

Figure 1:Neighbor-joining phylogenetic tree of *Bacillus safensis*F4 made by MEGA4.0. Sequence accession numbers are given in parentheses. Bar 0.01 nucleotide substitutions per site.

Figure 2:Thin Layer Chromatography of the crude biosurfactant. The silica gel development was carried out using a mobile phase of chloroform/methanol/water in the 65:25:4 ratio (v/v/v) and revealed with 0.25% ninhydrin. The pink spot indicates the presence of a lipopeptide with a relative front (R_f) of 0.56.

Figure 3:ESI-MS chromatogram of biosurfactants produced by *Bacillus safensis*F4. The blue arrows correspond to two surfactinderivates were identified as Leu/IIe-7, C_{14} surfactin and Leu/IIe-7, C_{13} surfactin with different masses of 1021.66 m/z and 1007.65 m/z, respectively, at the same retention time of 15.98 min.

Figure 4:Anti-adhesive activity of the crude biosurfactant(**A**) and acetonitrile fraction (**B**) against *Staphylococcus epidermidis*S61.

P value was calculated by Test student.

***: P<0.001

**: $0.001 \le P \le 0.01$

*: $0.01 \le P \le 0.05$

Figure 5: Fluorescence microscopy images (x40) of anti-adherence activity of the crude biosurfactant(**B**) and acetonitrile fraction (**C**)against *Staphylococcus epidermidis*S61compared with non-treated cover slips(**A**) (Treatment at 10 mg mL⁻¹).

Figure 6: Preliminary anti-tumor assay of the crude biosurfactant(1) and acetonitrile fraction(2) against T47D breast cancer cells (A) and B16F10 mouse melanoma cells (B).

P value was calculated by Test student.

***: Significant(*P*<0.001)

Figure 7:IC₅₀ determination of the acetonitrile fraction against T47D breast cancer cells (**A**) and B16F10 mouse melanoma cells (**B**).

P value was calculated by Test student.

***: P<0.001

**: $0.001 \le P < 0.01$