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Abstract. The Copernicus Atmosphere Monitoring Service
(CAMS) reanalysis is the latest global reanalysis dataset of
atmospheric composition produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF), consist-
ing of three-dimensional time-consistent atmospheric com-
position fields, including aerosols and chemical species. The
dataset currently covers the period 2003–2016 and will be
extended in the future by adding 1 year each year. A reanal-
ysis for greenhouse gases is being produced separately. The
CAMS reanalysis builds on the experience gained during the
production of the earlier Monitoring Atmospheric Composi-
tion and Climate (MACC) reanalysis and CAMS interim re-
analysis. Satellite retrievals of total column CO; tropospheric
column NO2; aerosol optical depth (AOD); and total column,
partial column and profile ozone retrievals were assimilated
for the CAMS reanalysis with ECMWF’s Integrated Fore-
casting System. The new reanalysis has an increased hori-
zontal resolution of about 80 km and provides more chem-
ical species at a better temporal resolution (3-hourly analy-
sis fields, 3-hourly forecast fields and hourly surface forecast
fields) than the previously produced CAMS interim reanaly-
sis. The CAMS reanalysis has smaller biases compared with
most of the independent ozone, carbon monoxide, nitrogen
dioxide and aerosol optical depth observations used for val-
idation in this paper than the previous two reanalyses and
is much improved and more consistent in time, especially
compared to the MACC reanalysis. The CAMS reanalysis
is a dataset that can be used to compute climatologies, study

trends, evaluate models, benchmark other reanalyses or serve
as boundary conditions for regional models for past periods.

1 Introduction

The European Centre for Medium-Range Weather Forecasts
(ECMWF) has been producing atmospheric composition
(AC) forecasts and analyses for over a decade. The model
and data assimilation system used for this was developed as
a European effort by a consortium of partners funded by sev-
eral European Union (EU) projects. It began in 2005, with the
EU-funded Global Monitoring for Environment and Security
(GEMS) project (Hollingsworth et al., 2008) that built the ca-
pacity for a global and regional forecasting and data assimi-
lation system of AC. In GEMS, ECMWF’s Integrated Fore-
cast System (IFS) was extended to allow for the data assim-
ilation and modelling of aerosols, chemically reactive gases
and greenhouse gases, and the first daily forecasts of reac-
tive gases such as carbon monoxide (CO) and tropospheric
ozone (O3) were made public in May 2007 (Flemming et
al., 2017a). This was followed a year later, in July 2008,
by the real-time data assimilation of aerosol optical depth
(AOD; Benedetti et al., 2009) and selected reactive gases (In-
ness et al., 2013) in the daily GEMS system. The AC system
was further developed in the earlier Monitoring Atmospheric
Composition and Climate (MACC) projects (Flemming et
al., 2015; Inness et al., 2015; Massart et al., 2014; Agustí-
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Panareda et al., 2014) between 2009 and 2014 and has been
running fully operationally in the Copernicus Atmosphere
Monitoring Service (CAMS), operated by ECMWF, since
January 2015. In the rest of this paper we will refer to the
system built in GEMS–MACC–CAMS as the CAMS system
and focus on reactive gases and aerosols.

While the modelling components for aerosols were in-
cluded directly in the IFS from the beginning of GEMS
(Morcrette et al., 2009), the initial approach for the reac-
tive gases was to build a “coupled system” where the chem-
ical transport model (CTM) Model for OZone And Related
chemical Tracers (MOZART), version 3.5 (Kinnison et al.,
2007), was coupled to the IFS using the Ocean Atmosphere
Sea Ice Soil (OASIS 4) coupling software (Flemming et al.,
2009). Later, in the MACC projects, a modified version of
the Carbon Bond 2005 chemistry scheme (CB05; Huijnen et
al., 2010) derived from the CTM Transport Model 5 (TM5)
was integrated in the IFS (referred to as IFS(CB05); Flem-
ming et al., 2015), making the system more computationally
efficient and improving the system’s ability to represent inter-
actions between meteorology and chemistry. In parallel with
the model system, the use of observations in the data assimi-
lation system also evolved with time as new datasets became
available and satellite retrievals were improved.

The initial forecasts and analyses in 2007–2008 had a hor-
izontal resolution of T159 (∼ 110 km). This was increased
to T255 (∼ 80 km) in July 2012 and to T511 (∼ 40 km) in
June 2016. The vertical resolution has so far always con-
sisted of 60 model levels in the vertical, with the top level
at 0.1 hPa. Details about the different model versions used
over time are given in Table A1 in the Appendix. The con-
tinuing upgrades of the CAMS model and data assimilation
system and the changes they brought with them made it dif-
ficult if not impossible to compare data from a recent period
with earlier data in a meaningful way. For example, it was
not possible to calculate seasonal anomalies or trends with
a system that had changed so much over time. Therefore,
so-called reanalyses were produced with the CAMS system,
where a long time period was rerun with a single version of
the model and data assimilation system, taking care to min-
imise changes in the versions of the used emissions or assim-
ilated satellite retrievals. Such a system gives the temporal
consistency needed to deduce trends (e.g. Flemming et al.,
2017b) or to provide maps of annual or seasonal anomalies
(e.g. Flemming and Inness, 2018).

Producing long reanalyses with a single model version
is a well-known procedure in numerical weather prediction
(NWP), and several weather centres have produced meteo-
rological reanalysis datasets. It has long been an important
activity at ECMWF (ERA-40, Uppala et al., 2005; ERA-
Interim, Dee et al., 2011; ERA-5, Hersbach et al., 2018),
and other meteorological centres such as National Centers for
Environmental Protection (NCEP; CFSR; Saha et al., 2010),
the Japan Meteorological Agency (JRA-55, Kobayashi et al.,
2015; JRA-25, Onogi et al., 2007), NASA–GMAO (Modern-

Era Retrospective analysis for Research and Applications –
MERRA, Rienecker, et al., 2011; MERRA-2, Gelaro et al.,
2017) and the China Meteorological Administration (CRA-
40) have also produced or are producing reanalyses.

In addition to these meteorological reanalyses several re-
analyses of atmospheric composition have been produced
in recent years. The multi-sensor reanalysis of total ozone
(van der A et al., 2015) for 1970–2012 used ground-based
Brewer observations to inter-calibrate satellite retrievals.
The MERRA reanalysis (1980–2016) included ozone and
was used to drive an offline aerosol reanalysis (MER-
RAero; Buchard et al., 2015). The MERRA-2 (Gelaro et
al., 2017) reanalysis, again from 1980 onwards, also con-
tained aerosols, assimilated concurrently with the meteo-
rology (Randles et al., 2017; Buchard et al., 2017). The
US Naval Research Laboratory developed the Navy Aerosol
Analysis and Prediction System (NAAPS) aerosol reanalysis
product covering the years 2003–2015 (Lynch et al., 2016).
Miyazaki et al. (2015) put together a tropospheric chem-
istry reanalysis for the years 2005–2014, and the Meteoro-
logical Research Institute (MRI) of the Japan Meteorolog-
ical Agency produced a 5-year aerosol reanalysis product
(Japanese Reanalysis for Aerosol – JRAero) for the years
2011–2015 (Yumimoto et al., 2017).

ECMWF produced several AC reanalyses in the GEMS–
MACC–CAMS projects (see Table A2). All these reanalyses
started in 2003, when a wealth of atmospheric composition
retrievals became available after the launch of the European
Envisat satellite and the American Aqua and Aura satellites.
The so-called “GEMS reanalysis” was a 6-year reanalysis of
reactive gases, aerosols and greenhouse gases covering the
period from 2003 to April 2009. This was followed by the
10-year “MACC reanalysis” for reactive gases and aerosols
covering the period 2003 to 2012 (MACCRA; Inness et al.,
2013). The GEMS and MACC reanalyses both used the cou-
pled IFS–MOZART 3.5 system. After the change to the in-
tegrated IFS(CB05) system in September 2014, the model
as well as the data assimilation configuration changed con-
siderably, and comparing fields from the later years with a
climatology based on the MACC reanalysis showed mainly
model and configuration differences and not a climatologi-
cally meaningful signal. Therefore, a new reanalysis run with
IFS(CB05) was needed. To prepare for this, a test reanalysis
for reactive gases and aerosols, the “CAMS interim reanal-
ysis” (CIRA; Flemming et al., 2017b), was produced with a
version of the IFS(CB05) system from 2003 onwards. CIRA
was run at lower horizontal resolution (T159,∼ 110 km) than
the MACC reanalysis (T255, ∼ 80 km), and the number of
archived fields was slightly reduced to speed up the through-
put. This helped to test aspects of the IFS(CB05) system
and paved the way for the production of the CAMS reanal-
ysis (CAMSRA), again from 2003 onwards and with the
IFS(CB05) system. CAMSRA includes reactive gases and
aerosols at higher horizontal resolution (T255) and with an
increased number and time frequency of archived fields. Fur-
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ther improvements of CAMSRA relative to CIRA are the as-
similation of NO2 retrievals in CAMSRA and a better repre-
sentation of the interannual variability in the biogenic emis-
sions. A reanalysis for the greenhouse gases CO2 and CH4 is
being produced separately and will be discussed in a different
paper.

Figure 1a shows the “Figure of Merit in space” (FMS;
Chang and Hanna, 2004) ozone score at the Antarctic Neu-
mayer Station, and Fig. 1b shows the modified normalised
mean bias (MNMB) of CO in the lower troposphere from
the CAMS daily forecast system and CAMSRA to illustrate
the advantage a reanalysis has over a continuously evolving
operational model system. The definitions of the scores are
given in the Appendix. The FMS score compares the fit of
the model ozone profiles to ozonesonde profiles (here cal-
culated from the surface to 3 hPa), and the score is between
1 (perfect fit) and 0. Figure 1 illustrates the improvements
in the near-real-time (NRT) CAMS system with time. In the
earlier years the CAMS system did not adequately reproduce
the low values and vertical distribution of the Antarctic ozone
hole (Flemming et al., 2011; Inness et al., 2013), which is
shown by the low FMS scores in austral spring from 2008
to 2012 (Fig. 1a). The CAMSRA has much improved FMS
scores during those years and a better consistency in perfor-
mance between earlier and later years. The time series of
MNMB of CO in the lower troposphere (Fig. 1b) also shows
problems of the NRT system in the earlier years in the North-
ern Hemisphere (NH) during winter, when CO values were
strongly underestimated (Inness et al., 2013). There is still an
underestimation of lower tropospheric CO in the CAMSRA,
but the MNMB is now considerably smaller, especially dur-
ing NH winter, and more constant.

The aim of this paper is to document the new CAMSRA
dataset for future reference. The paper gives information
about the model and data assimilation setup used to produce
CAMSRA, presents initial validation results, and intercom-
pares CAMSRA with CIRA and MACCRA. Additional val-
idation of CAMSRA can be found in reanalysis validation
reports (Eskes et al., 2018) and in a validation paper that is
in preparation (Wagner et al., 2019).

This paper is structured in the following way. Section 2 de-
scribes the CAMS model, the data assimilation system and
the emission datasets used to produce the CAMS reanaly-
sis. Section 3 lists the assimilated AC observations and bias
correction procedure. Section 4 gives validation results for
some of the reactive gases and aerosols, and Sect. 5 presents
the conclusions.

2 CAMS model and data assimilation system

An overview of the main differences and commonalities of
the three reanalyses, MACCRA, CIRA and CAMSRA, dis-
cussed in this paper is given in Table 1.

2.1 CAMS model system

The IFS aerosol and chemistry modules applied in CAMSRA
were similar to those in CIRA, and more details about the
modules are given in Flemming et al. (2015) and references
therein. Major updates relative to CIRA are described in the
Sect. 2.1.1 and 2.1.2 below. The meteorological modelling
part of the IFS changed from cycle 40R1 used for CIRA to
cycle 42R1 used for CAMSRA (see also Table 1).

2.1.1 Aerosol model updates

The CAMS aerosol model component of the IFS was pre-
viously described in Morcrette et al. (2009). It is a hybrid
bulk–bin scheme with 12 prognostic tracers, consisting of
three bins for sea salt depending on size (0.03–0.5, 0.5–
5 and 5–20 µm), three bins for dust (0.030–0.55, 0.55–0.9
and 0.9–20 µm), hydrophilic and hydrophobic organic mat-
ter (OM), and black carbon (BC), plus sulfate aerosol and
a gas-phase sulfur dioxide (SO2) precursor. The different
aerosol types are treated as externally mixed, i.e. separate
particles. Transport by advection, convection and diffusion is
handled by the meteorological model component of the IFS.
The aerosol scheme includes prescribed and online emissions
(as described in Sect. 2.2), dry and wet deposition, produc-
tion of sulfate from SO2, and ageing of hydrophobic OM and
BC to hydrophilic OM and BC. Nitrate aerosols are not yet
included in the aerosol scheme. The missing nitrate aerosol
is likely to cause an underestimation of total aerosol in the
forecast model in regions where nitrate would be a signifi-
cant component. The total aerosol will be corrected by the
assimilation of total AOD observations.

The aerosol model used in the CAMS reanalysis contains
these updates relative to CIRA:

– Aerosol optical properties were updated, especially for
organic matter (as described in Bozzo et al., 2017).

– Bug fixes were applied to sedimentation, which was un-
reasonably weak for some dust and sea-salt bins, with
corresponding retuning of sea-salt scavenging.

– SO2 dry deposition velocities were updated to use
monthly values computed by Météo-France’s Surface
Module of the MOCAGE model (SUMO; Michou et
al., 2004). They now match those used in the chemistry
scheme.

– A new parameterisation of anthropogenic secondary or-
ganic aerosol (SOA) production was implemented, pro-
portional to MACCity CO emissions, as suggested in
Spracklen et al. (2011).

– There was a more detailed SO2 to sulfate aerosol con-
version with dependence on temperature and relative
humidity, and there was an overall decrease in the con-
version timescale, especially at high latitudes.
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Figure 1. Time series from 2003 to 2016 of (a) FMS score of ozone at Neumayer (1000–3 hPa) against ozone-sondes (see Sect. 4.1) and
(b) MNMB of CO in the lower troposphere (1000–700 hPa) at Frankfurt am Main airport against IAGOS aircraft data (see Sect. 4.2) from
the real-time CAMS system (black) and CAMSRA (red).

– The sulfate dry deposition velocity was increased over
the ocean.

– A proportional mass fixer used for chemistry (Diaman-
takis and Flemming, 2014) was extended to aerosol
species.

– In CIRA, emissions from the Global Fire Assimilation
System (GFAS) of black carbon (BC) were scaled by a
globally constant factor of 3.4, which had been derived
by comparing BC from a 6-month assimilation run with
a forecast only run. In CAMSRA the same approach
was used but comparing 12 years of CIRA data against
a control run without data assimilation. This made it
possible to derive a geographically varying (but tempo-
rally constant) scaling factor for BC GFAS emissions in
CAMSRA.

– The SO2 emissions in CAMSRA were separated be-
tween low-level (20 % of total emissions, which are
emitted as part of the diffusion scheme) and high-level
emissions (80 % of total emissions which are released
in the two lowest model levels). In CIRA all SO2 emis-
sions were released at the surface as part of the diffusion
scheme.

2.1.2 Chemistry module updates

The chemical mechanism of the IFS is a modified and ex-
tended version of the CB05 (Yarwood et al., 2005) chemi-
cal mechanism for the troposphere, as implemented in the
CTM TM5 (Huijnen et al., 2010). CB05 describes tropo-
spheric chemistry with 55 species and 126 reactions. Strato-
spheric ozone chemistry in IFS(CB05) is parameterised by a
“Cariolle-scheme” (Cariolle and Déqué, 1986; Cariolle and
Teyssèdre, 2007). Wet deposition is modelled following Ja-
cob (2000), and monthly mean gridded dry deposition veloc-

ities calculated by the SUMO model of Météo-France (Mi-
chou et al., 2004) were used to calculate dry deposition. The
chemistry module of the IFS is documented in more detail
in Flemming et al. (2015) and Flemming et al. (2017b). The
following updates of the chemistry scheme from the config-
uration used in CIRA were applied to produce CAMSRA:

– update of heterogeneous rate coefficients for N2O5 and
HO2 based on prognostic clouds and aerosol,

– modification of photolysis rates by prognostic aerosol,

– dynamic tropopause definition based on the temperature
profile for coupling to the Cariolle scheme in the strato-
sphere and for tropospheric mass diagnostics,

– bug fixes, in particular for the diurnal cycle of dry de-
position whose correction has decreased the ozone dry
deposition flux by about 15 %–20 %.

It should be noted that the schemes for aerosol and chem-
istry in IFS(CB05) are largely independent, which means, in
particular, that both the aerosol and the chemistry scheme
carry their own SO2 variable. The conversion of the aerosol
SO2 to sulfate aerosol is modelled in the aerosol scheme
by prescribed conversion rates (Morcrette et al., 2009),
whereas SO2 in the chemistry scheme is subject to gas-phase
and aqueous-phase chemistry. The sulfate of the chemistry
scheme neither contributes to the aerosol optical properties
nor is it corrected by data assimilation. However, the first
steps to link chemistry and aerosol schemes have been un-
dertaken, and the aerosol model affects the chemical com-
position by using the aerosol surface area density in the het-
erogenous reaction rates of dinitrogen pentoxide (N2O5) and
hydroperoxyl (HO2; Huijnen et al., 2014) as well as by using
aerosol optical properties for the modification of photolysis
rates.
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Table 1. Important commonalities and differences between CAMSRA, CIRA and MACCRA.

MACCRA CIRA CAMSRA

Period covered 2003–2012 2003–2018 2003–2016 (will be extended)

Assimilation system IFS Cycle 36r1 4D-Var IFS Cycle 40r2 (2003–2015) 4D-Var
IFS Cycle 41r1 (2016–2018) 4D-Var

IFS Cycle 42r1 4D-Var

Horizontal resolution 80 km globally (T255) 110 km globally (T159) 80 km globally (T255)

Temporal resolution
(output frequency)

6-hourly analysis fields
3-hourly forecast fields from
00:00 UTC up to 24 h

6-hourly analysis fields
3-hourly forecast fields from 06:00 and
18:00 UTC up to 12 h

3-hourly analysis fields
3-hourly forecast fields from 00:00 UTC
up to 48 h
1-hourly surface forecast fields from
00:00 UTC up to 48 h

Anthropogenic
emissions

Chemistry species: MACCity
(trend: ACCMIP + RCP8.5),
Aerosols: AEROCOM

MACCity (trend: ACCMIP + RCP8.5)
and CO emission upgrade from Stein et
al. (2014) for chemistry and aerosols

MACCity (trend: ACCMIP + RCP8.5)
and CO emission upgrade from Stein et
al. (2014)

Biomass burning emis-
sions

GFED (2003–2008) and
GFASv0 (2009–2012)

GFASv1.2 GFASv1.2

Biogenic emissions Monthly mean VOC emissions
for the year 2003 calculated by
the MEGAN2.1 model (Guen-
ther et al., 2006) used for the
whole period. No interannual
variability.

Monthly mean VOC emissions calculated
by the MEGAN2.1 model (Guenther et
al., 2006) using MERRA reanalysed me-
teorology (Sindelarova et al., 2014) for
the period 2003–2010. For the remain-
ing years a climatology of the MEGAN–
MACC data was used.

Monthly mean VOC emissions calcu-
lated by the MEGAN model using
MERRA reanalysed meteorology (Sin-
delarova et al., 2014) for 2003–2016.

Chemistry modules CTM MOZART3 coupled to the
IFS (see Flemming et al., 2009)

IFS(CB05) (Flemming et al., 2015) and
Cariolle ozone parametrisation in strato-
sphere,
CHEM_VER=ver14wd

IFS(CB05) (Flemming et al., 2015, with
updates documented in Sect. 2.1.2) and
Cariolle ozone parametrisation in strato-
sphere,
CHEM_VER=ver15

Aerosol modules Morcrette et al. (2009) Morcrette et al. (2009) plus changes de-
scribed in Flemming et al. (2017b)

Morcrette et al. (2009) with changes doc-
umented in Sect. 2.1.1.

Input meteorological
observations

ECMWF NWP (stream=DA) ECMWF NWP (stream=DCDA) As in ERA5 (2003–2016)

Assimilated O3 re-
trievals

GOME, SCIAMACHY, MIPAS,
MLS, OMI and SBUV/2

GOME, SCIAMACHY, MIPAS, MLS,
OMI, GOME-2 and SBUV/2

SCIAMACHY, MIPAS, MLS, OMI,
GOME-2 and SBUV/2

Assimilated CO re-
trievals

MOPITT, IASI MOPITT MOPITT

Assimilated NO2
retrievals

SCIAMACHY – SCIAMACHY, OMI and GOME-2

Aerosol used in radia-
tion scheme

Tegen climatology Tegen climatology Interactive aerosols, i.e. aerosol fields
from CAMSRA used in radiation scheme

Ozone used in radiation
scheme

GEMS climatology GEMS climatology (2003–2015)
MACCRA climatology (2016–2018)

Interactive ozone, i.e. ozone field from
CAMSRA used in radiation scheme

Stratospheric chemistry Yes No, but Cariolle ozone parametrisation in
stratosphere and stratospheric O3 avail-
able.

No, but Cariolle ozone parametrisation in
stratosphere and stratospheric O3 avail-
able.

A major difference between the production of CIRA and
CAMSRA is that the prognostic ozone and aerosol fields
have been used interactively in the NWP radiation scheme in
CAMSRA. For CIRA climatologies of ozone derived from
MACCRA (Bozzo et al., 2017) and the Tegen et al. (1997)
aerosol climatology were used in the radiation scheme. The

evaluation of the meteorological parameters is beyond the
scope of this paper. Nevertheless, little differences were
found by introducing prognostic ozone and aerosol because
the meteorological analysis is well constrained by the assim-
ilated observations. Furthermore, no change in the evaluation
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of the AC parameters could be identified when using ozone
and aerosol interactively in the radiation scheme.

2.2 Emissions

Great care has been taken to ensure that the emission datasets
are consistent in time and that consistent anthropogenic,
biogenic and biomass burning emissions were used for the
aerosol and chemistry fields. The emission datasets are listed
in Table 1. The emissions are injected at the surface and
distributed over the boundary layer by the model’s convec-
tion and vertical diffusion scheme. The only exception is the
aerosol SO2 emissions, of which 20 % are emitted at the sur-
face as part of the diffusion scheme and 80 % are emitted in
the two lowest model levels (see Sect. 2.1.1). The emissions
datasets used in CAMSRA include emissions from anthro-
pogenic, biogenic, natural and biomass burning sources.

Anthropogenic emissions were from the MACCity inven-
tory (Granier et al., 2011), with modifications to increase
wintertime road traffic emissions over North America and
Europe following the correction of Stein et al. (2014). These
emissions were also used in CIRA, while they were used
without the Stein et al. (2014) correction in MACCRA. The
MACCity inventory covers the period 1960–2010 and is up-
dated for subsequent years using the representative concen-
tration pathway (RCP) version 8.5. The RCP 8.5 (business
as usual) scenario was chosen, as it includes information on
regional emissions after 2000 (Van Vuuren et al., 2010; Riahi
et al., 2011). The anthropogenic MACCity emissions for CO
are shown in Fig. 2, and the emissions for NO are shown in
Fig. 3. The CO emissions decrease over Europe and North
America in the range of 1 % to 5 % per year but increase
over Southeast Asia by a similar amount. The global trend
for CO is close to zero. The MACCity NO emissions de-
crease with time over Europe and North America but increase
over East Asia until 2015, which is in contrast to satellite-
derived emission inventories that show a peak over China in
2012 (e.g. Ding et al., 2017). Anthropogenic emissions of
black carbon, organic carbon and SO2 were also taken from
MACCity. Emissions of anthropogenic SOA were estimated
by applying a scaling factor of 0.2 to the MACCity (i.e. non-
biomass burning) CO emissions, as suggested in Spracklen
et al. (2011).

Monthly mean biogenic emissions of the chemical species
were calculated offline by the MEGAN2.1 model (Guen-
ther et al., 2006) that used meteorological fields from the
MERRA-2 reanalysis following Sindelarova et al. (2014) for
the full period of CAMSRA. Natural emissions from soils
and oceans for NO2, dimethyl sulfate (DMS) and SO2 were
taken from the Precursors of ozone and their effects in the
Troposphere (POET) database for 2000 (Granier et al., 2005;
Olivier et al., 2003).

Daily global biomass burning emissions of reactive gases
and aerosols were provided by the Global Fire Assimilation
System, version 1.2 (GFASv1.2), based on satellite retrievals

of fire radiative power (Kaiser et al., 2012). The archive of
GFASv1.2 data covers the period 2003–present and was also
used in CIRA. In MACCRA early versions of the Global Fire
Emissions Database (GFEDv3.1; van der Werf et al., 2010)
were used from 2003 to the end of 2008, and daily GFASv1.0
data were used from 2009 to 2012. GFEDv3.1 is on average
20 % lower than GFASv1.2 (Inness et al., 2013). Figure 4
shows the GFASv1.2 time series of monthly mean total car-
bon wildfire emissions for each of the main continental re-
gions, excluding Antarctica, between 2003 and 2016. The
emissions from GFEDv3.1 and GFASv1.0 are also shown
for comparison. The CO biomass burning emissions do not
show a significant trend but considerable inter-annual vari-
ability. Africa is usually the largest source of CO biomass
burning emissions, but under El Niño conditions Asian emis-
sions (and in particular emissions from maritime Southeast
Asia) reach similar values. Most notable here are the Asian
emissions during the Indonesian fires in September and Octo-
ber 2015 that caused by far the highest annual wildfire emis-
sions as well as the highest total monthly CO emissions in
the whole period covered by GFAS (Huijnen et al., 2016).

The aerosol model has additional online parameterisations
to calculate sea salt (Monahan et al., 1986) and dust surface
fluxes based on surface winds and other factors (Ginoux et
al., 2001).

2.3 CAMS data assimilation system

The IFS uses an incremental 4D-Var data assimilation sys-
tem (Courtier et al., 1994) for the CAMS reanalysis, with
12 h assimilation windows from 09:00 to 21:00 and 21:00
to 09:00 UTC and two minimisations at spectral truncations
T95 (∼ 210 km) and T159 (∼ 110 km). In the CAMS 4D-
Var a cost function that measures the differences between
the model’s background fields and the observations is min-
imised in order to obtain the best possible forecast through
the length of the assimilation window by adjusting the initial
conditions. Several atmospheric composition fields (i.e. O3,
CO, NO2 and total aerosol mass mixing ratio) are included
in the control vector and minimised together with the mete-
orological control variables. The background errors for the
atmospheric composition fields were either calculated with
the National Meteorological Center (NMC) method (Parrish
and Derber, 1992) or from an ensemble of forecast differ-
ences (Inness et al., 2015). Both methods allow us to cal-
culate differences between pairs of background fields which
have the statistical characteristics of the background errors.
The background errors for the chemical species are univari-
ate, i.e. the error covariance matrix between chemical species
or between chemical species and dynamical fields is diago-
nal. Hence each species is assimilated independently from
the others. More information about the data assimilation sys-
tem and background errors for the chemical fields can be
found in Inness et al. (2015). The aerosol assimilation is de-
scribed in Benedetti et al. (2009), and the background errors
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Figure 2. Monthly CO emissions in Tg yr−1 from anthropogenic sources (MACCity with correction from Stein et al., 2014) for (a) the globe,
(b) East Asia, (c) Europe and (d) North America for the period 2003–2016.

used for the aerosol assimilation are described in Benedetti
and Fisher (2007).

The aerosol assimilation is less constrained than the assim-
ilation of the chemical species because the model has 12 dif-
ferent aerosol components (see Sect. 2.1.1), while the assimi-
lated observations are retrievals of total AOD. Therefore, the
total aerosol mass mixing ratio, defined as the sum of the
aerosol species, is used as control variable, and the analysis
increments are repartitioned into the individual aerosol com-
ponents (the SO2 precursor is excluded from this process, as
it is not visible in the AOD observations) according to their
fractional contribution to the total aerosol mass (Benedetti
et al., 2009). Flemming et al. (2017b) have shown that this
can lead to problems, as the relative fraction of the aerosol
components is not conserved during the whole assimilation
procedure because of differences in aerosol lifetime asso-
ciated with differences in their removal processes. Aerosol
components with a longer atmospheric lifetime can retain
the change imposed by the increments for longer and may
thereby change the relative contributions. Also, if the under-
lying aerosol model has a bias in one aerosol species, e.g.
it overestimates the species and thereby contributes a bigger
fraction to the total aerosol mass mixing ratio than it should,
the assimilation can exacerbate this by attributing a greater
proportion of the increment to this species and enhancing the
bias even further. This was the case in CIRA, where it led

to an unrealistic overestimation of sulfates (Flemming et al.,
2017b). Sulphates are reduced in CAMSRA (see Fig. 20 be-
low).

2.4 CAMSRA data product

The spatial resolution of the CAMS reanalysis is a reduced
Gaussian grid at a spectral truncation of T255, which is
equivalent to grid spacing of approximately 80 km globally
(0.7◦× 0.7◦ grid). The vertical model resolution consists of
60 hybrid sigma–pressure (model) levels with a model top
at 0.1 hPa. The data are available as 3-hourly analyses and
48 h forecasts, initialised daily from analyses at 00:00 UTC.
Three-dimensional model-level forecast fields are available
every 3 h from forecast hour 0 to 48, and surface forecast
fields are available at hourly intervals. Monthly mean fields
are also provided. Atmospheric data are archived on 60
model levels and are also interpolated to 25 pressure levels,
10 potential temperature levels, and 1 potential vorticity
level. Surface and total column diagnostics are also available
(https://software.ecmwf.int/wiki/display/CKB/CAMS +Re-
analysis+data+documentation#CAMSReanalysisdata
documentation-Parameterlistings, last access:
15 March 2019). An inventory of the available model
fields can be found at http://apps.ecmwf.int/data-
catalogues/cams-reanalysis/?class=mc&expver=eac4,
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Figure 3. Monthly NO emissions in Tg yr−1 from anthropogenic sources (MACCity) for (a) the globe, (b) East Asia, (c) Europe and
(d) North America for the period 2003–2016.

Figure 4. Time series of monthly total carbon wildfire emissions in Tg month−1 from GFASv1.2 (2003–2016, black solid line), GFASv1.0
(2009–2012, red dashed line) and GFEDv3.1 (2003–2008, green dashed line) for geographical domains covering (a) Africa, (b) Asia,
(c) South America, (d) Australia, (e) North America and (f) Europe.
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Figure 5. AC data assimilated in the CAMS reanalysis between
2003 and 2016. In red retrievals are shown for which no averag-
ing kernels were used; in green those where averaging kernels were
used are shown.

(last access: 15 March 2019), and more information can
be found at https://atmosphere.copernicus.eu (last access:
15 March 2019). The data will become available from the
Copernicus Atmosphere Data Store.

3 Observations and bias correction

3.1 Observations

The atmospheric composition satellite retrievals of O3, CO,
NO2 and AOD that were assimilated to produce CAMSRA
are shown in Fig. 5 and listed in Table 2. The table also shows
the blacklist criteria applied to the data, i.e. the criteria that
determine when data were not used.

Retrievals from a range of instruments were used for
O3. These included total column O3 (TCO3) retrievals
from the SCanning Imaging Absorption SpectroMeter for
Atmospheric CHartographY (SCIAMACHY) instrument,
the Ozone Monitoring Instrument (OMI) and the Global
Ozone Monitoring Experiment-2 (GOME-2), O3 profile
data from the Michelson Interferometer for Passive Atmo-
spheric Sounding (MIPAS) and Microwave Limb Sounder
(MLS; used down to 215 hPa), and O3 partial columns from
the Solar Backscatter Ultraviolet (SBUV/2) radiometer. For
SBUV/2 the version 8.6 data record (McPeters et al., 2013)
was used until July 2013 and NRT version 8 data afterwards.
The version 8.6 data are available at 21 vertical layers but
were converted into a 13-layer product by CAMS to reduce
smoothing errors by combining the layers between 16 hPa
and the surface. The NRT SBUV/2 data were the same data
used in the CAMS real-time analysis and used at the 21 L
resolution. Changing the NRT data was necessary, as the re-
processed data were not available after July 2013. We do not
notice a change in the ozone analysis field at this time be-
cause the analysis is well constrained by the other assimilated
O3 data, in particular by the MLS profiles.

For CO, Measurement of Pollution in the Troposphere
(MOPITT) thermal infrared (TIR) Version 6 total column CO
(TCCO) retrievals were assimilated in CAMSRA. These re-
trievals are most sensitive to CO in the mid-troposphere and
upper troposphere (Deeter et al., 2013) and are retrieved from
the TIR band near 4.7 µm. The main improvements compared
with the older MOPITT versions used in CIRA (MOPITT
V5) and MACC (MOPITT V4) are a correction of a bias
in geolocation, improved meteorological data based on the
MERRA reanalysis and updated CO a priori profiles (Deeter
et al., 2014). In contrast to MACCRA no IASI CO retrievals
(George et al., 2009; Clerbaux et al., 2009) were assimilated
in CAMSRA because using them led to a discontinuity in
MACCRA (Inness et al., 2013; Flemming et al., 2017b).

For NO2, tropospheric column retrievals from SCIA-
MACHY, OMI and GOME-2 were assimilated in CAM-
SRA. This is an improvement over CIRA (where no NO2
data were assimilated) and MACCRA (where only SCIA-
MACHY NO2 data were assimilated). Where possible, new
reprocessed datasets were used in CAMSRA. However, due
to time constraints it was not possible to acquire and pro-
cess new observations for all the instruments, and for NO2
from SCIAMACHY and OMI, the data that were already
available had to be used. The SCIAMACHY NO2 retrievals
used in CAMSRA were the same data version assimilated in
MACCRA (Koninklijk Nederlands Meteorologisch Instituut
– KNMI; V1p from 2003 to 2011, V2 2011–April 2012). The
OMI NO2 data were also produced by KNMI (Boersma et
al., 2007, 2011) and consisted of offline DOMINO (version
1.0.2) data from October 2004 to 2010, the offline DOMINO
(version 2) retrieval for 2011–2012 and NRT DOMINO re-
trievals (version 2) from 2013 onwards. The GOME-2 data
were the offline GDP4.8 data produced by the EUMET-
SAT Satellite Application Facility for Atmospheric Compo-
sition Monitoring/Deutsches Zentrum für Luft- und Raum-
fahrt (ACSAF/DLR; Valks et al., 2011) until the end of 2016.
GOME-2 NO2 retrievals from Metop-A were assimilated
from April 2007 onwards, and retrievals from Metop-B were
assimilated from January 2013. In previous studies (Inness
et al., 2015) the impact of the assimilation was shown to be
small for short-lived species like NO2 because at least some
of the changes applied to the initial conditions by the analy-
sis were frequently insignificant compared with the prevalent
emissions of nitrogen oxides (NOx=NO2+NO) and were lost
again in the subsequent forecasts. By assimilating NO2 re-
trievals from satellites with different overpass times (09:30
local time – LT – for GOME-2, 10:00 LT for SCIAMACHY,
13:30 LT for OMI) the impact of the assimilation is expected
to be increased, and the diurnal cycle of NO2 is expected
to be better represented. The discontinuity in the assimilated
NO2 products could influence the long-term ozone analysis.
Unfortunately, as there is no additional experiment where O3
data but no NO2 data were assimilated, it is not possible to
infer this information from the CAMS reanalysis. We have
seen in the past (Inness et al., 2015) that the impact of the
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Table 2. Satellite retrievals of atmospheric composition that were assimilated in the CAMS reanalysis. TC is total column, TRC is tropo-
spheric column, PROF is profiles, PC is partial columns, QR is quality flag given by data providers, SOE is solar elevation, MODORO is
model orography, PRESS_RL is pressure at bottom of layer, LAT is latitude and SAA is area of the South Atlantic Anomaly.

Parameter/product Instrument/satellite Period (yyyymmdd) Data provider, version Blacklist criteria Averaging ker-
nels used

Reference

O3/TC SCIAMACHY/Envisat 20020803–20120408 ESA,
CCI (BIRA)

QR >0
SOE <6

No Lerot et al. (2009)

O3/PROF MIPAS/Envisat 20030127–20040326
20050127–20120331

ESA, NRT
ESA, CCI (KIT)

QR >0 No von Clarmann et al. (2003,
2009)

O3/PROF MLS/Aura 20040803–20161231 NASA, V4 QR >0 No Schwartz et al. (2015)

O3/TC OMI/Aura 20041001–20150531
20160101–20161231

KNMI/NASA, V003
NRT

QR >0
SOE <10

No Liu et al. (2010)

O3/TC GOME-2/Metop-A 20070123–20121231
201301–201612

ESA, CCI (BIRA)
fv0100
ESA, CCI (BIRA) fv0300

QR >0
SOE <10

No Hao et al. (2014)

O3/TC GOME-2/Metop-B 201301–201612 ESA, CCI (BIRA) fv0300 QR >0
SOE <10

No Hao et al. (2014)

O3/PC 13L SBUV/2/OAA-14 200407–200609 NASA, v8.6 QR >0
SOE <6
(SOE <15 between
200407–200409)
MODORO >1000. and
PRESS_RL >450.

No Bhartia et al. (1996),
McPeters et al. (2013)

O3/PC 13L
O3/PC 13L
O3/PC 21L

SBUV/2/NOAA-16 200301–200706
20111201–20130708
20130709–20161231

NASA, v8.6
NASA, v8.6
NRT

QR >0
SOE <6
(SOE <15 between
200404–200409)
MODORO >1000. and
PRESS_RL >450.

No Bhartia et al. (1996),
McPeters et al. (2013)

O3/PC 13L SBUV/2/NOAA-17 200301–201108 NASA, v8.6 QR >0
SOE <6
MODORO >1000. and
PRESS_RL >450.

No Bhartia et al. (1996),
McPeters et al. (2013)

O3/PC 13L SBUV/2/NOAA-18 200507–201211 NASA, v8.6 QR >0
SOE <6
(SOE <15 from
200404–200409)
MODORO >1000. and
PRESS_RL >450.

No Bhartia et al. (1996),
McPeters et al. (2013)

O3/PC 13L
O3/PC 21L

SBUV/2/NOAA-19 200903–20130708
20130709–20161231

NASA, v8.6
NRT

QR >0
SOE <6
MODORO >1000. and
PRESS_RL >450.

No Bhartia et al. (1996),
McPeters et al. (2013)

CO/TC MOPITT/Terra 20020101–20161231 NCAR, V6 (TIR) LAT >65.
LAT < − 65
QR >0
Night time data over
Greenland

Yes Deeter et al. (2014)

NO2/TRC SCIAMACHY/Envisat 20030101–20101231
20110101–20120409

KNMI, V1p
KNMI, V2

QR >0
SOE <6
LAT >60
LAT < − 60

Yes Boersma et al. (2004),
http://www.temis.nl (last
access: 15 March 2019);
Wang et al. (2008)

NO2/TRC OMI/Aura 20041001–20101231
20110101–20121231
20130101–20161231

KNMI, Domino V1.02
KNMI, Domino V2
KNMI NRT, Domino V2

QR >0
SOE <6
LAT >60
LAT < − 60

Yes Boersma et al. (2007)

NO2/TRC GOME-2/Metop-A 20070418-20161231 AC SAF, GDP4.8 QR >0
SAA

Yes Valks et al. (2011)

NO2/TRC GOME-2/Metop-B 201301–20161231 AC SAF, GDP4.8 QR >0
SAA

Yes Valks et al. (2011)

AOD/TC AATSR/Envisat 20021201–20120331 ESA, CCI (Swansea) abs(LAT) >70 No Popp et al. (2016)

AOD/TC MODIS/Terra 20021001–20151231
20160101–20161231

NASA, COl6
NRT

abs(LAT) >70 No Levy et al. (2018)

AOD/TC MODIS/Aqua 20021001–20151231
20160101–20161231

NASA, COl6
NRT

abs(LAT) >70 No Levy et al. (2018)
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NO2 assimilation is generally small, so we do not expect this
to lead to problems in the ozone analysis.

For aerosols, Collection 6 retrievals of total AOD at
550 nm from the Moderate Resolution Imaging Spectrora-
diometer (MODIS; Levy et al., 2018) aboard the Aqua and
Terra satellites that were produced with the enhanced Deep
Blue (DB) and Dark Target (DT) algorithms over land and a
DT over-water algorithm over the ocean were used in CAM-
SRA. The main scientific improvement in the algorithm of
Collection 6, compared with the Collection 5 observations
used in MACCRA and CIRA, is the introduction of a wind
speed dependence over the oceans. This addressed the known
bias in Collection 5 over midlatitude oceans, particularly in
the Southern Hemisphere (SH). Various minor changes to
the processing were also made in Collection 6 for mainte-
nance, giving modest improvements (Levy et al., 2013). The
data preparation stage for the MODIS observations priori-
tises Dark Target and will only use Deep Blue data if no Dark
Target observations are available. In addition to MODIS,
CAMSRA used retrievals from the Advanced Along-Track
Scanning Radiometer (AATSR; Popp et al., 2016) aboard
Envisat from 2003 to March 2012. The AATSR and MODIS
AOD observations may potentially be coincident, but this is
dealt with by the data assimilation system. Solving the cost
function balances mismatches for both the model and all ob-
servations, taking into account both model and individual ob-
servation errors.

Averaging kernels were used in the observation operator
for the calculation of the model’s first-guess fields for CO
and NO2 retrievals as described in Inness et al. (2013).

3.2 Bias correction

A variational bias correction (VarBC) scheme (Dee and Up-
pala, 2009) where biases are estimated during the analysis by
including bias parameters in the control vector was used for
several of the AC datasets. In this scheme, the bias correc-
tions are continuously adjusted to optimise the consistency
with all information used in the analysis. VarBC was ap-
plied to the TCO3 retrievals from OMI, SCIAMACHY and
GOME-2, with a global constant and solar elevation as pre-
dictors, while the partial column SBUV/2 and profile MLS
and MIPAS data were used to anchor the bias correction,
i.e. were assimilated without correction. Experience from
MACCRA had shown that it was important to have an an-
chor for the O3 bias correction to avoid drifts in the fields
(Inness et al., 2013). The SBUV/2 data were chosen as an
anchor because they are a high-quality reprocessed dataset
that covers the whole period of CAMSRA. The MLS and
MIPAS profile data were not bias corrected because experi-
ence in MACCRA had shown that the SBUV/2 data could
not anchor all the layers of the higher resolved profile data
and that drifts in individual layers could lead to problems in
the vertical O3 distribution (Inness et al., 2013). Variational
bias correction was also applied to OMI NO2 retrievals, again

with a global constant and solar elevation as predictors, while
SCIAMACHY and GOME-2 NO2 retrievals were used to
anchor the bias correction for NO2. This choice was made
because SCIAMACHY and GOME-2 generally agree better
with the CAMS NO2 fields, while OMI has a larger bias (see
Figs. S5 and S6 in the Supplement) and also suffers from
a row anomaly (see Supplement) that reduces the number of
good data with time. A validation of the diurnal cycle of NO2
is needed in the future to assess if using GOME-2 as anchor
and applying bias correction to OMI could introduce spuri-
ous biases into the OMI NO2 data, leading to inaccurate di-
urnal NO2 variations in the model. However, as the NO2 bias
correction is part of the control vector and is continuously
adjusted to optimise the consistency with all parameters used
in the analysis, and as the assimilation of NO2 usually only
has a small impact in the CAMS system because of its short
lifetime (Inness et al., 2015), we do not expect this to be a
problem. Hopefully a validation of the diurnal cycle of NO2
will be included in the validation paper that is under prepa-
ration. For CO, no bias correction was applied in CAMSRA
because data from only one instrument were assimilated, and
it was not possible to anchor the VarBC. For AOD, experi-
ence had shown that it was not necessary to anchor the bias
correction for the aerosol data, and VarBC was applied to
both MODIS retrievals and to AATSR. The predictors for
AOD were a global constant and the 2 m wind speed over
sea.

The bias correction helps to ensure good time consistency
when blending various datasets and adapts to changing bi-
ases of the data. An example is shown in Fig. 6, which shows
time series of monthly mean analysis departures (i.e. obser-
vations minus analysis fields) and first-guess departures (i.e.
observations minus model first guess) for the four TCO3 re-
trievals (SCIAMACHY, OMI, GOME-2A and GOME-2B)
as well as for the applied bias correction. For all four TCO3
datasets the analysis draws to the observations, and the stan-
dard deviations of the analysis departures are reduced com-
pared to those of the first-guess departures. The plots show
that the bias correction (black lines) is different for all in-
struments, successfully adapts to changes in the data, and re-
moves the biases between total column data and the model.
OMI data (Fig. 6b) between 2009 and 2011, for example,
show different behaviour than during the rest of the time se-
ries, with larger departures (due to larger observation values,
not shown) and the need for larger bias correction. However,
the bias correction successfully accounts for this, and the bias
corrected departures are small and stable. The reason for this
change is a deterioration in the OMI row anomalies (Tor-
res et al., 2018, see their Fig. 1; Schenkeveld et al., 2017).
More information about this can be found in the Supplement.
Thanks to the bias correction removing such biases, the bias
corrected departures (dotted lines) are small and stable for all
four instruments.

Monitoring time series for all the atmospheric composition
datasets assimilated in CAMSRA are shown in the Supple-
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Figure 6. Time series of global mean monthly mean TCO3 departures (top plots) and standard deviations of departures (bottom plots) of
(a) SCIMACHY, (b) OMI, (c) GOME-2A and (d) GOME-2B. The red lines show analysis departures, the blue lines first-guess departures,
black lines bias correction, and dotted red and blue lines the bias corrected analysis and first-guess departures. Values are in DU. More
information about departures can be found in the Supplement.

ment. One important feature to note from the Supplement is
that SCIAMACHY NO2 (Fig. S5) has much larger positive
departures during 2003 than during the rest of the period.
This affects the quality of the NO2 analysis during 2003 (see
Fig. 18 in Sect. 4.3 below).

4 Results

In this section, analysis fields for O3, CO, NO2 and AOD
from CAMSRA are compared to fields from CIRA and
MACCRA to highlight some of the improvements in
CAMSRA and to point out some of the problems poten-
tial users should be aware of. We concentrate on these

four species because they were the ones assimilated in
CAMSRA and validation data are available. There are,
of course, a lot more species available from CAMSRA
that are not covered in this paper. A more thorough
validation of the CAMS reanalysis is beyond the scope
of this paper and given in validation reports available
from the CAMS website (Eskes et al., 2018; available at
https://atmosphere.copernicus.eu/sites/default/files/2018-09/
CAMS84_2015SC2_D84.7.1.4_Y14_v1.pdf, last access:
15 March 2019).
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Figure 7. Seasonally averaged TCO3 from CAMSRA (2003–2016, left), difference between CAMSRA and CIRA (middle), and difference
between CAMSRA and MACCRA (right, 2003–2012 only) in DU for the seasons DJF (row 1), MAM (row 2), JJA (row 3) and SON (row 4).

4.1 Ozone

We start by looking at TCO3, which is dominated by strato-
spheric O3, and then look at tropospheric and surface O3,
which are more relevant for air quality users. Figure 7 shows
the seasonally averaged TCO3 from CAMSRA and the dif-
ferences between this dataset and CIRA and MACCRA. The
TCO3 differences between CAMSRA and CIRA are very
small (below 2DU, <1 %), with slightly larger differences
(5 DU, <3 %) in June, July and August (JJA) over Antarc-
tica. CAMSRA TCO3 is slightly higher than CIRA over the

Tropical Atlantic in all seasons and in NH midlatitudes in
JJA; it is lower over NH midlatitudes during December, Jan-
uary and February (DJF) and March, April and May (MAM);
and it is lower over SH midlatitudes in MAM and JJA. The
differences between CAMSRA and MACCRA are larger,
with CAMSRA lower than MACCRA everywhere (up to
−10 DU, <5 %).

To assess if the differences seen between CAMSRA and
the older reanalyses are an improvement we compare TCO3
from the reanalyses to independent, i.e. not used in the analy-
sis, Dobson sun photometer measurements (Fig. 8) obtained
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Figure 8. Time series of monthly mean TCO3 bias in DU from the three reanalyses compared to WOUDC Dobson data for the areas
(a) globe, (b) Arctic, (c) NH midlatitude, (d) tropics, (e) SH and (f) Antarctic. About 50–60 stations were available from 2003 to 2014,
dropping to about 40 stations after 2014. CAMSRA is shown in red, CIRA in blue and MACCRA in green.

from the World Ozone and Ultraviolet Radiation Data Cen-
tre (WOUDC). The Dobson data are well calibrated, with a
precision of 1 % (Basher, 1982). The mean biases and their
standard deviations for the three reanalyses against the Dob-
son data are given in Table 3. Figure 8 shows that MACCRA
has the largest (positive) biases relative to these data and that
CAMSRA agrees better with the independent observations
in all areas. CAMSRA has smaller biases than the other two
reanalyses in all areas, except in the tropics after 2013, when
CIRA has a smaller bias. CAMSRA and CIRA are very close
from 2003 to 2012 but diverge more from 2013 onwards,

when the version of the MLS profiles used in CIRA changed
from version 2 to NRT version 3.4 (Flemming et al., 2017b).
In these later years, CAMSRA is generally better than CIRA,
except in the tropics. The largest biases for CAMSRA (up
to 25 DU) are found over Antarctica during the ozone hole
season after 2013. Figure 8 shows that there is no notice-
able impact during 2009–2011 when degraded OMI observa-
tions were assimilated (Fig. 6), illustrating the success of the
variational bias correction (Sect. 3) for the TCO3 data. Ta-
ble 3 confirms that CAMSRA has the smallest mean biases
of the three reanalyses when averaged over the period 2003–
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Table 3. Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to WOUDC Dobson data (shown in Fig. 8) in
DU. The values are calculated for the period 2003–2012, and the values in brackets are calculated for CIRA and CAMSRA for the period
2003–2016. Numbers in italics mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, and numbers in
bold mark where their values are smaller.

Area MACCRA CIRA CAMSRA
Bias±SD Bias±SD Bias±SD

Globe 7.6± 13.0 3.2± 10.5 (3.8± 10.7) 2.9± 10.2 (2.4± 10.0)
Arctic 2.5± 14.7 −1.2± 13.7 (0.4± 13.4) −1.0± 13.6 (−0.9± 13.2)
NH midlatitudes 7.8± 13.7 3.4± 11.6 (4.5± 11.8) 3.2± 11.3 (3.0± 14.7)
Tropics 7.9± 11.4 2.6± 7.9 (2.2± 7.8) 2.5± 7.7 (1.2± 7.6)
SH midlatitudes 8.0± 10.8 5.1± 8.0 (5.8± 8.4) 4.4± 7.4 (4.1± 7.1)
Antarctic 7.1± 16.6 3.7± 14.2 (5.7± 14.9) 3.0± 13.9 (3.3± 13.5)

2012 and also has smaller biases than CIRA for the period
2003–2016 in all areas except the Arctic. The average global
mean biases for the period 2003–2012 are 2.9± 10.2 DU for
CAMSRA, 3.2± 10.5 DU for CIRA and 7.6± 13.0 DU for
MACCRA. The biases for the other areas can be found in
Table 3. We see that for TCO3, CAMSRA is clearly a better
product than the older reanalyses.

While it is relatively easy to reproduce a good TCO3 field
by assimilating TCO3 data, reproducing the vertical struc-
ture of the O3 field is more difficult, and the CAMS sys-
tem had problems with this in the past (Flemming et al.,
2011). We therefore also carry out a comparison against in-
dependent ozone-sondes to evaluate the vertical structure of
model biases in the troposphere and stratosphere. The ozone-
sonde data used for the validation were acquired from a va-
riety of data centres: WOUDC, Southern Hemisphere Addi-
tional Ozonesondes (SHADOZ), Network for the Detection
of Atmospheric Composition Change (NDACC) and cam-
paigns for the Determination of Stratospheric Polar Ozone
Losses (MATCH). The precision of electrochemical concen-
tration cell (ECC) ozone-sondes is on the order of ±5 %
in the range between 200 and 10 hPa, between −14 % and
+6 % above 10 hPa, and between −7 % and +17 % below
200 hPa (Komhyr et al., 1995). Larger errors are found in the
presence of steep gradients and where the ozone amount is
low. The same order of precision was found by Steinbrecht
et al. (1998) for Brewer–Mast sondes. Mean relative differ-
ence between the three reanalyses and ozone-sondes and the
standard deviations of the biases are shown in Fig. 9 for the
globe, Arctic, NH midlatitudes, tropics, SH midlatitudes and
Antarctic. For MACCRA the average is only for the period
2003–2012. In general, CAMSRA agrees to within 10 % with
the sondes. The best agreement between the reanalyses and
the sondes is found in the stratosphere, where the assimilated
O3 data constrain the analyses well. Differences between the
reanalyses are larger in the troposphere, where the impact of
the assimilation is smaller (Inness et al., 2015) and differ-
ences in the chemistry schemes, emissions and transport be-
come more important. CAMSRA and CIRA agree well above
about 200–100 hPa, while MACCRA overestimates O3 in all

areas above about 15 hPa. While this overestimation of up-
per stratospheric and mesospheric O3 in MACCRA will not
affect the TCO3 bias, ozone in this region is important for
radiative transfer and the associated heating rates. A smaller
bias in this region will make CAMSRA a better dataset to
be used as climatology in, for example, radiation schemes or
radiance observation operators. CAMSRA has larger O3 val-
ues than CIRA in the troposphere which leads to an increased
bias with respect to the sondes in the tropics but smaller bi-
ases in the other areas. Near the surface, CAMSRA has a
positive bias. The largest differences between the reanalyses
in the troposphere are found in the tropics. Here MACCRA
underestimates O3 in the mid-troposphere and upper tropo-
sphere, with mean biases of up to−30 %, but absolute differ-
ences are small because O3 values in the tropical upper tropo-
sphere and lower stratosphere are low. MACCRA also has a
large negative bias near the surface in the Arctic and Antarc-
tic. Here, improvements to the background error statistics
(Inness et al., 2015), in particular to the vertical correlations
of the background errors, led to big improvements in CIRA
and CAMSRA compared with MACCRA.

The profile plots have shown that the largest relative dif-
ferences between the three reanalyses are found in the tropo-
sphere. Therefore, Fig. 10 looks at time series of the modi-
fied normalised mean bias (MNMB) of reanalysis O3 minus
ozone-sondes in the free troposphere (layer between 750–
300 hPa) to assess these differences in more detail. Figure 10
confirms that MACCRA has the largest bias with respect to
the sondes and shows different behaviour between mid-2004
and the end of 2007 than during the other years, particu-
larly noticeable in the Arctic, NH midlatitudes and Antarc-
tic. This was documented in Inness et al. (2013) and was
the result of using VarBC for MLS data in MACCRA dur-
ing the period August 2004–December 2007. CAMSRA is a
much improved and temporally more consistent dataset than
MACCRA. CAMSRA also has a smaller bias than CIRA in
all areas, apart from the NH midlatitudes during 2005–2009.
CAMSRA has larger O3 values than CIRA in the free tro-
posphere so that CAMSRA shows a small positive bias and
CIRA a small negative bias, which was also seen in the O3
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Figure 9. Mean relative O3 bias in % between CAMSRA (red), CIRA (blue), MACCRA (green) and ozone-sondes averaged over (a) the
globe, (b) Arctic, (c) NH midlatitudes, (d) tropics, (e) SH midlatitudes and (f) Antarctic. The shaded areas show plus or minus 1 standard
deviation. For CAMSRA and CIRA the average is calculated over the period 2003–2016, and for MACCRA the average is calculated only
for 2003–2012.

profile plots (Fig. 9). CIRA and MACCRA have larger biases
than CAMSRA in 2003, which could be the result of assim-
ilating GOME O3 profiles during the first 5 months of 2003
in CIRA and MACCRA but not in CAMSRA (because it was
found to lead to a degradation in the CAMS O3 analysis; not
shown). It was shown previously (Inness et al., 2013; Flem-
ming et al., 2011; Lefever et al., 2015) that it is important in

the CAMS system to assimilate height resolved O3 data, like
MLS profiles, to obtain a good vertical structure of the O3
analysis, and this is confirmed by Fig. 10, as all areas apart
from the NH midlatitudes show larger biases from the end
of March to the beginning of August 2004, when no O3 pro-
file data were assimilated (Fig. 5). The biases in the Arctic
and Antarctic regions are larger during 2003 than during the

Atmos. Chem. Phys., 19, 3515–3556, 2019 www.atmos-chem-phys.net/19/3515/2019/



A. Inness et al.: The CAMS reanalysis of atmospheric composition 3531

Figure 10. Time series of the modified normalised mean bias (MNMB) in the free troposphere (750–300 hPa) of the reanalyses versus ozone-
sondes for (a) global mean, (b) Arctic, (c) NH midlatitudes, (d) tropics, (e) SH midlatitudes and (f) Antarctica. CAMSRA is in red, CIRA in
blue and MACCRA in green.
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other years. This seems to be related to the degraded qual-
ity of the NRT SCIAMACHY and MIPAS data used during
2003 (Figs. 5 and S1). The user should be aware of these
problem periods.

There is a change in the bias behaviour from January 2013
onwards in CAMSRA and CIRA, particularly in the Antarc-
tic and Arctic, where biases increase compared with the ear-
lier years and show seasonally varying behaviour. This must
be the result of changes in the observing system, as the model
does not change and is currently under investigation. The
same seasonally varying biases are also found in the CAMS
real-time system (not shown) from 2013 onwards.

To finish the O3 validation we look at surface ozone
data. Figure 11 shows time series of MNMB of the re-
analyses with respect to ground-based surface observations
from the WMO’s Global Atmosphere Watch (GAW) pro-
gramme (e.g. Oltmans and Levy II, 1994) averaged glob-
ally and for Europe. The GAW observations represent the
global background away from the main polluted areas. De-
tailed information on GAW can be found in GAW reports
no. 209 (available from https://www.wmo.int/pages/prog/
arep/gaw/documents/Final_GAW_209_web.pdf, last access:
15 March 2019). GAW O3 data have a precision of ±1 ppbv.
Table 4 shows the global and Europe mean biases and their
standard deviations from all three reanalyses averaged over
the periods 2003–2012 and 2003–2016 for CAMSRA and
CIRA. In the global mean CAMSRA agrees with the sur-
face data to within 10 % for most years. The biases are gen-
erally negative during the first half of the year and positive
during the second half. MACCRA has larger negative bi-
ases after 2008, and CIRA has larger negative biases from
2003 to 2012. Surface O3 in CAMSRA is higher than in
CIRA so that the global mean biases during boreal spring
are smaller, but the positive global mean biases during bo-
real summer are larger. After spring 2013 CAMSRA and
CIRA are very close. During 2003 CIRA and MACCRA
have a considerably larger bias than CAMSRA. This is also
seen over Europe and North America and was also seen in
ozone in the free troposphere (Fig. 9). In Europe CAMSRA
has biases between −40 % and +10 %. All three reanaly-
ses show an underestimation of surface O3 during boreal
spring and better agreement with the observations during
summer, when the bias is positive. The negative springtime
bias is a known problem in the CAMS system and is gener-
ally smaller in CAMSRA than CIRA. The largest negative
bias in CAMSRA is seen during 2004 (when no O3 profile
data were assimilated). CAMSRA has the smallest global
mean bias against GAW data of the three reanalyses averaged
over the period 2003–2012 (0.51± 6.95 ppb for CAMSRA,
−2.7±8.7 ppb for CIRA and−2.3±9.4 ppb for MACCRA)
and also has smaller biases than CIRA for the period 2003–
2016 (see Table 4). The mean bias for Europe (2003–2012)
is −1.9± 9.3 ppb for MACCRA, −4.4± 8.7 ppb for CIRA
and −2.3± 7.7 ppb for CAMSRA.

In summary, it can be said that for O3 CAMSRA is tem-
porally more consistent than the older reanalyses and has
smaller biases compared with independent observations (see
Tables 3 and 4). The comparisons also show that it is not
advisable to concatenate the older reanalyses with more re-
cent years from CAMSRA because the datasets are too dif-
ferent and that users should use only data from CAMSRA if
they are interested in the complete period from 2003 to 2016.
There are some periods with slightly degraded quality (big-
ger biases) that the user should be aware of. These include
the Arctic and Antarctic free troposphere during 2003 be-
cause MIPAS and SCIAMACHY data or poorer quality were
assimilated, the period between the end of March and the be-
ginning of August 2004, when no profile data were available
for assimilation, and a change in bias after 2013 that is still
under investigation. The underestimation of surface O3 seen
in the CAMS system in the NH during boreal spring is re-
duced in CAMSRA compared with the older reanalyses.

4.2 Carbon monoxide

Next, we look at CO fields from the reanalyses and com-
pare them with independent observations. Figure 12 shows
the seasonally averaged TCCO fields from CAMSRA and the
differences between this dataset and CIRA and MACCRA.
The TCCO differences between CAMSRA and CIRA are
small (below 0.1×1018 molec cm−2, <5 %) with CAMSRA
generally lower than CIRA, apart from African biomass
burning areas south of the Equator in JJA and parts of South-
east Asia in DJF and MAM. The largest relative differences
(of up to 15 %, not shown) are found over the tropical oceans
where background values are small. The differences between
CAMSRA and MACCRA are larger. CAMSRA is lower than
MACCRA over the oceans (0.1–0.2× 1018 molec cm−2, rel-
ative differences mainly <15 %) and is much higher over
biomass burning areas, e.g. South America, Africa, South-
east Asia, Indonesia, Australia in DJF and boreal fires in
Siberia in MAM and JJA, with differences up to 0.5×
1018 molec cm−2 (corresponding to maximum relative differ-
ences of up to 30 % over Indonesia). These difference plots
show that the choice of fire emissions used in the reanalysis
has a large impact on the TCCO field. In MACCRA these
came from GFED (van der Werf et al., 2010) for the period
2003-2008 and GFASv1.0 from 2008 to 2012 (Kaiser et al.,
2012), while in CAMSRA and CIRA, GFASv1.2 was used
throughout from 2003 to 2016 (see Table 1 and Fig. 4). As
for O3, the differences between the reanalyses are too large
to allow the user to concatenate recent years from CAMSRA
with earlier years from the other reanalyses.

To validate CO from the reanalysis with independent ob-
servations, in Fig. 13 we first compare our data with ob-
servations from Total Carbon Column Observing Network
stations (TCCON, GGG2014 data; Wunch et al., 2011, see
http://www.tccon.caltech.edu, last access: 15 March 2019) at
six sites covering latitudes from the Arctic to Australia (see
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Figure 11. Time series of monthly mean surface ozone MNMB between the three reanalyses and GAW O3 data averaged over (a) the globe
and (b) Europe. Globally about 60–70 stations were available from 2003 to 2014, dropping to about 40–50 in 2015 and then dropping steeply
to only a few during 2016. In Europe, the number dropped from 25–35 in 2003–2014 to 17–19 in 2015. CAMSRA is shown in red, CIRA in
blue and MACCRA in green.

Table 4. Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to GAW surface O3 data (shown in Fig. 11; in
ppb). The values are calculated for the period 2003–2012, and the values in brackets are calculated for CIRA and CAMSRA for the period
2003–2016. Numbers in italics mark where MACCRA or CIRA have larger biases or a larger standard deviation than CAMSRA; numbers
in bold mark where their values are smaller.

Area MACCRA CIRA CAMSRA
Bias±SD Bias±SD Bias±SD

Globe −2.3± 9.4 −2.7± 7.8 (−2.0 ± 7.8) 0.5± 7.0 (−0.2± 7.0)
Europe −1.9± 9.3 −4.4± 8.7 (−4.2 ± 8.8) −2.3± 7.7 (−2.1± 7.7)

Table 5). The TCCON stations measure the column-averaged
dry molar fraction CO amount (XCO) and have an abso-
lute accuracy of about 4 % (Wunch et al., 2010). Figure 13
shows very good agreement of CAMSRA with the indepen-
dent observations, in particular for the year-to-year variabil-
ity. The mean bias and standard deviations of the three re-
analyses against the TCCON data are given in Table 5 and
show that the mean biases of CAMSRA are reduced at all
stations compared to MACCRA. CAMSRA is slightly lower
than CIRA, with smaller biases and standard deviation at all
stations except Bremen and Sodankylä. Particularly in the
tropics and SH, the biases and standard deviations are re-
duced much in CAMSRA. CAMSRA captures the seasonal
cycle well at all stations. Especially the summer minimum
(e.g. boreal summer in NH or austral summer in SH) is better
captured in CAMSRA than in CIRA. CAMSRA underesti-
mates XCO at the NH stations Ny-Ålesund, Sodankylä, Bre-
men and Park Falls (biases <−2 ppb) and overestimates it in
the tropics (Izaña, <5 ppb; Darwin, <2 ppb) and in the SH
(Lauder, <1 ppb). CIRA slightly overestimates XCO in the
NH (<3 ppb) and has a larger positive bias than CAMSRA
in the tropics and SH (up to 8 ppb).

To also assess the vertical structure of the CO analysis
fields, in Fig. 14 we compare model fields with CO pro-
files from MOZAIC (Measurements of ozone, water vapour,
carbon monoxide and nitrogen oxides by airbus in-service

aircraft) and IAGOS (In-service Aircraft for a Global Ob-
serving System) observations from instruments mounted on
commercial aircraft. The MOZAIC–IAGOS CO data have an
accuracy of ±5 ppbv, a precision of ±5 % and a detection
limit of 10 ppbv (Nedelec et al., 2003). We use CO profiles
obtained during take-off and landing to evaluate the CO re-
analysis fields. The profiles at the NH midlatitude airports
(Frankfurt, eastern US and Japan) show that all three reanal-
yses underestimate CO in the free troposphere but agree to
within 10 % with the aircraft data. A larger underestima-
tion is found in the boundary layer. Here, MACCRA has
the largest negative bias. This underestimation in MACCRA
was noted previously (Inness et al., 2013) and led to a mod-
ification of increased wintertime road traffic emissions over
North America and Europe in the MACCity emissions (Stein
et al., 2014). These modified emissions are used in CAMSRA
and CIRA. CAMSRA and CIRA are generally closer to each
other in the lower troposphere than to MACCRA. This area
is less impacted by the assimilated MOPITT TIR retrievals
that have the largest sensitivity to CO in the mid-troposphere
(Deeter et al., 2013) and more by emissions and differ-
ences in the chemistry schemes, which are more similar in
CAMSRA and CIRA than in MACCRA. In the upper tropo-
sphere CAMSRA has the lowest mean bias, while CIRA and
MACCRA overestimate CO above about 300 hPa. At Wind-
hoek, all reanalyses underestimate the aircraft data. Here
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Figure 12. Seasonally averaged TCCO from CAMSRA (2003–2016, left), difference between CAMSRA and CIRA (middle), and difference
between CAMSRA and MACCRA (right, 2003–2012 only) in 1018 molec cm−2 for the seasons DJF (row 1), MAM (row 2), JJA (row 3)
and SON (row 4).

CAMSRA and MACCRA have a smaller bias than CIRA
below 650 hPa, but CIRA has a smaller bias above 500 hPa.
Over Southeast Asia all reanalyses show a large underestima-
tion in the boundary layer, with MACCRA having the largest
bias of up to −35 %. In the free troposphere all reanalyses
underestimate CO but have a smaller bias than near the sur-
face. MACCRA has the smallest bias in the free troposphere
(biases of less than −5 % between 650 and 400 hPa). This
could be the result of assimilating the Infrared Atmospheric
Sounding Interferometer (IASI) TCCO data (George et al.,

2009; Clerbaux et al., 2009) in MACCRA in addition to MO-
PITT. Like MOPITT, IASI CO retrievals are most sensitive to
CO in the mid-troposphere and could add an extra constraint
on CO here when more observations are being assimilated,
as IASI has a better coverage than MOPITT (e.g. Barré et
al., 2015). Over Indonesia CAMSRA and CIRA have smaller
biases than MACCRA below 700 hPa. This is likely due to
differences in the fire emissions. At Windhoek, Southeast
Asia and Indonesia, CAMSRA and CIRA overestimate sur-
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Figure 13. Column-averaged CO (XCO; in ppb) at several TCCON stations. Monthly mean observations are shown by the black dots, and
corresponding monthly mean XCO columns calculated using the TCCON averaging kernels are shown by the red (CAMSRA), blue (CIRA)
and green (MACCRA) triangles. The continuous lines are the monthly XCO for the three reanalyses. Shown are data for (a) Ny-Ålesund,
(b) Sodankylä, (c) Bremen, (d) Park Falls, (e) Izaña, (f) Darwin, (g) Lauder 2004–2010 and (h) Lauder 2010–2016.

Table 5. TCCON stations used in this paper and mean biases and standard deviations from MACCRA, CIRA and CAMSRA (shown in
Fig. 13; in ppb). The values for CIRA and CAMSRA are calculated for the period 2003–2016, and the values for MACCRA are calculated
for the period 2003–2012. Numbers in italics mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, and
numbers in bold mark where their values are smaller.

Station Latitude, longitude Reference MACCRA CIRA CAMSRA
Bias±SD Bias±SD Bias±SD

Ny-Ålesund 78.9◦ N, 11.9◦ E Notholt et al. (2017a) −8.0± 8.0 1.5± 4.1 −1.2± 3.6
Sodankylä 67.37◦ N, 26.63◦ E Kivi et al. (2017) 3.7± 7.2 0.9± 2.7 −1.4± 3.1
Bremen 53.1◦ N, 8.85◦ E Notholt et al. (2017b) 6.0± 4.9 0.9± 3.3 −1.8± 3.1
Park Falls 45.94◦ N, 90.27◦W Wennberg et al. (2017) 4.5± 5.0 3.0± 3.0 −0.5± 3.0
Izaña 28.3◦ N, 16.5◦W Blumenstock et al. (2017) 12.9± 4.6 8.3± 3.2 4.5± 3.3
Darwin 12.45◦ S, 130.89◦ E Griffith et al. (2014) 4.6± 4.5 7.3± 4.4 2.0± 5.1
Lauder 45.04◦ S, 169.68◦ E Sherlock et al. (2014) 4.3± 2.7 5.5± 1.8 0.6± 1.6

4.5± 2.9 3.9± 3.0 0.7± 2.6
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Figure 14. Mean relative CO bias (in %) between the reanalyses and IAGOS aircraft data for CAMSRA (red), CIRA (blue) and MACCRA
(green) at (a) Frankfurt, (b) eastern US airports, (c) Japanese airports, (d) Windhoek, (e) Southeast Asian airports and (f) Indonesian airports
(note the different scale of the axis for f). The shaded areas show plus or minus 1 standard deviation. For CAMSRA and CIRA the average
is calculated over the period 2003–2016, and for MACCRA the average is calculated only for 2003–2012.
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Figure 15. Mean CO bias (in ppb) between the three reanalyses,
and GAW surface observations for (a) CAMSRA, (b) CIRA and
(c) MACCRA. For CAMSRA and CIRA the average is calculated
over the period 2003–2016, and for MACCRA it is only calculated
for 2003–2012.

face CO. This overestimation is also seen in comparison with
GAW surface CO data at Cape Point (not shown).

Next, we look at surface CO data. Figure 15 shows
maps of mean biases of surface CO against GAW obser-
vation. The data are averaged over the period 2003–2016
for CAMSRA and CIRA and 2003–2012 for MACCRA.
The uncertainty of GAW CO data is between 2 ppbv for
marine boundary layer sites and 5 ppbv for continental
sites that are influenced by regional pollution (GAW report
192, available from http://www.wmo.int/pages/prog/arep/
gaw/documents/GAW_192_WMO_TD_1551_web.pdf, last
access: 15 March 2019). The biases in CAMSRA and CIRA

are less than 10 % for many stations, with slightly larger pos-
itive biases for some North American stations and slightly
larger negative biases for some European stations. MACCRA
has larger negative biases over North America and Europe.
CAMSRA shows a larger positive bias than the other two
reanalyses at the Indonesian station of Bukit Koto Tabang.
Looking at a time series at this location (Fig. 16d) we see
that the station is strongly influenced by high CO events dur-
ing years with intense biomass burning (2004, 2006, 2014
and 2015), with the largest peaks in 2014 and 2015, when
CAMSRA is higher than CIRA. This is after the end of
MACCRA, which only covered the period from 2003 to
2012. It has to be assessed if this overestimation is the re-
sult of GFAS emission factors that are too large for CO.

Figure 16 shows time series of monthly mean CO surface
biases of the reanalyses with respect to GAW observations
averaged over the globe and Europe as well as time series of
absolute surface CO values at the Arctic Alert station and
the Indonesian Bukit Koto Tabang station. Table 6 shows
the corresponding mean biases of the three reanalyses and
their standard deviations. The agreement of MACCRA with
GAW CO data over Europe (Fig. 16b) is worse than for the
other two reanalyses with a large underestimation during bo-
real winter. This bias was already documented in Inness et
al. (2013) and Flemming et al. (2017b). The negative bias of
MACCRA increases after April 2008, when the assimilation
of IASI CO retrievals started in MACCRA (see Inness et al.,
2013), and is particularly pronounced at high northern lati-
tudes (e.g. time series at Alert; Fig. 16c), where the mean bias
for 2003–2012 is −19.2± 17.5 ppb for MACCRA, −6.0±
12.5 ppb for CIRA and −6.2± 12.2 ppb for CAMSRA. The
mean bias for MACCRA over Europe for the period 2003–
2012 is−16.6±48.8 ppb, while CAMSRA (10.7±54.0 ppb)
and CIRA (7.5±54.7 ppb) both have smaller positive biases.
The average global mean bias for the period 2003–2012 is
negative for MACCRA (−6.3± 38.5 ppb). Larger and posi-
tive global mean biases for 2003–2012 are found for CIRA
(13.6±52.1 ppb) and CAMSRA (17.9±71.7 ppb). The larger
global mean bias for CAMSRA is dominated by the large
overestimation of surface CO over Indonesia during years
with high biomass burning activity (see Fig. 16d). The differ-
ences between MACCRA and the other reanalyses are likely
the result of using GFED instead of GFAS fire emissions.

In summary, CO from CAMSRA has a good seasonal cy-
cle and captures the interannual variability observed by TC-
CON data well. CAMSRA has smaller biases relative to TC-
CON data than the older reanalyses at most stations. There is
a low bias with respect to IAGOS aircraft data in the lower
troposphere over NH midlatitudes, Southeast Asia and In-
donesia. This is a persistent feature of the CAMS system,
and more work is needed to assess if it is a model problem
or due to problems with the emissions. CAMSRA generally
agrees better with GAW surface observations than MACCRA
over much of the globe (e.g. Europe and North America)
but has larger biases relative to GAW over Indonesia which
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Figure 16. Top panels depict time series of monthly mean surface CO bias (in ppb) between the three reanalyses and GAW CO data averaged
over (a) the globe and (b) Europe. Between 15 and 30 stations were available between 2003 and 2016, with largest number between 2008
and 2014 and smaller numbers in the earlier and later years. (c, d) Time series of monthly mean CO from GAW (blue dots), CAMSRA,
CIRA and MACCRA (in ppb) at (c) Alert and (d) Bukit Koto Tabang. CAMSRA is shown in red, CIRA in blue and MACCRA in green.

Table 6. Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to GAW surface CO data (shown in Fig. 16; in
ppb). The values are calculated for the period 2003–2012, and the values in brackets are calculated for CIRA and CAMSRA for the period
2003–2016. Numbers in italics mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, and numbers in
bold mark where their values are smaller.

Area MACCRA CIRA CAMSRA
Bias±SD Bias±SD Bias±SD

Globe −6.3± 38.5 13.6± 52.1 (14.3± 57.5) 17.9± 58.7 (17.7± 71.7)
Europe −16.6± 48.8 7.5± 54.7 (10.6± 54.4) 10.7± 54.1 (11.2± 51.2)
Alert −19.2± 17.5 −6.0± 12.5 (−4.8± 13.1) −6.2± 12.2 (−5.1± 12.6)
Bukit Koto Tabang 24.3± 62.0 142.5± 85.5 (148.5± 98.8) 192.3± 97.8 (204.2± 168.6)

lead to larger global mean biases when averaged over 2003–
2012 or 2003–2016. CAMSRA is more similar to CIRA than
MACCRA because of differences in the emissions, chemistry
schemes and assimilated data. It is therefore not possible to
use a climatology based on the MACCRA data and recent
years from CAMSRA to calculate anomalies, for example.

4.3 Nitrogen dioxide

The final reactive gases species discussed in this paper is
NO2. Validation of NO2 with independent observations, es-
pecially surface observations, is difficult because of the short
lifetime and large variability of the concentrations. First, we

compare the seasonally averaged tropospheric column NOx

(TRCNOx) fields from CAMSRA, CIRA and MACCRA in
Fig. 17. Figure 17 shows that CAMSRA has a realistic TRC-
NOx distribution with high NOx columns in the NH in areas
affected by anthropogenic emissions and also in boreal and
tropical biomass burning areas. The largest TRCNOx values
are found in DJF in the NH, when emissions are largest and
the NOx lifetime is longest. In Africa, a realistic seasonal
cycle is found, with a maximum in the Sahel in DJF and
maximum values south of the Equator in JJA related to the
seasonality of biomass burning. NOx columns over South
America are smaller than over Africa, with the largest val-
ues found in JJA and SON because deforestation fires and
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Figure 17. Seasonally averaged TRCNOx in 1015 molec cm−2 from CAMSRA (2003–2016, left), the differences between CAMSRA and
CIRA (middle), and the differences between CAMSRA and MACCRA (right, 2003–2012 only) for the seasons DJF (row 1), MAM (row 2),
JJA (row 3) and SON (row 4).

agricultural fires mainly occur south of 10◦ S during August–
October, with a peak in September.

Differences between CAMSRA and CIRA are due to
model changes but are also due to the assimilation of the tro-
pospheric column NO2 retrievals from SCIAMACHY, OMI
and GOME-2 in CAMSRA (see Table 2). No NO2 retrievals
were assimilated in CIRA. Over large parts of the world
the differences are small. The largest positive differences
are seen over Southeast Asia, particularly during DJF. Over
Europe and the eastern US, CAMSRA has lower TRCNOx
values than CIRA during DJF. The fact that the largest dif-
ferences in the NH are seen during DJF suggests that this
is at least partly due to the impact of the assimilation of
the satellite data. While the impact of the NO2 assimilation
is generally small because of the short lifetime of NO2, it
was found to have a larger impact during winter and spring,

when the lifetime is longer than during summer (see Figs. S5
and S6 and Inness et al., 2015). Furthermore, by assimi-
lating NO2 retrievals from satellites with different overpass
times (09:30 LT for GOME-2, 10:00 LT for SCIAMACHY
and 13:30 LT for OMI), the impact of the assimilation is
likely to be increased. CAMSRA has much lower values than
CIRA over the Arabian Peninsula, with the largest differ-
ences found in JJA. This reduction is not due to the assim-
ilated data but due to model changes, i.e. the coupling with
aerosol in the chemistry scheme (see Sect. 2.1) that leads to
faster NOx removal and reduces the positive bias noted be-
fore in the CAMS system in this area when evaluating against
satellite NO2 observations (not shown). The differences be-
tween CAMSRA and MACCRA are mainly negative over
land in the tropics and positive over areas of anthropogenic
emissions apart from the eastern US and parts of China in
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DJF. These differences are a result of the different chemistry
schemes and biomass burning emissions used in CAMSRA
and MACCRA as well as the assimilation of NO2 retrievals
from different instruments (only SCIAMACHY assimilated
in MACCRA).

It is difficult to find independent NO2 data for vali-
dation which are representative for the grid box size of
the CAMSRA global reanalysis. We use the following two
datasets for validation: (1) a satellite-based tropospheric col-
umn NO2 dataset and (2) surface NO2 measurements from
selected GAW stations in Europe. GAW stations aim to have
an uncertainty of about 3 % for monthly mean data (Pen-
kett et al., 2011). As the number of GAW stations measuring
NO2 is small and drops considerably with time during the
period of interest, it is not meaningful to look at time series
of area means. We therefore restrict our validation to four
European GAW stations that have observations for most of
the period from 2003 to 2016. The dataset (1) is produced by
the University of Bremen based on SCIAMACHY–Envisat
NO2 satellite retrievals (IUP-UB v0.7, before April 2012;
Richter et al., 2005) and GOME-2 and Metop-A NO2 satel-
lite retrievals (IUP-UB v1.0, from April 2012 to the end of
2016; Richter et al., 2011). The retrieval product used for val-
idation is different to the SCIAMACHY and GOME-2 NO2
retrievals that are assimilated in CAMSRA (which are pro-
duced by the ACSAF; see Table 2). Despite the retrievals be-
ing based on the same Level 1 spectral irradiance data, the
retrieval procedures are completely independent, from the
spectral fit to the assumptions made on the a priori data used
for the air mass factor calculations. In the absence of other
independent validation data for tropospheric NO2 columns,
they can still provide a critical evaluation of the model perfor-
mance on a global scale. The satellite data are always taken
at the same local time, roughly 10:00 LT for SCIAMACHY
and 09:30 LT for GOME-2, and with a clear sky only. Model
data are vertically integrated, interpolated linearly in time to
the observation time of SCIAMACHY (which is expected
to lead to minor uncertainties when comparing to GOME-
2 observations in Fig. 18 below) and then sampled spatially
to match the satellite data. Model data were treated with the
same reference sector subtraction approach as the satellite
data. Uncertainties in NO2 satellite retrievals are large and
depend on the region and season. Winter values in midlat-
itudes and high latitudes are usually associated with larger
error margins. As a rough estimate, systematic uncertainties
in regions with significant pollution are on the order of 20 %–
30 %.

Figure 18 shows time series of tropospheric column NO2
from the Bremen satellite dataset (0.5◦× 0.5◦), CAMSRA,
CIRA and MACCRA averaged over Europe and East Asia
for the period from 2003 to 2016. The figure illustrates that,
while the seasonality of NO2 (with low values during sum-
mer and high values during winter) is captured in both ar-
eas, there is generally an underestimation of the seasonal
cycle, mainly due to an underestimation of the wintertime

Figure 18. Time series of tropospheric column NO2 from
the three reanalyses and IUB tropospheric NO2 retrievals in
1015 molec cm−2 averaged over (a) Europe and (b) East Asia.
CAMSRA is shown in red, CIRA in blue, MACCRA in green and
the observations in black.

maximum. This underestimation could be related to an un-
derestimation of anthropogenic emissions or uncertainties in
the photochemistry of the models and is particularly pro-
nounced over East Asia. Over Europe the differences be-
tween the three reanalyses are small; over East Asia they are
larger. Over East Asia in 2003, the CAMS reanalysis shows
a strong variation in values from one month to the next and
fails to reproduce the observed seasonality. This is due to
assimilating SCIMACHY NO2 data of degraded quality dur-
ing 2003 in CAMSRA (see Fig. S5a). The Bremen dataset
shows an increase in the wintertime maximum NO2 values
over East Asia until 2012–2014 and a decrease in the later
years. This behaviour is reproduced better in CAMSRA than
in CIRA and MACCRA, though the maximum values are still
underestimated. This improvement is the result of assimilat-
ing more NO2 satellite data, in particular data from satellites
with different overpass times, in CAMSRA. It is not seen in
a control run without data assimilation (not shown). How-
ever, the magnitude of the positive trend up to 2012 and of
the negative trend in the recent years is still underestimated
by CAMSRA, and the observed decrease after 2014 is not
reproduced by the three reanalyses.

Figure 19 shows time series of surface NO2 from CAMS,
CIRA and MACCRA, with GAW surface observations at
four European stations, and Table 7 lists the corresponding
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Figure 19. Time series of monthly mean surface NO2 from CAMSRA (red), CIRA (blue), MACCRA (green) and GAW surface observations
(blue dots) for (a) Łeba, (b) Jarczew, (c) Hohenpeißenberg and (d) Payerne (in ppb). The latitude and longitude of the stations are given in
the plot titles.

mean biases and their standard deviations. Overall, the re-
analyses reproduce the observed mean values and the sea-
sonal variability well. At Łeba (on the Baltic coast) all three
reanalyses capture the annual cycle well, with high NO2
concentrations during the winter and lower concentrations
during the summer. MACCRA underestimates the summer-
time minimum more than the other two reanalyses. Averaged
over the years 2003–2012 CAMSRA has the smallest bias,
0.0±0.6 ppb, compared to−0.2±0.6 ppb for MACCRA and
0.1±0.6 ppb for CIRA. At Jarczew (Poland) both CAMSRA
and MACCRA capture the low summertime NO2 values
better than CIRA, which has a positive bias during sum-
mer, while the wintertime NO2 maxima are more similar
in the three reanalyses. Overall, CAMSRA agrees best with
the GAW data here, with the smallest mean bias and stan-
dard deviation (see Table 7). At Hohenpeißenberg in south-
ern Germany all reanalyses underestimate the summer min-
imum and struggle to capture some of the high winter val-
ues between 2008 and 2012. CIRA underestimates the win-
ter maximum values most, while CAMSRA and MACCRA
agree better with the observations during winter, especially
during the first half of the time series. MACCRA has the
smallest mean bias (−0.6±0.7 ppb), followed by CAMSRA
(−0.7± 0.7 ppb) and CIRA (−1.1± 0.7 ppb) for the period
2003–2012. At Payerne (Switzerland), MACCRA strongly
underestimates the GAW observations (mean bias of −4.7±
2.2 ppb), while CAMSRA (mean bias of−1.2±1.4 ppb) and

CIRA (mean bias of−1.1±1.6 ppb) capture the annual cycle
reasonably well, in particular the summer minimum.

In summary, we find that CAMSRA shows some improve-
ments in the tropospheric NO2 column (relative to a dataset
based on SCIMACHY and GOME-2A data) compared with
the older two reanalyses, especially over East Asia, where
the assimilation of (more) NO2 retrievals reduces the bias be-
tween the reanalysis and the data. However, the tropospheric
NO2 columns are still underestimated in CAMSRA over East
Asia and Europe, particularly the wintertime maxima. This
is a long-standing problem of the CAMS system, and it is
hoped that work which has started to include an emission
inversion capability in the CAMS system will improve this
in the future. We find changes in NO2 compared with CIRA
(particularly over the Arabian Peninsula), which are the re-
sult of coupling with aerosol in the CAMSRA chemistry
scheme that leads to faster NOx removes and a reduced pos-
itive bias in those areas. Compared with GAW surface NO2
observations at four European stations CAMSRA reproduces
the monthly mean values and the seasonal variability well,
with some underestimation of wintertime maximum values.

4.4 Aerosols

The final validation section looks at aerosol fields from the
three reanalyses. Several model changes were included in the
version of the IFS used to produce CAMSRA to address is-
sues identified in CIRA, and this has a large impact on the
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Figure 20. Annually averaged AOD species from CAMSRA (2003–2016, left), difference between CAMSRA and CIRA (middle), and
difference between CAMSRA and MACCRA (right, 2003–2012 only) for total AOD (row 1), sea salt (row 2), desert dust (row 3) and
sulfates (row 4), organic matter (row 5), and black carbon (row 60). AOD is unitless.
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Table 7. Monthly mean surface NO2 biases and standard deviations from MACCRA, CIRA and CAMSRA relative to GAW surface NO2
data (shown in Fig. 19; in ppb). The values are calculated for the period 2003–2012, and the values in brackets are calculated for CIRA
and CAMSRA for the period 2003–2016. Numbers in italics mark where MACCRA or CIRA have larger biases or standard deviation than
CAMSRA, and numbers in bold mark where their values are smaller.

Area MACCRA CIRA CAMSRA
Bias±SD Bias±SD Bias±SD

Łeba −0.2± 0.6 0.1± 0.6 (0.2± 0.6) 0.0± 0.6 (0.1± 0.6)
Jarczew −0.5± 1.0 0.6± 1.0 (0.7± 1.0) −0.4± 1.0 (−0.4± 1.0)
Hohenpeißenberg −0.6± 0.7 −1.1± 0.7 (−1.1 ± 0.7) −0.7± 0.7 (−0.6± 0.7)
Payerne −4.7± 2.2 −1.1± 1.6 (−1.0± 1.7) −1.2± 1.4 (−1.2± 1.4)

aerosol speciation. Figure 20 shows the mean AOD over the
period from 2003 to 2016 from CAMSRA and the differ-
ences between this dataset and CIRA and MACCRA (only
for 2003–2012). Also shown are the mean and differences
for the individual aerosol components (sea salt, desert dust,
sulfate, organic matter and black carbon). There is a consid-
erable change in the aerosol composition in CAMSRA. Rel-
ative to CIRA, CAMSRA shows a reduction in desert dust,
sulfates and black carbon in the SH, compensated by an in-
crease in sea salt, organic matter and black carbon in the NH.
Compared with MACCRA there is a reduction in sea salt,
desert dust, sulfate and black carbon in the SH and an in-
crease in organic matter and black carbon in the NH. Too
much sulfate was a known problem of CIRA, where it was
the dominant species contributing to AOD in regions away
from the main aerosol emissions (Flemming et al., 2017b).
This resulted partly from the mis-speciation of analysis in-
crements mentioned in Sect. 2.3. This is significantly im-
proved in CAMSRA by model changes, accompanied by a
large increase in organic matter in polluted regions from the
introduction of a representation of anthropogenic SOA as de-
scribed in Sec. 2.1.1, which was missing from the earlier re-
analyses.

Total AOD in CAMSRA is reduced over most land ar-
eas and the Arctic Ocean (Fig. 20); however, there are in-
creases over most of the tropical oceans and non-desert trop-
ical land regions, in particular Southeast Asia, India, Indone-
sia, and parts of tropical South America and Africa. The
largest absolute reduction is found in desert areas (North
Africa, Middle East and Gobi) where CAMSRA is up to 0.2
lower than CIRA, where model changes led to a reduction
in desert dust. The reduction in AOD seen in the NH comes
from the reduction in sulfate. Differences of the total AOD
between CAMSRA and MACCRA are larger than between
CAMSRA and CIRA, with CAMSRA being considerably
lower than MACCRA everywhere except the Sahara, tropi-
cal South America and parts of Southeast Asia.

The AOD at 550 nm from the reanalyses is evaluated with
observations of the AErosol RObotic NETwork (AERONET;
Figs. 21–23) Version 3 Level 2.0 data. AERONET is a net-
work of about 400 stations measuring spectral AOD with
ground-based sun photometers (Holben et al., 1998). The sta-

Figure 21. Mean Total AOD bias between the three reanalyses
and AERONET observations for (a) CAMSRA, (b) CIRA and
(c) MACCRA. For CAMSRA and CIRA the average is calculated
over the period 2003–2016, and for MACCRA it is calculated only
for 2003–2012. AOD is unitless.
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tions are mostly located over land, with a high number of
stations situated in North America and Europe. The global
number of stations contributing observations to the evalua-
tion increased from about 60 in 2003 to about 300 in 2016.
Figure 21 shows maps of the mean biases from the three
reanalyses against AERONET. CAMSRA has the smallest
mean bias at most locations, while CIRA shows larger pos-
itive biases over North America, Australia and desert areas
(North Africa, Middle East and Gobi) and a larger under-
estimation in India and Southeast Asia. MACCRA has even
larger positive biases in North America and larger positive bi-
ases in Europe and the Mediterranean. Figure 21 shows that
in CAMSRA there are some hotspots around outgassing vol-
canoes (in particular Mauna Loa and Mexico City) with high
analysis AOD values that degrade the global average bias.
These hotspots are dominated by sulfate and are a side effect
of possibly erroneous model treatment of diffuse volcanic
emissions, i.e. the model-resolution orography not resolving
the height of the volcanoes and therefore not being repre-
sentative of the measurement sites with respect to the vol-
canic plumes. It is also possible that there are errors in how
quickly aerosol is formed from diffuse outgassing sources.
The volcanic emissions have been unmasked by recent en-
hancements to the aerosol SO2 oxidation scheme which im-
prove aerosol on the global scale. When calculating global
mean statistics, it is advisable to exclude those two stations
as unrepresentative.

Figure 22 shows time series of monthly mean biases from
the three reanalyses against AERONET for several areas,
and Table 8 shows the corresponding mean biases and their
standard deviations. Figure 23 shows global correlation co-
efficients with AERONET. As explained above, Mauna Loa
and Mexico City were excluded from these statistics. As al-
ready seen in Fig. 21, CAMSRA has the smallest bias with
respect to the AERONET data in most areas (see also Ta-
ble 8) and has the largest correlation coefficient (Fig. 23). It
shows a good consistency throughout the time period from
2003 to 2016, while MACCRA shows an increasing posi-
tive bias with time in Europe and North America. CIRA also
shows increasing positive biases with time in North Amer-
ica, particularly from 2013 onwards, and a change in biases
in Europe, from negative at the beginning of the time series
to positive at the end. It still has to be assessed if this im-
provement is due to model changes or a better representation
of the emissions in CAMSRA. There is a change to slightly
higher AOD in CAMSRA (biases more positive in the global
mean and in particular over Europe and North America) that
seems to coincide with the loss of AATSR data in April 2012.
Over Southeast Asia all reanalyses have a negative bias, with
CAMSRA having the smallest and CIRA the largest bias (see
Table 8). In the NH, the bias changes with season and is
largest (positive) during the summer months.

We do not have observations to validate the individual
aerosol components, but the simulated aerosol size distri-
bution and implicitly the aerosol composition may be vali-

dated to first order by using the wavelength-dependent vari-
ation in AOD. It is expressed as Ångström exponent (AE),
with higher Ångström exponents indicative of smaller par-
ticles and dominance of sulfate and organic aerosols. AE
is dependent little on the wavelength itself. We compute it
here from AOD at 440 and AOD at 870 nm, except in CIRA,
where only AOD at 550 and AOD at 670 nm were avail-
able. Figure 24 shows the temporal evolution of simulated
and observed mean AE, as well as the correlation. CAMSRA
and CIRA show less variability compared with the observa-
tions, overestimating mostly the Ångström exponent (5 %–
20 %). Overestimation appears mainly in late spring, indi-
cating possibly too little coarse dust. The bias is, however,
considerably smaller than for MACCRA, the latter having a
significant low bias. Total AOD is composed of less dust in
CAMSRA and CIRA compared with MACCRA. This may
explain the higher overall Ångström values in CAMSRA.
Spatio-temporal correlation in Fig. 24 is higher in winter in
the CAMSRA and indicates partially better tracing of aerosol
size and implicitly composition variability than in both CIRA
and MACCRA.

In summary, there has been a large change in aerosol
composition in CAMSRA compared with the previous re-
analysis, making it impossible to compare aerosol species
from CAMSRA with climatologies built from CIRA or
MACCRA. There is a pronounced reduction in sulfate in
CAMSRA, which was too high in CIRA. More work is
needed to validate the individual aerosol components against
independent observations. CAMSRA total AOD shows re-
duced biases against AERONET observations and a better
temporal consistency, while the older reanalyses show bi-
ases that increase with time over North America and Eu-
rope. CAMSRA shows AOD values that are too high around
outgassing volcanoes (Mauna Loa and Mexico), and we rec-
ommend excluding those locations as unrepresentative when
calculating global mean statistics.

5 Conclusions

The Copernicus Atmosphere Monitoring Service (CAMS)
has produced a new reanalysis dataset of atmospheric com-
position, referred to as CAMSRA in this paper. This reanal-
ysis currently covers the years 2003–2016 and will be ex-
tended in the future by adding 1 year each year. It was pro-
duced by assimilating satellite retrievals of O3, CO, NO2 and
AOD from various sensors in ECMWF’s Integrated Fore-
cast System (IFS). The new CAMS reanalysis builds on
the experience gained during the production of the earlier
MACC reanalysis (MACCRA) and CAMS interim reanaly-
sis (CIRA). Great care has been taken to ensure that the emis-
sion datasets used in CAMSRA were consistent in time and
that consistent anthropogenic, biogenic and biomass burning
emissions were used in the aerosol and chemistry modules.
Furthermore, a newer (and therefore better) version of the
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Figure 22. Time series of monthly mean bias of total AOD from the reanalyses against AERONET V3 Level 2.0 observations for the
following areas: (a) globe, (b) North America, (c) Europe, (d) Africa, (e) Southeast Asia and (f) South America. CAMSRA is shown in red,
CIRA in blue and MACCRA in green. Mauna Loa and Mexico City were excluded from these time series, as they are unrepresentative and
skew the statistics. AOD is unitless.

IFS was used, and new, reprocessed datasets for assimilation
were acquired as far as possible. Variational bias correction
was applied to some of the O3, CO, NO2 and AOD data to
ensure good temporal consistency when blending the vari-
ous datasets. Known problems from earlier reanalyses were
avoided, e.g. issues with the bias correction of MLS data in
MACCRA that led to drifts in the ozone field, and a bet-
ter time consistency in the CO field of CAMSRA than of
MACCRA was obtained by assimilating data from only one

instrument, i.e. MOPITT. CAMSRA therefore shows a more
temporally consistent performance than the previous two re-
analyses and has mostly smaller biases with respect to in-
dependent observations in most areas for O3, CO, NO2 and
AOD.

The validation results presented in this paper have shown
that mean TCO3 fields from CAMSRA and CIRA are similar
and agree to within 1 % when averaged over the period 2003–
2016. The differences between CAMSRA and MACCRA
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Table 8. Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to AERONET data (shown in Fig. 22). The
values are calculated for the period 2003–2012, and the values in brackets are calculated for CIRA and CAMSRA for the period 2003–2016.
Numbers in italics mark where MACCRA or CIRA have larger biases or a larger standard deviation than CAMSRA, and the numbers in bold
mark where their values are smaller. AOD is unitless.

Area MACCRA CIRA CAMSRA
Bias±SD Bias±SD Bias±SD

Globe 0.015± 0.129 −0.004± 0.137 (0.002± 0.156) −0.005± 0.106 (−0.003± 0.110)
North America 0.043± 0.092 0.024± 0.092 (0.030± 0.099) 0.012± 0.075 (0.014± 0.070)
Europe 0.011± 0.072 −0.011± 0.073 (−0.002± 0.070) −0.007± 0.064 (−0.003± 0.061)
Africa 0.040± 0.097 0.030± 0.106 (0.028± 0.109) 0.005± 0.088 (0.006± 0.094)
Southeast Asia −0.044± 0.212 −0.077± 0.233 (−0.072± 0.257) −0.013± 0.176 (−0.013± 0.184)
South America −0.006± 0.128 −0.008± 0.104 (0.000± 0.091) −0.019± 0.102 (−0.013± 0.087)

Figure 23. Time series of global correlation coefficient with
AERONET AOD from the three reanalyses. CAMSRA is shown
in red, CIRA in blue and MACCRA in green.

are larger but are still within 5 %. All reanalyses have small
positive biases with respect to Dobson TCO3 observations,
with MACCRA having the largest global mean bias and
CAMSRA the smallest (see Table 3). Agreement with ozone-
sondes is within 10 % in the long-term global mean. The re-
analyses agree well in the stratosphere and have larger dif-
ferences in the troposphere. CAMSRA agrees better with
ozone-sondes above 15 hPa than MACCRA, which overes-
timates O3 there. This makes CAMSRA a better dataset to
be used as climatology in, for example, radiation schemes or
radiance observation operators. CAMSRA and CIRA agree
better with ozone-sondes in the tropical mid-troposphere to
upper troposphere than MACCRA, which shows a large un-
derestimation here (−30 %). O3 from CAMSRA is more
consistent in time than MACCRA because the variational
bias correction applied to MLS O3 retrievals during some
of MACCRA led to drifts in the O3 field, particularly notice-
able in the troposphere in MACCRA (Inness et al., 2013).
CAMSRA shows a smaller underestimation of surface O3 in
the NH during boreal spring than the previous reanalyses.
We note that there is an increased seasonally varying tro-
pospheric ozone bias in CAMSRA after 2013, particularly
in the Antarctic and Arctic. The reason for this bias is still

being investigated, and the same bias is also found in the
CAMS real-time ozone analysis. There are larger ozone bi-
ases in all three reanalyses between March and August 2004
when no O3 profile data were available for assimilation than
during the rest of the period, and there are larger biases dur-
ing 2003, when MIPAS and SCIAMACHY O3 data of poorer
quality were assimilated.

For CO, CAMSRA shows good agreement with TCCON
observations, with small biases and a good representation of
the seasonal cycle and inter-annual variability. CAMSRA has
the smallest bias out of the three reanalyses with respect to
most of the TCCON stations looked at in this paper, with a
small negative bias in the NH and a small positive bias in the
tropics and SH (Table 5). Especially in the tropics and SH the
biases in CAMSRA are reduced much compared with CIRA
and MACCRA. Comparisons with IAGOS aircraft data show
an underestimation of CO in the free troposphere in the
NH (<10 %) with larger underestimation in the lower tro-
posphere. This underestimation is similar in CAMSRA and
CIRA, while MACCRA has larger negative biases in the NH
lower troposphere. CAMSRA also has smaller biases with
respect to GAW surface CO than MACCRA over Europe and
North America, but surface CO values are overestimated over
Indonesia in CAMSRA, leading to larger global mean CO bi-
ases relative to GAW (Table 6). The choice of fire emissions
has a large impact on the TCCO field, and the largest differ-
ences between CAMSRA and MACCRA are seen in biomass
burning areas because different fire emission datasets were
used in these reanalyses. CO from CAMSRA is more consis-
tent in time than MACCRA, which showed some changes
in the CO field because the assimilation of IASI CO was
started in MACCRA in 2008 (Inness et al., 2013), while in
CAMSRA and CIRA only TCCO from MOPITT was assim-
ilated.

For NO2, data from more instruments were assimilated
in CAMSRA (SCIAMACHMY, OMI and GOME-2) than in
CIRA (none) and MACCRA (SCIAMACHY only). This led
to differences between the reanalyses, but the limited amount
of independent validation observations for NO2 made it dif-
ficult to assess these differences. The seasonal cycle of the
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Figure 24. Evolution of (a) global mean Ångström exponent at AERONET sites based on matching daily data from model and AERONET,
and (b) correlation using daily matching Ångström exponent from model and AERONET. CAMSRA is shown in red, CIRA in blue,
MACCRA in green and AERONET Version 3 Level 2.0 observations in black.

tropospheric NO2 columns is underestimated over East Asia,
and to a smaller extent, over Europe by all three reanaly-
ses compared with a tropospheric column NO2 dataset based
on SCIAMACHY and GOME-2A data. CAMSRA shows
the smallest bias out of the three reanalyses over East Asia,
suggesting that the assimilation of several NO2 satellite re-
trievals improves the NO2 analysis. However, the compar-
ison also showed that the quality of the NO2 analysis in
CAMSRA was degraded during 2003 because of the re-
duced quality of the assimilated SCHIAMACHY NO2 data
(Fig. S5a) during that time. Compared with European GAW
NO2 surface observations, the reanalyses reproduced the ob-
served mean values and the seasonal variability well but
again showed an underestimation of high wintertime values.
CAMSRA generally had the smallest biases (Table 7). More
work is needed to validate the NO2 fields from CAMSRA
thoroughly and to assess if the wintertime underestimation is
due to shortcomings of the model or the emissions.

Total AOD values in CAMSRA are reduced compared
with CIRA and MACCRA in many areas but increased over
India and Southeast Asia and agree better with AERONET
total AOD with reduced biases in most areas (Table 8).
AOD in CAMSRA is more consistent in time than in CIRA
and MACCRA, especially over Europe and North America,
where CIRA and MACCRA show an increasingly positive
bias with time. There are large differences in aerosol speci-
ation (which is less constrained by the assimilated AOD ob-
servations) between CAMSRA, CIRA and MACCRA. Rel-
ative to both the earlier reanalyses, CAMSRA shows a re-
duction in desert dust, sulfates and black carbon in the SH,
compensated by an increase in organic matter and black car-
bon in the NH. The reduction in sulfate globally is partic-
ularly strong relative to CIRA, where its contribution was

overestimated (Flemming et al., 2017b), suggesting that this
is a clear improvement in CAMSRA. CAMSRA shares the
lower sea salt of CIRA in the SH but is closer to the higher
values of MACCRA in the NH. The larger role played by or-
ganic matter in CAMSRA reflects the inclusion of a proxy
for anthropogenic SOA added to organic matter, which was
missing from the earlier reanalyses. Time series and correla-
tion of the Ångström exponent indicate partially better trac-
ing of aerosol size and implicitly of composition variability
of CAMSRA than in both CIRA and MACCRA. Validation
of AOD with AERONET data shows there are some hotspots
around outgassing volcanoes (in particular Mauna Loa and
Mexico City) with high analysis AOD values in CAMSRA
that degrade the global average bias. This is a side effect of
possibly erroneous model treatment of diffuse volcanic emis-
sions, i.e. the model-resolution orography not resolving the
height of the volcanoes and therefore not being representative
of the measurement sites with respect to the volcanic plumes.
When calculating global mean statistics, it is advisable to ex-
clude these two stations as unrepresentative.

In addition to being a dataset of better quality and better
temporal consistency, CAMSRA has the advantage that it
provides more chemical species than CIRA (where only a
limited subset was archived) and that data are available at
a higher temporal and spatial resolution. In total 56 tropo-
spheric chemical species of the CB05 chemical mechanism,
12 aerosol components and many additional diagnostics
such as total columns and extinction coefficients can be ob-
tained from CAMSRA. An inventory of the available model
fields can be found at http://apps.ecmwf.int/data-catalogues/
cams-reanalysis/?class=mc&expver=eac4 (last access:
15 March 2019). Users who previously used the MACCRA
or CIRA data should note that because of the differences
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seen between CAMSRA and the older reanalyses, it is not
advisable to concatenate data from the older reanalyses
with CAMSRA data from more recent years but also that
CAMSRA data should be used for the whole period of
interest.

The CAMSRA data are freely available
(http://atmosphere.copernicus.eu/copernicus-releases-
new-global-reanalysis-data-set-atmospheric-composition,
last access: 15 March 2019) and will become available from
the Copernicus Atmosphere Data Store. The data can serve a
multitude of users, from application developers to scientists
and policymakers. They can be used to analyse the state
of the atmosphere or to look at trends that have developed
over the past years or decades. Furthermore, the CAMS
reanalysis can be used to compute climatologies, evaluate
models, benchmark other reanalyses or serve as boundary
conditions for regional models for past periods.

One limitation of CAMSRA is that it does not use a
stratospheric chemistry scheme (apart form a Cariolle-type
parametrisation for stratospheric ozone), and the strato-
spheric concentrations apart from ozone need to be consid-
ered with caution. For any future reanalysis, we plan to im-
plement a full stratospheric chemistry scheme and to increase
the vertical resolution to bring it into line with the vertical
resolution used in ECMWF’s NWP system (currently 137
levels, model top at 0.01 hPa). It might also be beneficial
to include the chemistry in the adjoint and tangent linear
model of the IFS and to recalculate the background error
statistics for the atmospheric composition variables with the
latest version of the model. More time should be spent on
acquiring and assessing new observations so that problems
like the OMI row anomaly are addressed properly and the
quality of the reanalysis is not degraded at times when lower
quality data are assimilated (e.g. degraded NO2 analysis dur-
ing 2003 because of worse-quality SCIAMACHY data). It
would also be advisable to explore the use of reprocessed
datasets thoroughly, e.g. datasets processed by ESA’s Cli-
mate Change Initiative (CCI) and the Seventh Framework
Programme (FP7) Quality Assurance for Essential Climate
Variables (QA4ECV) project. It could also be investigated if
enough atmospheric composition datasets are available prior
to 2003 to start a future reanalysis before 2003. Further-
more, work has started to look at emission inversion with the
CAMS system, and we hope the next reanalysis will include
some inversion capability to update the emissions during the
assimilation according to the satellite observations.

Data availability. The CAMS reanalysis data are freely
available from https://atmosphere.copernicus.eu/ (last access:
18 March 2019) and will become available via the Copernicus
Atmosphere Data Store shortly.
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Appendix A: List of GEMS–MACC–CAMS real-time
and reanalysis experiments.

Table A1. List of GEMS–MACC–CAMS model versions showing the time evolution of the real-time CAMS system since July 2008.

Period Exp. Class IFS Cycle Resolution Model

20080706–20090901 f1kd RD 32R3 T159/L60 IFS–MOZART 3.5 coupled system
20090901–20120705 f93i RD CY36R1 T159/L60 IFS–MOZART 3.5 coupled system
20120705–20131007 fnyp RD CY37R3 T255/L60 IFS–MOZART 3.5 coupled system
20131007–20140224 fnyp RD CY38R2 T255/L60 IFS–MOZART 3.5 coupled system
20140224–20140918 fnyp RD CY40R1 T255/L60 IFS–MOZART 3.5 coupled system
20140918–20150903 g4e2 RD CY40R2 T255/L60 IFS(CB05)
20150903–20160621 0001 MC CY41R1 T255/L60 IFS(CB05)
20160621–20170124 0001 MC CY41R1 T511/L60 IFS(CB05)
20170124–20170926 0001 MC CY43R1 T511/L60 IFS(CB05)
20170926–present 0001 MC CY43R3 T511/L60 IFS(CB05)

Table A2. Reanalyses of atmospheric composition produced with the GEMS–MACC–CAMS system.

Period Name Exp. Class IFS Cycle Resolution Model Production period

20030101–20090524 GEMS reanalysis eac1 MC 32R3 T159/L60 IFS–MOZART 3.5 March 2008–September 2009
coupled system

20030101–20121231 MACC reanalysis rean MC CY36R1 T159/L60 IFS–MOZART 3.5 March 2010–February 2012
coupled system

20030101–NRT CAMS interim reanalysis eac3 MC CY40R2/41R1 T159/L60 IFS(CB05) December 2014–December 2016
20030101–NRT CAMS reanalysis eac4 MC CY42R1 T255/L60 IFS(CB05) January 2017 onwards
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Appendix B: Formulae for calculation of Figure of
Merit in space score and modified normalised mean bias

The Figure of Merit in space (FMS; Chang and Hanna, 2004)
score compares the fit of the model ozone profiles to obser-
vation profiles (e.g. ozone-sondes) given in partial pressure
(millipascal), has a score between 1 (perfect fit) and 0 and is
defined as

CAF=

∫ ln(ptop)

ln(pbot)
min(M,O)∫ ln(ptop)

ln(pbot)
max(M,O)

, (B1)

where M is the model profile, O is the observation profile,
and ptop and pbot are the top and bottom pressure values of
the layer considered, respectively. For Fig. 1 we used ptop =

3 hPa and pbot = 1000 hPa.
The modified normalised mean bias (MNMB) is defined

as

MNMB=
2
N

N∑
i=1

mi − oi

mi + oi

, (B2)

with N as the number of observations, m as the model and o

the observed values.

Appendix C: Known issues

We summarise some issues here that might affect the
quality of the CAMS reanalysis which were known
at the time of publication. This list is also avail-
able from https://confluence.ecmwf.int/display/CKB/
CAMS+Reanalysis+data+documentation (last access:
15 March 2019), where it will be maintained and updated.

C1 Ozone

– 2003. There is degraded quality (bigger biases with re-
spect to observations) in Arctic and Antarctic free tro-
posphere because MIPAS and SCIAMACHY data of
poorer quality were assimilated.

– March–August 2004. No profile data were available for
the assimilation. This affects the vertical structure of the
ozone analysis, and we see larger biases compared with
ozone-sondes.

– 2013–2016. Larger seasonally varying biases are
present from 2013 onwards in the free troposphere, par-
ticularly in the Arctic and Antarctic. This must be due
to a change in the observing system and is still under in-
vestigation. It is also found in the CAMS NRT analyses.

– Technical comment. CAMS data users should use the
GEMS Ozone (grib parameter 210203) and Total Col-
umn GEMS Ozone (grib parameter 210206) fields.
These are produced specifically for CAMS using the
full tropospheric chemistry scheme and are the fields
described in this paper.

C2 CO

– CAMSRA has larger surface CO values than the other
two reanalyses over Indonesia, especially during years
with high biomass burning activity, leading to increased
overestimation relative to GAW CO surface observa-
tions.

C3 NO2

– During 2003 the seasonal cycle of tropospheric NO2
is not well represented because of assimilating SCIA-
MACHY NO2 retrievals of poorer quality.

C4 AOD

– Validation of AOD with AERONET data has shown that
there are some hotspots around outgassing volcanoes (in
particular Mauna Loa and Mexico City), with high anal-
ysis AOD values that degrade the global average bias.
When calculating global mean statistics, it is advisable
to exclude those two stations as unrepresentative. This is
a side effect of model-resolution orography not resolv-
ing the height of the volcanoes that has been unmasked
by recent enhancements to the SO2 oxidation scheme
which improve aerosol on the global scale.

– There is a change to slightly higher AOD in CAMSRA
(biases more positive in the global mean and in particu-
lar over Europe and North America) that seems to coin-
cide with the loss of AATSR data in April 2012.
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