has a sin-

gle-phased structure with a relatively small amount

of grains with secondary orientations forming

throughout the films as seen in Fig. 6a. In contrast,

the CaMnO3 film grown on R-plane sapphire is

polycrystalline as seen in the SAED pattern, which is

also typical for the films grown on C-plane sapphire,

as expected given their starting microstructure before

annealing.

Thermoelectric properties

The thermal conductivity measured at room tem-

perature is tabulated in Table 1 and is in the same

range as previously reported bulk values, 3.5 W

(mK)-1, 4.1 W (mK)-1 and 2.8 W (mK)-1 [32–34].

Figure 7 shows the resistivity (q) in (a), ln(rT) (b),
Seebeck coefficient (S) in (c) and power factor (rS2) in

Figure 5 h–2h x-ray diffractogram of annealed, at 800 �C for

three hours, CaMnO3 films grown on M-, R- and C-plane

sapphire, corresponding to a–c, respectively. Peaks marked with a

star are from the substrate (ICDD file 00-046-1212).

Figure 6 TEM image and SAED pattern of annealed film on

M-plane sapphire (a) and (b) and R-plane sapphire (c) and (d).

Table 1 Room-temperature thermal conductivity of annealed

films

Sample Thermal conductivity (k) [W (mK)-1]

M-plane 2.3 ± 0.2

R-plane 5.2 ± 0.5

C-plane 4.5 ± 0.5
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(d) as a function of temperature for films grown on

M-, R- and C-plane sapphire. The electrical resistivity

ranges from 1.75 Xcm at room temperature to

0.077 Xcm * 500 �C for the film grown on M-plane

sapphire, 23.40 Xcm at room temperature to

0.25 Xcm at * 500 �C for R-plane sapphire and

11.33 Xcm to 0.21 Xcm for C-plane sapphire. The

Seebeck coefficient is the highest for the film grown

on R-plane sapphire substrate ranging from

- 350 lV K-1 at room temperature to - 250 lV K-1

at 500 �C. The Seebeck values for the films grown on

C- and M-plane sapphire are similar and range from

- 350 lV K-1 at room temperature to - 200 lV K-1

at 500 �C. The decrease in the absolute value of the

Seebeck coefficient, |S|, with temperature is attrib-

uted to the excitation of minority charge carriers [35].

In Fig. 7b, ln(rT) vs T-1 is plotted to determine the

activation energy Ea for the electrical conductivity

following the Arrhenius formula, as shown in Eq. (1)

and (2) [36].

r ¼ A

T
exp

�Ea

kbT

� �
ð1Þ

ln rTð Þ ¼ ln Að Þ � �Ea

kbT
ð2Þ

Here, r, A, T and kb are the electrical conductivity, a

constant, the temperature and Boltzmann’s constant,

respectively. This equation describes a small polaron

hopping model which is commonly used to describe

electrical conductivity for CaMnO3 [37]. The Arrhe-

nius plot in Fig. 7b is linear in the whole temperature

range for films grown on M-plane sapphire and

nonlinear above 200 �C for films grown on R- and

C-plane sapphire. The activation energy for film

grown on M-plane sapphire is evaluated to

0.19 ± 0.01 eV from the slope in Fig. 7b. The non-

linear behavior in films grown on R- and C-plane

sapphire has been observed in other studies [38]. The

reason for the nonlinear behavior is unknown; how-

ever, Zhou et al. report an anomaly in the octahedral

Figure 7 Resistivity, ln(rT), Seebeck coefficient and power factor as a function of temperature are shown in a–d, respectively, for

CaMnO3 films grown on M-, R- and C-plane sapphire.
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tilt angles in this temperature range which could

explain the observed change in activation energy [39].

The power factor (rS2) is the highest for the film

grown on M-plane sapphire reaching 45 lW m-1-

K-2 (500 �C), which is comparable to Xu et al.

(60 lW m-1K-2 [40]) and Ohtaki et al. (50 lW m-1-

K-2 [32]) reported values on undoped CaMnO3 at

room temperature. However, there are higher

reported values from Kabir et al. (140 lW m-1K-2

[34]) and Zhu et al. (170 lW m-1K-2 [41]). The

highest power factor for our films is the film on

M-plane sapphire which is due to its low electrical

resistivity.

Some reported values in the literature for resistiv-

ity, Seebeck coefficient and power factor at room

temperature and activation energy are tabulated in

Table 2. All references in Table 2 use solid-state

reaction (SSR) for synthesizing the CaMnO3 bulk

samples. Huang et al. [33] report a resistivity value

that is in the range of 10 Xcm. A trend is clearly

visible. Higher resistivity results in both higher

absolute Seebeck coefficient and activation energy.

However, the reported values are rather different

between studies and differ almost 100 times in the

extreme case for resistivity. A possible explanation

for these differences can be found by taking oxygen

deficiency into consideration. Goldyreva et al. [42, 43]

report that oxygen vacancies act as electron donors

by creating Mn3? from Mn4?. This change reduces,

similarly too alloying with rare earth metals, resis-

tivity, Seebeck coefficient and activation energy.

Based on this, our films grown on M-plane sapphire

are most likely deficient in oxygen as they have lower

values in both resistivity and Seebeck compared to

three of the listed references in Table 2. As the crys-

tallinity is poorer for films grown on R- and C-plane

sapphire, one should be careful to draw the same

conclusion on these samples because the thermo-

electric properties are likely heavily influenced by

defects. From Table 2 and our discussion above, it is

clear that oxygen vacancies are favorable for the

performance of CaMnO3 as a thermoelectric material.

Conclusion

We have synthesized CaMnO3 thin films on sapphire

using a two-step synthesis method. First, (Ca,Mn)O is

deposited on sapphire substrates using RF reactive

magnetron co-sputtering from elemental targets.

Secondly, the as-deposited films are annealed to

transform the films to orthorhombic (Pnma) struc-

tured CaMnO3. An annealing study showed that

CaMnO3 is formed from 500 �C and 800 �C is favor-

able for the formation of a well-defined microstruc-

ture. The structural and thermoelectric properties on

different sapphire substrates (M-, R- and C-plane)

were evaluated. The effect of post-annealing tem-

perature is also investigated.

Films grown on M-plane sapphire are epitaxially

related to the substrate without any secondary ori-

entation in the as-deposited state. After the annealing

process, the film remains highly textured, in contrast

to polycrystalline films grown on C- or R- plane

sapphire. A film on M-plane sapphire exhibits a

power factor of 45 lW m-1K-2 at 500 �C.
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