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2 Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, UMR 7190, F-75005, Paris, France

3 Arts et Métiers ParisTech, LISPEN EA 7515, 8 bd. Louis XIV 59046 Lille, France∗

In this work we study the nonlinear coupling between the transverse modes of nanoresonators
such as nanotubes or nanowires in a singly clamped configuration. We previously showed that at
high driving, this coupling could result in a transition from independent planar modes to a locked
elliptical motion, with important modifications of the resonance curves. Here we clarify the physical
origins, associated to a 1:1 internal resonance, and study in depth this transition as a function of
the relevant parameters. We present simple formulae that permit to predict the appearance of this
transition as a function of the frequency difference between the polarizations and the nonlinear
coefficients and give the ”backbone curves” corresponding to the elliptical regime. We also show
that the elliptical regime is associated with the emergence of a new set of solutions of which one
branch is stable. Finally we compare single and double clamped configurations and explain why the
elliptical transition appears on different polarizations.

PACS numbers: 85.85.+j, 62.25.-g, 05.45.-a

A. INTRODUCTION

Nanotubes and nanowires (NNs) that can sustain very
large mechanical oscillation amplitudes represent ideal
objects for studying nonlinear effects and in particu-
lar nonlinear coupling phenomena. These nonlinearities
on the one hand impose limitations for the use of NNs
in applications involving nanoelectromechanical systems
(NEMS), e.g. for the fundamental limit of the mini-
mum detectable frequency shift1, and on the other hand
they can reveal rich and complex dynamical behaviors.
Within this context, nonlinear coupling between mechan-
ical modes in NEMS has recently become a topic of some
interest. Such coupling can be important for NEMS ap-
plications as they can influence the resonator parame-
ter that is being exploited. For example, one can tune
the resonance frequency and quality factor of one me-
chanical mode through a nonlinear coupling to a second
mode2,3. Also using this coupling for a non-invasive de-
tection means that the displacement of any mode can be
detected by measuring the response of another mode.
Such couplings can be categorized in the wide family

of modal interactions, known as internal resonances, that
characterize coupling between several resonance frequen-
cies that satisfy a commensurate relationship4,5. Ref-
erences [2,3] correspond for example to (1:2) and (1:3)
internal resonances phenomena. A huge amount of lit-
erature has been dedicated to internal resonances in the
nonlinear dynamics community the past 50 years, since
they are commonly observed in macrostructures, for in-
stance among others, in the case of nonlinear music
instruments6,7. For micro/nano resonators internal reso-
nance received increasing attention8–10 the past years. In
the special case of a resonator with two vibration modes
of almost identical eigenfrequencies, a so-called one to
one (1:1) internal resonance can be observed. This oc-
curs especially in the case of resonators with particular

symmetries, such as circular or square plates, for which
the coupling is observed between degenerate companion
modes11,12. The same property occurs for beams with a
symmetrical cross section, between the degenerate modes
in the two transverse orthogonal directions or polariza-
tions. Among others, see13 in the case of a string,14,15 in
the case of clamped-clamped beams and16,17 for a singly
clamped beam.

In the case of NEMS, we previously showed experi-
mentally, for a singly clamped configuration18, that be-
yond the classical Duffing phenomenon characterized by
jumps and hysteresis, a transition from planar to ellip-
tic vibration occurs for the higher frequency polariza-
tion. Simulations of the dynamics using a model based
on cubic nonlinear coupling terms between the polariza-
tions was in good agrement with the experiments. This
succinct treatment opens many interesting questions of
direct interest for experiments such as the dependence
of the threshold of the elliptical transition on vibration
amplitude and the frequency difference between polar-
izations, whether the transition can appear on the first
polarization, etc. Here we go beyond the original ba-
sic dynamical simulations with a self consistent approach
(see next) and also develop semi-analytic and predictive
formulae allowing an in-depth understanding of this rich
phenomena.

The numerical simulations have been realized using the
MANLAB19 software which is a free Matlab package that
combines the harmonic balance method (HBM) and a
continuation method20 to follow the periodic solutions
of dynamical system when a control parameter is varied.
Moreover, it includes stability analysis based on comput-
ing the Floquet exponents in the frequency domain with
a Hill eigenvalue problem21,22. The analytical treatment
is used to clarify the physical origins of this transition
and gives simple formulae for the transition depending
on the geometric parameters of the NNs. The validity
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of these formulae are confirmed by comparison with sim-
ulations. Finally, simulations were also used to explore
more widely the phase space of these equations, allowing
us to present a new set of solutions that appears as a
consequence of the elliptical transition.

It is useful to start by giving a brief description
of the experimental observations. The transition was
first observed during field emission (FE) experiments on
nanowires18 in which an applied voltage causes electrons
to be emitted from the nanowire apex. They are then
accelerated by the field onto a viewing screen placed at
several centimeters which gives a projection image of the
apex emission zone. The nanowires were electrostatically
excited during FE and the cycle-averaged variation of
the FE pattern served for motion detection. The FE
configuration has the advantage of giving a greatly mag-
nified image (∼ 105) of the apex displacement in the x-y
plane23 so that the elliptical transition was a clear and
even striking phenomenon. Direct observations of the
oscillations18 and the elliptic transition of various excited
NNs were also carried out in both Scanning and Trans-
mission Electron Microscopes (SEM and TEM) that con-
firmed the FE experiments. Experiments have been ex-
tensively realized on SiC nanowires having resonant fre-
quencies for the first mode between a few kiloHertz and
a few MegaHertz depending on their dimensions. Their
pristine quality factors range from a few hundred to sev-
eral tens of thousands in vacuum. A rapid heat treatment
is generally realized and quality factors between few tens
of thousands and up to one hundred thousand can be
obtained24.

Fig. 1 shows SEM observations of the elliptical move-
ment of a SiC nanowire stuck at the end of a large tung-
sten support tip. The NN is excited by piezoelectric ac-
tuation. The sample is positioned so that the nanowire
points almost along the electron beam axis, giving a very
shortened projection in the image plane (Fig. 1 (a), NN
at rest). Though this configuration is a little tricky to
visualize, the advantage is that the images follow quite
directly the movement in the x-y plane (perpendicular to
the length of the wire) of the NN apex. As the excita-
tion frequency is increased, the lower planar polarization
is first observed (Fig. 1 (b)) resulting in a straight line
in the image. At higher frequency the second planar po-
larization is next observed orthogonal to the first polar-
ization (Fig. 1 (c)) which increases in amplitude as the

resonance is swept (the somewhat non-linear shape is due
to the rather convoluted projection of a tilted, oscillat-
ing, finite-length nanowire). At a certain amplitude (or
frequency) the planar oscillation starts to become ellip-
tical. As the frequency is increased above this transition
the size of the ellipse slowly increases and its eccentricity
decreases (Fig. 1 (d)). The NN resonance ends with a
jump to zero amplitude like a classic hard spring Duffing
behavior.

(a) (b)

(c) (d)

vertical
 nanowire

first
 polarization

second
 polarization

elliptical
 transition

FIG. 1. SEM images of a resonating nanowire and the appari-
tion of the transition characterized by elliptical oscillations.
(a) The nanowire at rest. The nanowire is almost vertical
and the projected length is very small. (b) and (c) the two
orthogonal and planar polarizations corresponding to the first
mechanical mode. (d) Beyond the transition, we observe the
elliptical oscillations.

B. ANALYTICAL MODEL

We demonstrated previously that cubic coupling terms
were sufficient to explain this elliptical transition. This
two dimensional model can be written in the following
form (see17,18 and Supplemental Materials25 for detailed
treatment) :

(1 + β(x2 + y2))ẍ+
1
Q
ẋ+

(
1 + α(x2 + y2) + β(ẋ2 + ẏ2)

)
x = F1 cos(Ω t) (1)

(1 + β(x2 + y2))ÿ +
1
Q
ẏ +

(
1 + 2µ+ α(x2 + y2) + β(ẋ2 + ẏ2)

)
y = F2 cos(Ω t) (2)

where x and y correspond to the two dimensionless or-
thogonal polarization directions and the displacements of

the free apex normalized to the total length of the wire.
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FIG. 2. Simulated resonance curves for the amplitude and
phase of the two polarizations of the first mode with, (a) and
(b), and without, (c) and (d), the nonlinear coupling terms
(see text for the used parameters). Responses of the x and y
polarizations are presented respectively in blue and red. Sta-
ble and unstable solutions are presented with thick lines and
thin lines respectively. Without coupling only classical hard
spring Duffing behavior is observed. With coupling the emer-
gence of the elliptical oscillations is observed on the higher
frequency polarization.

The coefficients α and β are coupling terms that depend
on the mode considered (see25,26).Practically they corre-
spond to the nonlinear terms in potential and kinetic en-
ergy respectively. Q is the quality factor of the resonance
(assumed equal for both polarizations) and µ represents
the frequency difference between the two polarizations.
We use two different excitations F1 and F2 as experimen-
tally the excitations are never exactly symmetric. Note
that, in the following, we will always consider the case
where the two polarizations are well separated. Formally
these conditions can be written µ > 2/Q, that is our case
experimentally.

To emphasize the consequences of the coupling be-
tween the polarizations, simulations presented in Fig.
2 are realized with and without the coupling between
the polarizations using Eqs. (1) and (2) implemented in
MANLAB. In the second case the nonlinear terms are
preserved but without the crossed coupling between the
polarizations as presented in the Supplemental Materi-
als. The frequency difference between the polarizations
is 0.5 % and the intrinsic quality factor of each mode

is Q = 5000. Excitations (F1, F2) are chosen to ob-
tain a maximum normalized amplitude of 0.1 and 0.2
respectively for the x and y polarizations (QF1 = 0.1
and QF2 = 0.2). The values of α and β correspond to
tabulated values for the first mode26. Simulation results
then give the different harmonic components of x(t) and
y(t) at Ω, 2Ω, 3Ω. . . The first harmonic response of x(t)
and y(t), plotted in Fig. 2, can then be written in the
form x(t) = Rx cos(Ωt+θ) and y(t) = Ry cos(Ωt+θ+ϕ).
Rx and θ (respectively Ry and θ+ϕ) are plotted in blue
(resp. red) and the relative phase, ϕ, is plotted in black
in (b) and (d).

For the uncoupled equations (Fig. 2 (a) and (b)) the
two classical planar resonances with hard-spring behavior
are observed (stable solutions are drawn using thick lines
whereas unstable solutions are presented with thin lines).
Simulations using exactly the same parameters than in
(a) and (b) but with the coupling terms between the po-
larizations are presented in (c) and (d). For the lower
polarization no important modification is observed. The
situation changes radically for the second polarization.
For low amplitudes we still observe planar oscillations.
However, above a critical amplitude, we observe a strong
modification of the amplitude-frequency curve of the y
polarization and the x polarization is once again excited.
In the phase figure this transition is characterized by a
phase difference ϕ that locks on the value π/2. This
leads to an elliptical movement in which the major axis
corresponds to y and the minor axis to x, as experimen-
tally observed. As the frequency is increased, the phase
difference ϕ is fixed while θ still varies and the eccentric-
ity of the ellipse decreases (the ellipse tends towards a
circle). After the transition, the range of frequency for
which the elliptical oscillations continue is very large and
the jump corresponds to a lower y amplitude compared
to the uncoupled case. Note that the fact that no tran-
sition occurred on the x polarization does not depend of
the chosen parameters. As we will see later it is a generic
effect that is the result of the nonlinearities of the prob-
lem.

To go further in the analysis it is convenient to seek
the solutions in the form x(t) = Rx cos(Ωt + θ) and
y(t) = Ry cos(Ωt + θ + ϕ). Injecting these forms and
neglecting the higher order terms (see Supplemental Ma-
terials for two time scale treatment) the following equa-
tions are obtained, after some algebraic manipulations
:

ẍ+

[
1
Q

+
R2

y

4
sin(2ϕ)(α− 2β)

]
ẋ+

[
1 +

R2
x

4
(3α− 2β) +

R2
y

4
(2α+ cos(2ϕ)(α− 2β)

]
x = F1 cos(Ω t) (3)

ÿ +

[
1
Q

− R2
x

4
sin(2ϕ)(α− 2β)

]
ẏ +

[
1 + 2µ+

R2
y

4
(3α− 2β) +

R2
x

4
(2α+ cos(2ϕ)(α− 2β)

]
y = F2 cos(Ω t) (4)

One can immediately identify the prefactors of x, ẋ, y
and ẏ with effective frequencies and dissipations and see

that they are interdependent through the amplitudes and



4

phases of the transverse oscillations. To simplify further
first define the effective x and y quality factors as :

1
Qx,eff

=
1
Q

+
α− 2β

4
R2

y sin 2ϕ (5)

1
Qy,eff

=
1
Q

+
α− 2β

4
R2

x sin 2ϕ (6)

and effective x and y frequencies as

ω2
x,eff = 1 +

R2
x

4
(3α− 2β) +

R2
y

4
(2α+ cos(2ϕ)(α− 2β))

(7)

ω2
y,eff = 1 + 2µ+

R2
y

4
(3α− 2β) +

R2
x

4
(2α+ cos(2ϕ)(α− 2β))

(8)

The equations then become :

ẍ+
ẋ

Qx,eff
+ ω2

x,eff x = F1 cos(Ω t) (9)

ÿ +
ẏ

Qy,eff
+ ω2

y,eff y = F2 cos(Ω t) (10)

Particularly, Eqs. (7) and (8) which define the effective
frequencies as a function of the amplitude of the system
response when neither damping nor forcing are present,
are called the ”backbone curves” of the x and y polar-
ization. These backbone curves will be used intensively
for analytical treatments. One of the most important as-
pects is that the frequency of one polarization is tuned
by the other polarization. This tuning depends on the
square of the amplitude of the other polarization and on
the relative phase, ϕ. In fact, for the first mode, we have
2α = 1.6356 and α− 2β = -1.48 so that the coupling al-
ways leads to an increase of the effective frequency of the
other polarization. In eqs. (5) and (6) the evolution of
the quality factors reveals the internal energy exchange
between polarizations as discussed in more detail in the
Supplemental Materials.

C. RESULTS

Now let’s examine the appearance of the elliptical tran-
sition only on the second polarization. As mentioned in
Fig. 1, an important aspect used for our analytical treat-
ment is that near the transition ϕ is very close to π

2 .
When the second polarization is excited, the increase of
Ry increases the effective frequency of the x polarization.
If this frequency increases until it reaches the excitation
frequency, the x polarization will be once again excited.
This is the key to understand the elliptical transition.
To determine the conditions in which this transition can
occur, let’s examine the evolution of these frequencies.
As ϕ ∼ π

2 we can write the effective frequency of the x
polarization as (before the transition, Rx is negligible) :

ωx,eff = 1 +R2
y (α+ 2β)/8 (11)

In the same conditions the backbone curve of the y
polarization is given by

Ω = 1 + µ+R2
y(3α− 2β)/8 (12)

If we consider that the transition occurs when ωx,eff =
Ω (that is a slight overestimation as we will see later) we
obtain the critical amplitude Ry,c for which the transition
occurs and that is given by :

Ry,c =

√
4µ

−α+ 2β
(13)

The critical amplitude simply depends on the fre-
quency difference between the polarizations and the non-
linear coupling terms. Now, during the elliptical move-
ment, the effective resonance frequencies of the x and y
polarizations are nearly the same. Equalizing the two
(taking ϕ ∼ π

2 ) gives the relation between Rx and Ry

and we obtain R2
x ≃ R2

y−R2
y,c. Re-injecting this relation

into Eqs. (7) and (8) one obtains the backbone curves for
Rx and Ry versus the frequency throughout the ellipti-
cal regime (denoted ωy,e and ωx,e with e for elliptical).
Practically we obtain :

ωy,e = 1− µ

2

(
3α− 2β

−α+ 2β

)
+

α

2
R2

y (14)

ωx,e = 1 +
µ

2

(
α+ 2β

−α+ 2β

)
+

α

2
R2

x (15)

Note that, for the first mode, we have 3α−2β
−α+2β = 0.104

and α+2β
−α+2β = 2.1. Practically the backbone curve for the

y polarization is little sensitive to µ and we can reason-
ably write ωy,e ≃ 1 + α

2R
2
y.

MANLAB simulations using various frequency differ-
ences that demonstrate the validity of our analytical for-
mulae are presented in Fig. 3. For simplicity the natural
frequency of the x polarization is set to 1 and the fre-
quency difference is modified by varying the value of µ.
Simulations with frequency differences of 0.5, 1, 2, 2.5
and 3 percent and an excitation F2 that corresponds to a
normalized maximum amplitude of 0.25 in the y direction
are given. The backbone curves for the y and x polar-
izations during the transition (Eqs. (14) and (15)) are
plotted using the black dotted lines for µ = 0.5%. There
is a good quantitative agreement between our analytical
formulae and simulations. For 0.5, 1 and 2 percent, the
amplitude Ry reaches the critical amplitude and the el-
liptical transition occurs. The limit case corresponds to
µ = 2.5%. For a higher µ (and for our chosen excitation)
no transition occurs and we only observe the classical
case as if the polarizations were uncoupled. Of course it
doesn’t mean that no elliptical transition could appear
for a frequency difference of 3 percent but it would re-
quire higher excitation.
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FIG. 3. Simulations showing the evolution of the elliptical
transition as a function of the frequency difference between
the polarizations. The simulations correspond to frequency
differences of 0.5, 1, 2, 2.5 and 3 percent. The black dashed
lines trace the backbone curves corresponding to the ellipti-
cal regime for µ = 0.5% following eq. (14) and (15). (a) 3
dimensional representation of the different response curves.
(b) Projection of the response curves showing that the differ-
ent transitions are well fitted by the backbone curve. Inset :
Evolution of the critical amplitude, Ry,c, versus the frequency
difference, µ.

To precise this aspect the inset of Fig. 3 (b) presents
the normalized critical amplitude Ry,c versus the fre-
quency difference between polarizations following Eq.
(13). According to the graph the elliptical transition
should easily be observed for µ of a few percent that can
be obtained for a large variety of nanowires or nanotubes.
If a maximum normalized amplitude of 0.4 is considered,
which can in practice be obtained for the first mode, the
elliptical transition should be observed for all nanowires
with µ < 5%. In fact it is surprising that such behavior
is not more often reported in the literature. Note that for
superior modes the elliptical transition appears for much
lower amplitudes as we will see later.
We have seen that the transition occurred when

the higher polarization hardened the lower polarization
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FIG. 4. Evolution of the effective frequencies of the polar-
izations as a function of the excitation frequency. When the
first polarization is excited the frequency of the higher polar-
ization is further increased and no transition is possible for
the lower polarization. As the second polarization is excited
the effective frequency of the lower polarization is increased
almost at the frequency of the higher mode and the elliptical
oscillations begin.

enough so that it could once again be excited by the
driving frequency. For the first mode this is the only
possibility as the parameters show that the excitation of
one polarization can only increase the frequency of the
other. To better visualize this effect we present in Fig. 4
the effective frequencies ωx,eff and ωy,eff of the two polar-
izations as a function of the excitation frequency. This is
done by taking the oscillation parameters fromMANLAB
simulations and re-injecting them into the frequency de-
pendance in Eqs. (7) and (8). The blue line represents the
lower (x) effective frequency ωx,eff, the red line the higher
effective frequency ωy,eff, and the black line the excita-
tion frequency. As expected, when the lower polarization
is excited it increases the effective frequency of the other
polarization and no transition can occur. In contrast
when the second polarization is excited, the lower effec-
tive frequency is pulled towards the excitation frequency
and the x polarization is once again excited. Once the el-
liptical transition is activated, the nonlinear terms couple
the two polarizations together and they start to behave
as a strong hard spring resonator that can be excited over
a large frequency range. We can also observe that even if
the ωx,eff is increased almost to the excitation frequency,
it remains however always slightly inferior. This explains
that in our analytic treatment where we defined the ap-
pearance of the transition for ωx,eff = Ω we made a small
overestimation. However, the fact that our formulae fit
correctly the simulations confirms that our approxima-
tion is reasonable.

An interesting question is whether the elliptical solu-
tions presented above are the only solutions in the pres-
ence of the nonlinear coupling. In fact we show next
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FIG. 5. Characterization of the new set of solutions appearing
with the elliptical transition of which one branch is stable. (a)
amplitude and (b) phase diagrams of the new solutions. (c)
superposition of the different solutions of the equations. The
inset is a zoom at the beginning of the transition

that the elliptical regime leads to the emergence of an-
other independent set of solutions. Figs. 5 (a) and (b)
present amplitude and phase diagrams of these new so-
lutions obtained by MANLAB. Depending on the exci-
tation frequency we can have zero, two or four solutions.
More importantly the stability analysis predicts that one
part of these solutions is stable and hence physically ob-
tainable. To better understand these new solutions, Fig.
5 (c) shows the superposition of all the solutions and it
can be seen that the closed curve of the new solutions
corresponds partially to the truncated part of the clas-
sical Duffing mode of an independent y resonance. One
can distinguish two branches in this new set of solutions.
One branch corresponds to the higher part of the pla-
nar excitation of the y polarization. However this part

is now unstable. The second branch corresponds to an-
other elliptical oscillation and one part of these solutions
is stable. As before, we see in the phase diagram that the
relative phase between the polarizations for the new el-
liptical solutions is locked but this time at the value ϕ =
−π/2. The inset in Fig. 5 (c) presents a zoom of the so-
lutions in the elliptical zone. We see that the two stable
elliptical solutions become very close in amplitude, the
new elliptical solution however staying above the other
solution. We then have two stable elliptical solutions but
rotating in opposite directions.

This phenomenon is analogous to the one observed in
the case of the coupling of companion modes in a circular
plates12,27 or in a string13. It can be explained by a pitch-
fork bifurcation point, for which a single stable branch
(associated with the planar solution) becomes unstable
and gives birth to two stable (nonplanar) solutions, with
the same amplitude but with different phase differences
±π/2. The two stable non planar solutions have opposite
directions of motion. More precisely, because F1 and F2

are both chosen non zero in the simulations, the pitchfork
bifurcation is in fact degenerate, so that the computed
branches have a slightly different topology: the +π/2
branch is connected to the stable planar motion branch,
and the −π/2 is isolated, with a saddle-node bifurcation
in the vicinity28.

To better understand the origin of the elliptical transi-
tion, we have plotted in Fig. 5 (c) (black dashed lines) the
evolution of ωx,eff versus the amplitude Ry and the back-
bone curve of the unperturbed y polarization (Eqs. (11)
and (12)). We see that the transition occurs when the two
effective frequencies are crossing each other. We know
that two linear resonators, linearly and symmetrically
coupled, lead to anti-crossing phenomena. In our case,
the nonlinearly coupled equations lead to a more com-
plex configuration with the apparition of new solutions
that correspond to the elliptical movement and the ap-
parition of an isolated set of solutions. For the effective
frequencies, the family of the second solution is charac-
terized by the fact that the ωx,eff can be higher than the
y polarization (see Supplemental Material, Fig. S1).

Now we examine the effects of nonlinear coupling on
the higher modes. In this case the nonlinearities actually
strengthen and the hard spring behavior, characteristic
of the first mode, becomes soft spring. Moreover, for the
second mode we have 2α = 13.82 and α− 2β = -65.4528
so that one polarization, depending on the relative phase
ϕ, can increase or decrease the effective frequency of the
other polarization. We do not pretend that our analysis
exhausts all the possibilities of these nonlinear couplings,
however, the main characteristics observed for the first
mode also apply to the second mode. Figure 6 presents
MANLAB simulations performed on the second mechan-
ical mode with a frequency difference between polariza-
tions of 2 percent. Fig. 6(a) presents the continuation
amplitude diagram where we observe again the elliptical
transition on the higher polarization. As the second po-
larization is excited we observe first the planar oscillation
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FIG. 6. Characterization of the elliptical transition for the
second mode. (a) Frequency response of the polarizations
showing soft spring Duffing behavior. Once again for the
higher polarization the elliptical regime is observed with hard
spring behavior. The dashed lines present the analytical back-
bone curves for the elliptical regime (Eqs. (14) and 15). (b)
New isolated set of solutions corresponding to the elliptical
regime. (c) Superposition of the two sets of solutions.

that exhibits soft spring behavior and the curve is bent to
the left. As the amplitude increases we reach the transi-
tion and the elliptical regime can occur. As the backbone
curve of the elliptical movement is always oriented to the
right (it depends only on α which is positive and then
behave as hard spring) it results in a direction change
in the amplitude continuation diagram. These elliptical
solutions have been experimentally reported in18. Fig. 6
(b) presents the closed family of solutions that consists
once again in part of the truncated part of the y polar-
ization that is unstable and of other elliptical solutions.
The transition occurs for lower amplitudes as the term
−α+ 2β = 65.48 for the second mode compared to 1.48

for the first mode. The backbone curves for the elliptical
regime (Eqs (14) and (15)) are presented in (a) and are
once again in good agrement with simulations.

The case of higher modes is extremely similar to the
second mode with a transition appearing for still smaller
amplitudes. As well, for higher modes the α terms be-
come negligible compared to the β terms and the back-
bone curves (Eqs (14) and (15)) for the elliptical regime
tend to the equation ωy / x,e = 1+ µ

2 +
α
2R

2
y / x. We didn’t

seek numerically the existence of the isolated solutions for
mode 3 or higher but we see no reasons why they would
disappear.

D. DISCUSSION

Several more aspects of the elliptical transition are
worth discussing.

Firstly the analytical treatment was based on the fact
that the phase difference, ϕ, increases through the first
resonance and then begins to decrease in the second un-
til it locks at π/2 during the elliptical regime (see Fig.
2(d)). I.e. the model is based on two well separated
polarizations. As a consequence our model is not well
suited for very low quality factors or polarizations very
close in frequency. The equation that roughly charac-
terizes the frontier of our model has been given above:
µ > 2/Q. This means for example that for a µ = 0.01 we
must have Q > 200, that is our case experimentally. To
examine the effects of lower Q values we present in the
Fig. 7 a series of simulations with quality factors of 104,
2000, 500, 200, 100, 50 and 20, the same for the two po-
larizations, the excitation being increased accordingly to
keep the same amplitudes (QF = constant). The value
of Q=10000 corresponds to the parameters used in Fig. 3
(µ = 0.01) which serves here as a reference. For Q = 2000
the peaks enlarge as expected but no significant change is
observed. ForQ = 500 the two resonances begin to merge
but the phase locking at π/2 is still clearly visible. We
note an earlier appearance of the transition since the am-
plitude increases for lower frequencies. At Q = 200 the
peaks merge even more and the phase locking is not so
well pronounced. For Q=100 the phase difference never
reaches π/2 and finally for very low Q, only one very large
peak is observable hiding the two polarizations. Note
that for the lowest values of Q, when the two resonance
curves merge, if the system is excited at a frequency in
the overlap, the observed oscillations would also be ellip-
tical with a major axis of the ellipse that would depend
on the relative phase between polarizations. However in
this case these ellipses are really trivial and would be
observed even without nonlinear coupling terms. These
ellipses, obtained for merged resonance curves, have to
be clearly differentiated from the elliptical transition ob-
served when the two resonances are well separated.

Secondly, once the elliptical regime is reached, the first
mode can be observed for a wide frequency range com-
pared to its linear width. It is interesting to predict the
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FIG. 7. Evolution of the elliptical transition as the quality
factor decreases. The frequency difference is set to 1% and
the excitation is increased to have Q*F = constant.

end of this elliptical resonance. This aspect is not triv-
ial in the general case but can be reasonably treated in
some favorable cases. In the following such a case is ex-
amined that corresponds to Fig. 3 (µ= 1%). Just con-
sidering the energy balance, there are two sources of dis-
sipation and two sources of energy injection that depend
on the relative phase of the motions with the excitation,
the phase difference being locked during the elliptical
regime. On the one hand the dissipated power is given
by R2

x/2Q+R2
y/2Q (we neglect higher harmonic contri-

butions). Remembering that during this regime one has
R2

x ≃ R2
y − R2

y,c, the dissipated power can be written as
(2R2

y −R2
y,c)/2Q. On the other hand the injected power

can be written F1Rxsin(−θ)/2 + F2Rysin(−θ − ϕ)/2.
In our example QF1 = 0.1 and QF2 = 0.25 so that
F2 > F1 and for the jump we have θ+ϕ ≃ −π/2 leading
to θ ≃ −π. So the injected power can be simplified as
F2Ry/2 and now the energy balance corresponding to the
jump is given by QF2Ry = 2R2

y−R2
y,c. For the first mode

and a frequency difference of 1 % one has Ry,c = 0.164.
As no term is negligible the second order equation has to
be solved to obtain the value of the maximum amplitude
obtainable, Ry,max. Re-injecting this value into Eq. (14)
gives the frequency at which the jump occurs. In our case
the calculations give a frequency for the jump of 1.01490
and the simulation a value of 1.01486, evidently in good
agrement. However this good quantitative agreement re-
lies on the fact that the chosen parameters matched well
with the hypothesis done for our analysis. In the general
case such an oversimplified analysis would not give such
a precise estimation.

Thirdly, the nonlinear behaviors of our systems are
governed by the combination of the terms α and β that
correspond to nonlinear contributions coming from both
potential and kinetic energy. They combine in various
and mode-dependent ways and can even have opposing
effects. An illustration of the latter is the classical Duff-
ing behavior which is described by the (3α − 2β) terms
in Eq. 3. This explains why a hard spring Duffing be-
havior for the first mode and soft spring for the higher
modes are observed. Consequently, it would be interest-
ing to modify α and β to change the response of our res-
onators. This approach has already been proposed and
tested in NEMS by29 and30 for example to improve the
dynamic range of nanoresonators but here we are also
interested in how these modifications can alter the el-
liptical regime. Modifying the nonlinear coefficients can
be realized for singly clamped nanowires over a limited
range by applying a longitudinal tension, as can be done
by applying a voltage difference between the nanowire
and its environment. This creates a strong electric field
at the apex that in turn results in a longitudinal electro-
static force. The rigidity of nanowires is small and thus
this electrostatic tension term can be of the same or-
der or even higher allowing to electrostatically tune the
resonance frequencies of NNs over a wide range31. The
contribution of the longitudinal electrostatic force to the
potential energy is two fold. First it changes the evolu-
tion of the stored energy as the amplitude increases and
secondly it modifies the linear shape of the mode. The
consequence is that the value of α is now a function of
the applied voltage V. For kinetic energy, the mode shape
evolution also results in a variation of β. It is convenient
here to define Vc as the voltage for which the generated
longitudinal force is T = EI

L2
24. The mechanical effects

of an applied voltage V then only depend on the ratio
V/Vc. In Fig. 8 we present the evolution of α, β, 3α−2β
and −α+ 2β as a function of the applied voltage for the
first mode. Interestingly, the 3α − 2β term that is posi-
tive for low voltages (hard spring behavior), cancels for
intermediate voltages and becomes negative (soft spring
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as a function of the longitudinal tension in the simply clamped
configuration.

behavior) for higher voltages. It means first that it is
possible to cancel the cubic nonlinear terms and to ob-
tain a linear response over a large amplitude range and
secondly that soft spring behavior should be observable
for highly strained nanowires. In fact, for very thin nan-
otubes (single or double wall nanotubes) we effectively
only observe soft spring behavior during Field Emission
experiments32. Concerning the elliptical transition, it re-
mains over the whole voltage range, and even appears for
lower critical amplitudes as can be seen by the increas-
ing value of −α + 2β. Consequently, adding a longitu-
dinal tension to the nanowire can modify the nonlinear
response but does not remove the elliptical regime.

Finally, the analysis above shows the existence of an
isolated set of solutions that in particular contains sta-
ble solutions, a fact explained by a degenerate pitchfork
bifurcation, analogous to string vibrations13. Figure 5
(c) shows that there can be as many as seven solutions
for some frequencies in which three are stable. Note that
the third stable solution is in an isolated set and this
means that practically this solution can’t be obtained by
increasing quasi-statically the excitation frequency. Fur-
thermore the fact that these two elliptical solutions are
very close in amplitude is insidious. In the four dimen-
sional state space that characterizes the system (we can
choose Rx, Ry, θ and ϕ as axes) these two stable solutions
are very well separated since their projections on the ϕ
axis are respectively +π

2 and −π
2 . Thus to obtain this

solution we have to perturb the system enough so as to
reach the correct bassin of attraction. This can be done
a priori by adding temporarily another excitation such
as a voltage pulse. In a macro circular plate, the isolated
−π/2 solution was experimentally observed after a small
mallet hit on the plate, enabling a jump from the π/2
solution to the −π/2 solution12. A more interesting and
sophisticated strategy to produce this state is to reach
it’s bassin of attraction by a controlled and reproducible
procedure. Kozinsky et al.33, for example, have experi-
mentally characterized the bassin of attraction of a Duff-

ing oscillator. By controlling the amplitude and delay
of a preliminary excitation, they controlled their start-
ing point in the phase space and could measure which
final solution they obtained. Once characterized, they
can obtain the desired solution at will. Another exam-
ple of such a control is provided by the electromechanical
parametron developed by the NTT laboratory34. In their
system, the mechanical resonator is actuated by a piezo-
electric modulation at twice its natural frequency. The
resulting parametric resonance is bi-stable and two solu-
tions can be obtained different in phase (0 or π). The
oscillation can then be made to represent a binary digit
by the choice between two stationary phases π radians
apart. Our system presents several similarities with the
parametron as we also have two elliptical solutions that
can be very close in amplitude but whose phase difference
is separated by π radian. Interestingly, Mahboob et al.34

have shown they can prepare their system to obtain the
desired solution with a yield that can reach 100 %. Ob-
taining one or the other stable elliptical solution should
then be possible by a precise preparation of the system.

The rather detailed analysis above is developed for
the elliptical regime we observed for singly clamped res-
onators. Actually, the doubly clamped configuration has
been much more investigated than the singly clamped
and previous works present the apparition of an ellipti-
cal regime14,15. It is therefore interesting to compare the
two cases and to treat them with the same approach. As
previously, we are not interested here in the case where
the two resonance curves are merged and for which el-
lipses are trivial. For example the article of Conley et
al.35 describing non planar dynamics of suspended nan-
otubes belongs to this category.

It is well known that for a doubly clamped configura-
tion the nonlinear coupling is realized by the stretching
of the resonator during oscillation. Physically, it means
that we have cubic nonlinear terms in the potential en-
ergy but none in the kinetic energy. Consequently the
nonlinear equations describing the doubly clamped con-
figuration are exactly the same as those in Eqs. (1) and
(2) with β = 0 and α having a high positive value. Ap-
plying the same treatment as earlier one obtains Eqs.
(3) and (4) but conserving only the α term. One now
observes that the self tuning effect (3α) becomes more
important than the effect of the other polarization (the
term 2α+α cos(2ϕ) vary between α and 3α and is equal
to α for ϕ = π/2). It means that if we excite the second
polarization, the effective frequency of the lower polar-
ization cannot reach the higher frequency. The elliptical
transition is then no longer possible for the second po-
larization. However if we excite the lower polarization,
the effective frequency of the lower polarization will in-
crease more rapidly than the higher one. If the frequency
difference between polarizations is not too large the ef-
fective frequency of the lower polarization can catch up
to the effective frequency of the higher polarization and
an elliptical transition can appear. From this analysis it
can be concluded that an elliptical regime for the dou-
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bly clamped configuration should only be possible for the
lower polarization. Fig. 9 (a) presents MANLAB simula-
tions for a doubly clamped configuration with no applied
stress and µ = 1%36. As expected an elliptical transi-
tion is observed on the lower polarization but the modi-
fications corresponding to this transition are less evident
compared to the singly clamped configuration. To clar-
ify this continuation diagram, parts of this diagram are
presented separately in Fig.9 (b) and (d). These parts
would correspond more likely to experimental results de-
pending if one starts a frequency scan at points 1 or 2
indicated in (a).

The situation corresponding to the initial point 1 is
presented in Fig. 9 (b) and (c) for respectively the ampli-
tude and phase diagrams. As the frequency is increased
we naturally begin to excite the lower polarization and
firstly a planar hard spring resonance is observed. In-
terestingly as the excitation frequency reaches the value
of the natural resonant frequency of the second polariza-
tion (dashed vertical line in Fig. 9 (b)) its amplitude does
not increase as one might expect. The reason is that the
effective frequency of the second polarization has been
increased by the lower polarization amplitude as can be
seen in Fig. 9 (e) where is plotted the effective reso-
nance frequencies of polarizations during the frequency
scan (same principle as in Fig. 4). As the frequency and
Rx still increase the elliptical transition limit is reached
(schematically represented by the black vertical line in
(b)). As previously the elliptical regime is characterized
by a value of ϕ that locks on π/2, an abrupt change in the
slope of Rx(ω), an increase of Ry and the two effective
frequencies being very close. As the frequency is still in-
creased, the ellipse enlarges and finally the system jumps
out of the resonance. In contrast starting at point 2, for
example by turning on the generator at this frequency,
the resonance curve presented in Fig. 9 (d) is obtained.
It corresponds to the excitation of the planar hard spring
second polarization at the expected value. A high ampli-
tude was used to verify that no transition is observed. In
Fig. 9 (e) it can be seen that, as expected, the effective
frequency of the lower polarization is increased but can’t
reach the driving frequency.

As previously the backbone curves corresponding to
the elliptical regime can be estimated. This time, the
critical amplitude, Rx,c, for which the transition occurs

is given by Rx,c =
√

4µ
α and during the elliptical regime

R2
x ≃ R2

y + R2
x,c. This leads to the backbone curves

ωx,e = 1 − µ
2 + α

2R
2
x and ωy,e = 1 + 3µ

2 + α
2R

2
y. These

backbone curves are plotted in Fig. 9 b) showing a good
agrement with the simulations.

Finally, in the simulation presented here no mechani-
cal tension was applied to the nanowire. The application
of a mechanical stress only changes the value of α and,
consequently, it does not change the principle of the el-
liptical transition. As well the modeling of the higher
modes gives a change of the α values but the elliptical
regime remains.
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FIG. 9. Simulation of the elliptical transition in a doubly
clamped configuration. (a) Total continuation diagram show-
ing the apparition of the elliptical regime on the first po-
larization. (b) Part of the continuation diagram that would
correspond to a frequency scan starting at point 1. (c) Phase
diagram associated to the amplitude diagram presented in
(b). (d) Second part of the continuation diagram. It would
rather correspond to a frequency scan starting at point 2.
Only the hard-spring planar Duffing behavior is observed on
this polarization. (e) Evolution of the effective frequencies of
the polarizations as a function of the excitation frequency.
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E. CONCLUSION

The intriguing elliptical regime comes about naturally
from standard coupling intrinsic to a large class of nano-
metric resonators with two degrees of freedom. In this
work we attempt to give a full but comprehensible treat-
ment useful for active researchers in the field of NEMS
with an attention to providing simple guidelines to un-
derstand measurements and interesting new mechanical
responses to explore. Specifically the article contains an-
alytical expressions characterizing the apparition of the
transition as a function of the frequency difference be-
tween the polarizations and the evolution of the obtained
ellipses were given. We showed also the existence of a new

set of solutions for which one branch is stable and could
have potential applications. The comparison of nonlin-
earities between the singly and doubly clamped config-
urations showed that an elliptical transition appears in
both configurations but on different polarizations. The
better understanding of this transition can open original
perspectives for NEMS applications.
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