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Abstract

In this paper, the mobility matrix of helical microswimmers is investigated to compute the magnetic torque as a function

of the angular velocities of the helical robot to achieve a 3D path following in closed-loop. Thus, the helical swimmer

kinematics are expressed in the Serret–Frenet frame considering the weight of the robot and lateral disturbances using

the compensation inclination and direction angles, respectively. A new chained formulation is used to design a stable con-

troller. The approach is simple and quite general and can be used for different non-holonomic autonomous systems. The

3D path following is validated by presenting experimental results using a scaled-up helical microswimmer actuated mag-

netically. Different trajectories were tested: a spatial straight line, a helix trajectory, and an inclined sinusoidal trajectory.

Several conditions have been tested experimentally, namely: different velocity profiles, compensation inclination angles,

liquid viscosities, control gains and boundary effects, and their impact on the performance of the path following. To illus-

trate the robustness and accuracy of the visual servo control to disturbances presenting in the environment such as the

magnetic field gradient and boundary effects, it is compared with the open-loop control. The results show the robustness

of the controller and a submillimetric accuracy during the path following.
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1. Introduction

At low Reynolds numbers, the locomotion through a fluid

is characterized only by viscosity forces, and inertia forces

are virtually null. Under these conditions, reciprocal move-

ment is impossible. In nature, microorganisms use a non-

reciprocal movement such as the corkscrew-type rotating

propulsion, used by the famous Escherichia coli bacteria to

swim and navigate. Magnetic helical swimmers reproduce

a similar movement using a corkscrew tail and an external

rotating magnetic field.

In fact, the miniaturization of robots provides solutions

for several applications to access complex and dangerous

environments. Magnetic helical swimmers can lead to mini-

mally invasive medicine (Qiu and Nelson, 2015) because

magnetic fields do not affect the human body (Siauve,

2003). Injected inside the bloodstream, microswimmers can

be used to manipulate cells and transport drugs and microe-

lements (Qiu et al., 2015). Medina-Sánchez et al. (2015)

managed to capture, transport, and release an immotile live

sperm cell for fertilization assistance. In lab-on-chips, they

can be used to sort and transport microobjects, and even to

assemble them (Chaillet and Régnier, 2013). Tottori et al.

(2012) conceived a microswimmer with a micro-tube capa-

ble of pick-and-place tasks.

Thus, to perform such tasks, the motion of the helical

swimmers should be robust and accurate to overcome the

environmental disturbances such as friction, viscous drag,

boundary effects, and strong flow in blood vessels and

achieve a certain repeatability to perform real tasks.

Several methods for microswimmer motion control are

used by researchers. For instance, Mahoney et al. (2011)

had a helical swimmer make a U-turn by estimating the

magnetic field rotation direction. Similarly, Ghosh and

Fischer (2009) used more complex curves, tracing the let-

ters ‘‘R’’, ‘‘@’’, or ‘‘H’’. Tottori et al. (2012) used a helical

swimmer capable of navigating in space for cargo transport

tasks. However, because these methods are open-loop, they

are exposed to modeling errors and drifts.

Controlling the magnetic helical swimmers in closed-

loop will make them less sensitive to modeling errors and
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environmental disturbances such as boundary effects and

thermal noises. Xu et al. (2015) proposed a planar path-

following control to improve the accuracy and robustness

of these helical swimmers. The algorithm was validated

using a scaled-up helical microswimmer by following a

straight line in the horizontal plane. However, the altitude

was kept (almost) constant by an open-loop control, thus

limiting the motion to planar horizontal curves. The kine-

matic model used by Xu et al. (2015) was developed by

Samson (1995) for planar path following of wheeled robots

and is not adapted to follow a path in 3D space. In Oulmas

et al. (2016b), we extended the approach to a general path-

following algorithm for non-holonomic systems. The robot

was modeled in a local frame using the Serret–Frenet frame

instead of the global frame, taking into account the weight

of the non-holonomic system and lateral disturbances. The

resulting system was nonlinear, a new chained system was

used to design the controller with exact linearization. As

the helical robot behaves as a non-holonomic system, the

approach was tested on experimentation using a scaled-up

helical microswimmer in Oulmas et al. (2016a) by follow-

ing different 3D geometrical paths. In this paper, for the

first contribution, the 3D path-following controller is devel-

oped in detail for the helical swimmer case and tested on

different curve shapes under different conditions such as

the boundary effects and the change of viscosity that typi-

cally dominate the motion of these swimmers.

The second contribution is a coherent study of the 3D

path-following problem for non-holonomic helical swim-

mers starting with dynamic equations at low Reynolds

numbers Re� 1ð Þ to express the magnetic torque neces-

sary to drive the helical swimmer to follow a 3D geometric

path as a function of the steering angular velocity of the

robot, which is computed thanks to the kinematic

controller.

This approach is validated using a scaled-up helical

microswimmer actuated magnetically by following different

trajectories with different curvatures, inclinations, and tor-

sions in space. Several conditions are also tested: different

velocity profiles (step input, rectangular signal input, and a

continuous arbitrary signal input); different boundary-path

distances; different fluid viscosities using glycerol; different

compensation inclination angles; and different control

gains. Furthermore, to illustrate the robustness and accu-

racy of the visual servo control to different kinds of distur-

bances such as the weight of the robot and modeling errors,

it is compared with the open-loop control.

In the remainder of this paper, Section 2 presents the

electromagnetic manipulation system used to steer the heli-

cal swimmer wirelessly and the different efforts applied on

the helical robot. Afterwards, Section 3 describes the state

of the art of 3D path following for non-holonomic systems

and then gives the 3D error kinematic model of the helical

swimmer using the Serret–Frenet frame with compensation

direction and inclination angles. Section 4 shows the con-

version of the kinematic model into the chained form, the

control law design for 3D path following, and the magnetic

controller for the self-rotation and steering of the helical

robot. Section 5 shows the results obtained by applying the

3D visual servo control on the prototype.

2. Magnetic manipulation system

In this work, vision-based detection and tracking methods

are used to locate and follow the helical swimmer (ViSP;

Marchand et al., 2005). The robot is manufactured using

the 3D printer with the VisiJet M3-black material. Then, a

cylindrical permanent magnet is attached to the head of the

helix in a manner to have the magnetization perpendicular

to the principal axis of the helical robot.

2.1. Magnetic torque and force

The helical swimmer is wirelessly actuated in space using

external rotating magnetic fields. The actuated system is

composed of three pairs of Helmholtz coils as shown in

Figure 1. Each coil pair generates a uniform magnetic field

along an axis. The magnetic torque Tm applied on the heli-

cal swimmer with a magnetic moment M in an external

magnetic field B, is given by

Tm =M×B

The magnetic torque tends to align the magnetic moment

with the applied magnetic field (Coey, 2010). Therefore,

with a rotating magnetic field and a helical tail, the helical

swimmer can advance by converting its self-rotation into

linear motion. However, the experimental magnetic field B

is not perfectly uniform. Therefore, a magnetic force Fm is

generated and is given as follows:

Fm =r(M � B)

where r is the gradient operator (Coey, 2010). The pres-

ence of Fm results in a translation of the helical swimmer in

the same direction as Fm. The imperfections of B are hard

to model, generally small and hard to exploit. Therefore,

we consider the force Fm and the resulting translation as a

disturbance that has to be rejected by a closed-loop control.

Fig. 1. Magnetic manipulation system.
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2.2. Dynamic equations

When the helical robot is swimming at low Reynolds num-

bers, the inertia is being neglected, the drag force and tor-

que due to the translational and rotational motions of the

body balance the non-fluidic applied force and torque F

and T, respectively, as follows:

F+Fdrag = 0 ð1Þ

T+Tdrag = 0 ð2Þ

Developing (1) and (2) yields an expression of the propul-

sion velocity vp and the angular velocity Ω of the helical

swimmer as a function of F and T, which can be repre-

sented by the following symmetric mobility matrix as

defined in Fu et al. (2015):

vp

Ω

� �
=

A D

DT C

� �
F

T

� �
ð3Þ

where A, D and C are 3× 3 submatrices forming the mobi-

lity matrix. These elements depend on the shape and length

of the helical swimmer and also on the viscosity of the

liquid. The inverse of the mobility matrix gives the propul-

sion matrix as in Mahoney et al. (2011).

From (3), the angular velocity of the helical swimmer

can be given as

Ω =DTF+CT ð4Þ

The non-fluidic force F is given by the sum of gravity and

magnetic forces (i.e. F=Fg +Fm, where Fg is the gravity

force and Fm is the magnetic force).

In this section, the dynamic of the helical swimmer is

represented at low scale, which means that the fluid is char-

acterized by low Reynolds numbers and the swimmer grav-

ity force is null (Fg = 0). The latter assumption started from

the fact that the helical swimmer behaves similarly to bac-

teria, which are approximately neutrally buoyant. However,

as the weight of the scaled-up helical microswimmer used

in this paper is not null, the gravity force is considered as a

disturbance that has to be corrected using the kinematic

controller.

In addition, because the magnetic field is uniform, the

magnetic force is null (Fm = 0). Thus, the non-fluidic

applied force F can be neglected and the helical swimmer

angular velocity in (4) can be simplified as follows:

Ω=CT

where C has the following form:

C=
c11 0 c13

0 c22 0

c31 0 c33

2
4

3
5

This submatrix is not diagonal because of the helical geo-

metry of the swimmer. More details can be found in Fu

et al. (2015) and Mahoney et al. (2011).

As C is invertible, the magnetic torque T can be

expressed as follows:

T=C�1Ω ð5Þ

Thus, the purpose of the kinematic controller developed in

the next section is to compute the angular velocity Ω nec-

essary to generate a magnetic torque T to control the heli-

cal robot to follow a 3D geometric path.

3. Kinematic model in the Serret–Frenet frame

of a helical swimmer in space

3.1. State of the art

The helical swimmer advances forward (or backward) in the

same direction as its principal axis. Constraints on the swim-

mer geometry prevent it from moving directly sideways.

The helical swimmer approximates a non-holonomic sys-

tem. The lateral displacements generated by boundary

effects and thermal noises are considered as disturbances,

and should be corrected using the closed-loop control.

Considering the helical swimmer as a non-holonomic sys-

tem allows to use the control laws of non-holonomic autono-

mous robots such as underwater vehicles and aerial aircrafts.

3D path following has been studied extensively in the

literature for non-holonomic autonomous robots in closed-

loop. Several control laws have been presented: sliding

mode techniques are used for path following of an autono-

mous underwater vehicle (AUV) in Healey and Lienard

(1993). These techniques have been shown to be simple

but present some drawbacks such as the chattering that can

damage the actuators; backstepping methods using

Lyapunov theory are also used for path following of an

AUV in Encarnacao and Pascoal (2000).

Samson (1995) developed a planar path-following con-

troller of wheeled robots. The method consists of lineariz-

ing the kinematic model using the chained form and then

applying a linear control law. Wadoo et al. (2012) have pro-

posed an approach to extend this method for trajectory

tracking of underwater vehicles. However, the resulting sys-

tem is linear time-varying (LTV) and not fully decoupled.

Our proposition is to extend the method in Samson

(1995) into a general form for 3D path following of helical

swimmers. In fact, during disturbances, decoupling path

following and the velocity profile presents better perfor-

mances with regards to accuracy because the environmental

conditions and actuation constraints impose a saturation in

the velocity amplitude of the robot. In addition, most often,

the task to be realized by the helical swimmer will be a

geometric path to follow, without any specification in velo-

city profile.

3.2. Notation

The notation for the 3D path following of the helical swim-

mer is summarized in Table 1.

Oulmas et al. 3



3.3. Kinematic equations

To control the helical swimmer, a mathematical model

describing its behavior is necessary. Therefore, an error

kinematic model with the Serret–Frenet frame associated to

the reference path is used to express the desired motion in

terms of the path parameters. The non-holonomic con-

straints are also considered. Figure 3 represents the block

diagram of the closed-loop control for 3D path following

of the magnetic helical swimmer.

The kinematics of the helical swimmer with non-

holonomic constraints are developed using an absolute glo-

bal frame F u with origin O and a moving body frame FB

attached to the body of the helical swimmer located at OG

the center of mass of the robot. The orientation of the robot

is characterized by the inclination angle ui and the direction

angle ud . The former is the angle of the helical robot axis

with respect to the horizontal plane xOy (pitch angle) and

the latter is the angle of the helical robot in the horizontal

plane (yaw angle), as illustrated in Figure 2.

During disturbances, the swimmer total linear velocity v

is not aligned with the swimmer principal axis xB. Thus,

the disturbance frame F d is defined as the frame where the

xd axis is along the swimmer total linear velocity v. In the

case of aircraft, this frame is called ‘‘the wind frame’’ refer-

encing to the disturbances related to the wind (Kaminer

et al., 2006; Oliveira et al., 2013). The compensation direc-

tion angle dud
is used to compensate for lateral

Table 1. Notations for 3D path following.

Symbol Meaning

C(s) path to be followed
s and _s curvilinear abscissa and its time variation, respectively
c and ∂c

∂s
curve curvature and its curvilinear abscissa variation

t and ∂t
∂s

curve torsion and its curvilinear abscissa variation
F u = fx y zg absolute global frame
FB = fxB yB zBg frame attached to the helical swimmer body
F d = fxd yd zdg disturbance frame
FF = fxF yF zFg Serret–Frenet that moves along the path
xF , yF , and zF tangent, normal, and binormal to the path, respectively
xB helical swimmer principal axis
yB, zB basis vectors of the plane perpendicular to the helical robot axis
OG center of mass of the helical swimmer
OS closest point on the path
dy and _dy horizontal distance between OG and OS and its time variation, respectively
dz and _dz vertical distance between OG and OS and its time variation, respectively
ud and ui direction and inclination angles, respectively
udc and uic desired direction and inclination angles, respectively
ude and _ude direction orientation error and its time variation, respectively
uie and _uie inclination orientation error and its time variation, respectively
dud

and _dud
compensation direction angle and its time variation, respectively

dui
and _dui

compensation inclination angle and its time variation, respectively
v amplitude of the total linear velocity of the helical robot
vp amplitude of the propulsion velocity of the helical robot
ipG position of OG expressed in the frame F i
ipS position of OS expressed in the frame F i
ivj linear velocity of the frame F j expressed in F i
ivj angular velocity of the frame F j expressed in F i
iRj rotation matrix from the frame F j to the frame F i
dvd = v 0 0½ �T linear velocity of the frame F d

vp = vp 0 0
� �T

propulsion velocity in the robot frame FB
FvF = _s 0 0½ �T linear velocity of FF in respect to F u

Ω= ½Ox Oy Oz�T angular velocities of the helical robot
FvF = t _s 0 c_s½ �T angular velocity of FF in respect to F u (Oprea, 2007)
F_pG = ½0 _dy

_dz�T velocity of the robot in the Serret–Frenet frame
C�, S� and T � cos(�), sin(�), and tan(�), respectively

Fig. 2. 3D path following of a helical swimmer.
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disturbances. It is defined as the angle between xB and xd

in the horizontal plane as illustrated in Figure 4a. The

compensation inclination angle dui
is used to compensate

for disturbances in the vertical plane (such as the robot

weight in our experimental set-up with a scaled-up helical

microswimmer). It is defined as the angle between xB

and xd as illustrated in Figure 4b.

The rotation matrix from F d to FB corresponds to the

sequence of rotation (�dud
, dui

, 0) and is given as in Etkin

(2012) by

BRd =
Cdui

Cdud
�Cdui

Sdud
�Sdui

Sdud
Cdud

0

Sdui
Cdud

�Sdui
Sdud

Cdui

2
4

3
5

As indicated in Table 1, the symbols C � and S� denote the

trigonometric functions cos (�) and sin (�), respectively.

The total linear speed v can be computed using the pro-

pulsion speed vp along the helical swimmer axis xB, as

follows:

v =
1

Cdui
Cdud

vp

where vp can be computed thanks to the propulsion matrix

in (3).

The path to be followed is denoted by C(s), which is

described with the curvilinear coordinate s, the curvature

and torsion of the path being c and t, respectively.

Here FF is the Serret–Frenet frame that moves along the

path C(s) and xF and yF are tangent and normal to the path,

respectively, whereas zF represents the binormal to the path

and is given by the cross product of xF and yF . The Serret–

Frenet frame FF is characterized by the reference direction

angle udc and the reference inclination angle uic. The differ-

ent frames and orientations used for 3D path following of

helical swimmer are depicted in Figure 4.

The aim of the path-following problem is to minimize

the distance and orientation errors between the robot and

the reference path. For that purpose, the following state vec-

tor is defined:

q=

s

dy

ude

dz

uie

2
66664

3
77775=

s

dy

ud � dud
� udc

dz

ui � dui
� uic

2
66664

3
77775

where dy and dz represent the vertical and horizontal dis-

tances between the robot center of mass OG and the point

OS closest to the path, respectively, whereas ude and uie

represent the direction and inclination angle errors,

respectively.

The position upG of the robot in the global frame F u can

be expressed as in Figure 2:

upG = upS + uRF
FpG ð6Þ

+–

Fig. 3. Block diagram for the 3D path following of a helical swimmer.

(a) (b)

Fig. 4. Representation of different frames used in 3D path following of the helical robot.
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where uRF is the rotation matrix from FF to F u and upS is

the closest point on the path expressed in the global frame

F u whereas FpG is the position of the robot in the Serret–

Frenet frame.

Differentiating (6) with respect to the time and expres-

sing it in the Serret–Frenet frame gives

FRd
dvd = FvF + F _pG + FvF × FpG ð7Þ

where FRd is the rotation matrix from F d to FF using

Euler angles and is given by

FRd =
CudeCuie �Sude CudeSuie

SudeCuie Cude SudeSuie

�Suie 0 Cuie

2
4

3
5

The angle rates _uie and _ude are computed from the rela-

tive angular velocity between the Serret–Frenet frame FF

and the frame F d as follows:

F _Rd = FRdSk
dvr

d,F

� �
ð8Þ

where Sk( � ) is a skew-symmetric matrix and dvr
d,F is the

relative angular velocity that is given as shown in

Encarnacao and Pascoal (2000) by

dvr
d,F = dvB + dvr

d,B�dvF

More details on the development of Equations (6) and (8)

are given in Appendix B.

Solving (7) for _s, _dy and _dz and (8) for _uie and _ude gives

the following 3D error kinematic model of helical

swimmers:

_s =
vCudeCuie

1� cdy

ð9aÞ

_dy = vSudeCuie + tdz _s ð9bÞ
_dz =�vSuie � tdy _s ð9cÞ

_uie =OyCdud
� OzSdud

Sdui
� _dui

Cdud
+ t _sSude ð9dÞ

_ude =Oz

Cdui

Cuie

+
_dud

Cuie

� t _sTuieCude � c_s ð9eÞ

Note that these equations are not defined at dy = 1
c

and uie

must differ from p
2
½p�.

The projection of the model (9) in the horizontal plane

by setting the variables dz, t, dui
, uie, and Oy to zero gives

the kinematic model used by Xu et al. (2015), Samson

(1995), and Morin and Samson (2008) for planar path fol-

lowing of mobile robots:

_s =
vCude

1� cdy

_dy = vSude

_ude =Oz + _dud
� c_s

4. Chained form and control law

4.1. Chained form

The scaled-up helical microswimmer weight and lateral

disturbances are modeled using the disturbance frame F d .

Thus, during disturbances, the 3D path following consists

of aligning the swimmer total linear velocity v with the ref-

erence path tangent xF instead of aligning the propulsion

velocity vp with the reference path tangent xF , i.e. the dis-

tances dy and dz and the orientations uie and ude must be

servoed to zero. For that purpose, a stable control law must

be synthesized:

(v,Oy,Oz)= f (dy, dz, uie, ude) ð14Þ

The angular velocity Ox along the helical robot axis is not

considered because the error in roll does not perturb the

path following (Encarnacao and Pascoal, 2000). In addi-

tion, the helical robot is propelled externally by a rotating

magnetic field along its principal axis.

Samson (1995) proposed a method to linearize the kine-

matic models of wheeled robots (unicycle, car-like, with

trailer) using the chained form with two inputs and three

states to design a simple and efficient controller.

In this paper, we propose to convert the kinematic

model formed by (9) into a linear model using a new

chained formulation with three inputs and five states build-

ing on work carried out by Bushnell et al. (1995) and

Walsh and Bushnell (1995) on the linearization of multi-

inputs non-holonomic autonomous systems using the

chained form and also on the work of Morin and Samson

(2008).

Considering the dependence of the set of equations (9)

to _s and partial decoupling between the planar and vertical

planes, those equations can be transformed by appropriate

changes of coordinates in a so-called chained form. Figure

5 represents the different steps to linearize the helical swim-

mer kinematic model using the chained form system.

Lemma 4.1. The change of state space

Fig. 5. The linearization of the helical swimmer kinematic

model using Lemmas 4.1 and 4.2.

6 The International Journal of Robotics Research 00(0)



z1 = s

z2 = dy

z3 = tdz + (1� cdy)Tude

z4 = dz

z5 =�tdy + (cdy � 1)Tuie(Cude)
�1

and control inputs

u1 = vCudeCuie

1�cdy

u2 = g21Oz + g22

u3 = g31Oy + g32Oz + g33

converts the kinematic model (9) of the helical swimmer

into the following chained form system with three inputs

and five states:

_z1 = u1 ð11aÞ
_z2 = z3u1 ð11bÞ
_z3 = u2 ð11cÞ

_z4 = z5u1 ð11dÞ
_z5 = u3 ð11eÞ

where zl = (z1, z2, z3, z4, z5)
T is the state vector and

ul = (u1, u2, u3)
T is the input vector. These transformations

are not defined if the orientation errors uie and ude are

equal to p
2
½p� and the horizontal distance error dy to 1

c
.

The interest of the chained form is that the control input

u2 yields the convergence of z2 and _z2 to zero, then from

(11b), this implies the convergence of z3 to zero also in the

case where u1 is non-zero. The same method can be

applied using the control input u3 to show the convergence

of z4 and z5 to zero. For that, u1 is chosen as the velocity

along the reference path which is always non-zero (i.e.

u1 = arbitrary 6¼ 0), z2 and z4 as the distance errors to the

reference trajectory whereas z3 and z5 represent the orienta-

tion errors with anticipation of the path variation (torsion,

curvature).

Proof. The transformations of the kinematic model (9) into

the canonical chained form (11) start by choosing the first

variable state as

z1 = s

Thus, from (9a):

u1 = _z1 = _s =
vCudeCuie

1� cdy

ð12Þ

The input u1 is a function of the total linear velocity v.

Then, the second variable state is chosen as the horizontal

distance:

z2 = dy ð13Þ

Thus, from (9b):

_z2 = _dy = vSudeCuie + tdz _s ð14Þ

Then, from (11b), (12), and (14), z3 is obtained as

z3 = (1� cdy)Tude + tdz ð15Þ

Therefore, from (11c) we have

u2 = _z3

= t _dz + dz _s
∂t
∂s

+ 1� cdy

� 	
_ude(Cude)

�2

� c _dy + dy _s ∂c
∂s

� 	
Tude

where ude and uie must differ from p
2
½p� and dy from 1

c
.

Replacing _s, _dy, _dz, and _ude by their values in (9), the

input u2 is obtained as a function of the steering angular

velocity Oz:

u2 = g21Oz + g22 ð16Þ

where g21 and g22 are the following scalar variables:

g21 = v_s�1(Cude)
�1Cdui

g22 = v_s�1(Cude)
�1 _dud

�

_s 2v_s�1tSuie + t2dy � dz

∂t

∂s
+ c(cdy � 1)(1� 2(Cude)

�2)




+ ctdz + dy

∂c

∂s


 �
Tude

�

Note that g22 depends on the total linear velocity v of the

robot and the time derivative of the compensation direction

angle _dud
.

In the same way, the fourth state variable is chosen as

the vertical distance:

z4 = dz ð17Þ

Thus, from (9d):

_z4 = _dz =�vSuie � tdy _s ð18Þ

From (11d), (12), and (18), z5 comes as

z5 = (cdy � 1)TuieC(ude)
�1 � tdy ð19Þ

Finally, from (11e) and (19):

u3 = _z5

=�t _dy � dy _s
∂t

∂s
+ c _dy + dy _s

∂c

∂s


 �
Tuie

Cude

� _uie(Cuie)
�1 + _udeTudeSuie

� 	
v_s�1

where ude and uie must differ from p
2
½p� and dy from 1

c
.

Replacing _s, _dy, _uie, and _ude by their values in (4), the

input u3 is obtained in function of the steering angular velo-

cities Oz and Oy:

u3 = g31Oy + g32Oz + g33 ð20Þ

where g31, g32, and g33 are defined as
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g31 =�v_s�1Cdud
(Cuie)

�1

g32 = v_s�1C(uie)
�1(Sdui

Sdud
� Cdui

SuieTude)

g33 =

 
� dy

∂t

∂s
� (dzt + 2(1� cdy)Tude)

t + c
Tuie

Cude


 �
+ dy

∂c

∂s

Tuie

Cude

!
_s + (1� cdy)

( _dui
Cdud

� _dud
SuieTude)

This concludes the proof of Lemma 4.1. j

Note that g33 depends on the total linear velocity v and

also on the derivatives of the compensation inclination and

direction angles _dud
and _dui

, respectively, which represent

the interaction with the environment. To compute these

parameters, several control strategies can be used such as a

derivation of an observer for drift compensation as in

Lenain et al. (2006) or introduction of the dynamics in the

controller as in Lenain et al. (2010). As the experimental

environment in this paper is stable, dui
and dud

can be con-

sidered as constants and the minor disturbances arising from

this choice can be compensated using the vision feedback.

Lemma 4.2. Introducing a change in time-scale defined by

8i = 1, � �5, _zi

j_z1j
= z0i ð21Þ

and defining the following time-independent control inputs:

u12 =
u2

u1

ð22aÞ

u13 =
u3

u1

ð22bÞ

the chained form system (11) can be converted into the fol-

lowing linear time-invariant (LTI) model:

z01 = sign(u1)

z02 = sign(u1)z3

z03 = sign(u1)u12

z04 = sign(u1)z5

z05 = sign(u1)u13

ð23Þ

These changes are defined for u1 constant and non-zero.

Proof. Applying (21) and (22) to (11) trivially yields (23),

which can be rewritten as follows:

z02
z03
z04
z05

2
664

3
775=

0 sign(u1) 0 0

0 0 0 0

0 0 0 sign(u1)
0 0 0 0

2
664

3
775

z2

z3

z4

z5

2
664

3
775

+

0 0

sign(u1) 0

0 0

0 sign(u1)

2
664

3
775 u12

u13

� �
ð24Þ

The latter is, thus, trivially LTI. j

4.2. Control

Proposition 4.1. Under the conditions set out in Lemmas

4.1 and 4.2, the control

u12

u13

� �
=� kd1 0

0 kd2

� �
z2

z4

� �

� sign(u1)kt1 0

0 sign(u1)kt2

� �
z3

z5

� �
ð25Þ

where kt1, kd1, kt2, and kd2 are the control gains and are

strictly positive, providing second-order time-independent

closed-loop dynamics to stabilize the system (24).

Proof. Replacing the control law (25) in the linear system

(23) gives the following equation:

z03 =�sign(u1)kd1z2 � kt1z3

From (23), z3 = sign(u1)z
0
2 and because u1 is constant and

non-zero, z03 = sign(u1)z
00
2 .

Inserting those in the above yields

sign(u1)½z002 + kt1z02 + kd1z2�= 0

Similar derivation applies to z5 and z4 and, therefore, the

linear system (23) is equivalent to the following two

decoupled one-dimensional second-order systems:

z002 + kt1z02 + kd1z2 = 0

z004 + kt2z04 + kd2z4 = 0

This concludes the proof of Proposition 4.1. j

Reverting the changes of variables in Lemma 4.1 allows

us to compute the actual inputs from the actual outputs:

v(t)= arbitrary 6¼ 0

(Oy,Oz)= f (dy, dz, uie, ude)

with f (dy, dz, uie, ude) expressed in the following section.

4.3. Actuation

The stabilizing time-independent control inputs u12 and u13

given by (25) allow us to compute

u2 = u12u1

=�kd1u1z2 � kt1ju1jz3

=�kd1u1dy � kt1ju1j tdz + (1� cdy)Tude

� 	 ð26Þ

and

u3 = u13u1

=�kd2u1z4 � kt2ju1jz5

=�kd2u1dz � kt2ju1j(� tdy + (cdy � 1)C(ude)
�1Tuie)

ð27Þ
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Recall that from (16) and (20), the latter have the following

expressions:

u2 = g21Oz + g22

u3 = g31Oy + g32Oz + g33

ð28Þ

By knowing the position of the helical swimmer upG and

the path parameters (s, t, and c), the steering angular velo-

cities Oy and Oz can be computed by inverting (28)

Oz = u2 � g22ð Þg�1
21

Oy = u3 � g33 � g32g�1
21 u2 � g22ð Þ

� 	
g�1

31

ð29Þ

Asymptotic stability of system (23) under control (25) is

achieved by simply tuning the coefficients of two

decoupled single-input single-output (SISO) second-order

systems (Proposition 4.1). From Lemma 4.2, this ensures

the stability of the chained form system (11) under u2 (26)

and u3 (27), trivially obtained from (22) and (25).

Stabilizing (11) stabilizes (9) thanks to their equivalence

(Lemma 4.1) and, thus, spatial path following can be

achieved.

4.4. Self-rotation and steering controls of the

helical swimmer

The helical swimmer is driven by a rotating magnetic field

B generated thanks to the electromagnetic system presented

in Figure 1, which can be decomposed as follows:

B=Bk+B?

where B? and Bk are the magnetic field parallel and per-

pendicular to the swimming axis, respectively.

To achieve a rotation about the helical robot principal

axis xB, the required torque must satisfy (5). Thereby, both

the magnetization M and the magnetic field B? must lie in

a plane perpendicular to the swimming axis OxC
�1xB. The

identification of C is difficult because of manufacturing

errors and environmental disturbances. For that, C is cho-

sen as an identity matrix and the errors arising from this

choice can be compensated for by the experimental set-up

vision feedback. The swimming axis is, thus, approximated

to OxxB along the helical swimmer axis. This approxima-

tion has proved its effectiveness in several works such as

Morozov and Leshansky (2014) and Xu et al. (2015).

Furthermore, the magnetic field B?, which yields the

open-loop self-rotation of the helical robot, can be

expressed as follows:

B?= B0 cos (2pft)yB + B0 sin (2pft)zB ð30Þ

where f is the rotation frequency, B0 is the magnetic flux

density in the center of the workspace, whereas yB and zB

are the basis vectors of the plane perpendicular to the heli-

cal swimmer axis xB.

In Xu et al. (2015), the magnetic field Bk, which leads

to the steering of the helical robot, is defined as a controller

proportional to the geodesic error k xB × x�B k and is given

as

Bk=�sign(B?x�B)l k xB × x�B k xB

where l is the control gain and x�B is the desired orientation

of the helical robot, which is reconstructed thanks to the

time integration of the steering angular velocity Ω.

In this work, we use a more economical approach that

consists of incorporating directly the steering angular velo-

cities in the magnetic field Bk without going through the

time integration of the steering angular velocities. Thus, the

angular error can be rewritten as

xB × x�B = xB × (xB + (Ω× xB)dt)

= xB × (Ω× xB)dt

= (I� xBx
T
B)Ωdt

where I is a 3× 3 identity matrix and dt the sample time.

Finally, the magnetic field Bk, which is thus the actuator

associated to the steering angular velocity Ω in (29), can

be expressed as

Bk=�sign((B?×Ω)xB)l k (I� xBx
T
B)Ω k xB ð31Þ

The helical swimmer pose (i.e. upG, ud , and ui) is recon-

structed by vision. In fact, the components of the helical

swimmer axis xB can be computed using the two angles ud

and ui as shown in Figure 2 by

xB = CuiCud CuiSud Sui½ � ð32Þ

5. Experimental results

The 3D visual control developed above has been implemen-

ted on the prototype in different paths with different com-

plexities to evaluate the effectiveness of the controller and

the helical swimmer to follow these kinds of trajectories.

To control the 3D helical swimmer displacements in

closed-loop, the procedure presented in Algorithm 1 has

been developed.

5.1. 3D trajectories

The 3D visual servo control is tested in different curve

shapes, starting by a 3D straight line without any curvature

or torsion as shown in Figure 6(a). The helical swimmer

was initially out of the reference path and it can be seen that

the helical swimmer converges and straightens gradually to

reach the desired path, then moves along the path. By com-

parison with the straight line following realized in Xu et al.

(2015) where the swimmer regulates the lateral errors to

zero whereas the altitude is controlled in open-loop, the 3D

controller proposed in this paper servoed both the altitude

and lateral errors to zero. Furthermore, the controller was

tested with more complex trajectories such as a helix with a

constant curvature and torsion and an inclined sinusoidal

Oulmas et al. 9



trajectory with variable curvature and inclination as shown

in Figure 6(b) and (c), respectively (see also Extension 1).

It can be shown that the controller is still efficient despite

the complexity and succession of curvatures. More details

about these trajectories are reported in Oulmas et al.

(2016a).

5.2. Decoupling path following and velocity

profile

For most applications, the tasks to be performed by helical

microswimmers will be defined as a geometric path to fol-

low without specification of the velocity profile. These two

tasks together (geometric path and velocity profile) define

a trajectory tracking. However, in trajectory tracking, dis-

turbances result in time delay, and to overcome this, the

swimmer cuts the trajectory to reach the desired position

with the desired time. Thus, the geometrical path will be

not achieved (reduced accuracy).

During disturbances, decoupling these two tasks will

yield better performances with regard to accuracy. In addi-

tion, the swimmer velocity can be modified independently

of the path as a function of the task and the environment

(through the Reynolds number).

In this subsection, experiments have been performed

using an inclined sinusoidal trajectory with different velo-

city profiles to illustrate the impact of the velocity on the

path following of the helical swimmer.

Therefore, the total linear velocity v depends on the rota-

tion frequency f and the inclination angle ui of the helical

swimmer. However, the angle ui is already used as a control

input. Therefore, only the rotation frequency can be used to

change the swimmer velocity v.

To do so, two different frequency profiles are generated.

The first is a rectangular signal (Figure 7a) and the second

is a continuous arbitrary signal (Figure 7b).

The results are compared with the same path using a

constant frequency profile, and are reported in Table 2. It

shows that the performances of the path following are still

efficient in all three cases. As a conclusion, whereas the

rotation frequency is between fmin, the minimum frequency

required to compensate for the weight of the helical robot

in the fluid, and fcut off , the cut-off frequency (Xu et al.,

2014), the variation of the velocity profile has no effects on

the performance of the path following.

5.3. Impact of the viscosity of the fluid on the

path following

The helical swimmer dynamics depend severely on its geo-

metry and the viscosity of the fluid. This is represented in

the coefficients of the mobility matrix (3) (see Mahoney

et al. (2011) for more details). The fluid viscosity is affected

by the temperature. Therefore, the closed-loop control pre-

sents a good solution to compensate for disturbances

caused by the change in viscosity and thermal noises.

To obtain the same conditions as at low scale in terms

of Reynolds numbers, the helical swimmer was emerged in

glycerol, which is a viscous liquid. Furthermore, experi-

ments using an inclined sinusoidal trajectory with different

liquid viscosities have been performed to illustrate the

Fig. 6. Path following of different trajectories in space using a scaled-up helical microswimmer: (a) 3D straight line; (b) helix

trajectory; (c) inclined sinusoidal trajectory.

Algorithm 1. Closed-loop 3D path following of the helical
swimmer

Require: fmin\f ł fmax

v total linear speed
C(s) 3D_geometric_path
while not end of the path do

I , I1 grab_images()
ui, ud swimmer_orientation_tracking(I , I1)
xB swimmer_axis_calculation(ui, ud), (32)
upG swimmer_position_tracking(I , I1)
upS projection_path(upG)
(xF, yF, zF) Serret_Frenet_frame
(s, c, t, dc

ds,
dt
ds ) path_parameters

(dz, dy) distance_errors
(ude, uie) orientation_errors
(_s, _dy

_dz, _ude, _uie) kinematic_equations, (9)
(g21, g22, g31, g32, g33) scalars
(u1, u2, u3) control_law, (12), (26), and (27)
Ω= (0,Oy, Oz) steering_angular_velocities, (29)
B? perpendicular_magnetic_field(yB, zB), (30)
Bk parallel_magnetic_field(xB, Ω), (31)
(US , UM , UB) tension_conversion(Bk, B?)

end while
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effectiveness of the closed-loop control to the change in

viscosity.

During the experiments, the compensation inclination

angle and the control gains are kept fixed. However, to bal-

ance the weight of the helical robot, the swimmer vertical

velocity (i.e. the rotation frequency) is increased in function

of the glycerol viscosity. Table 2 summarize the frequencies

used for different glycerol viscosities.

The results of following an inclined sinusoidal trajectory

with three different viscosities are compared using the mean

and standard deviation of the distance and orientation errors

as shown in Figure 8.

The graph shows that the path following is accurate in

all three cases with an error of less than 0.5 mm. As the

path following and the velocity profile are decoupled, the

strong disturbances caused by the change in the fluid visc-

osity can be corrected by increasing or decreasing the heli-

cal swimmer speed, hence, the interest of decoupling ‘‘path

following’’ and ‘‘velocity profile.’’

In the next subsection, experiments demonstrating the

effect of lateral disturbances on the performance of the path

following are performed.

5.4. Boundary effects

At low scale, microswimmers are affected by several distur-

bances such as boundary effects. Indeed, many experiments

have shown that close to a solid surface, microswimmers

are attracted or repulsed by these boundaries.

In this subsection, we tested the effectiveness of the 3D

controller to these disturbances by analyzing the effect of a

solid plane wall. A reference straight line is generated with

a distance d to a solid surface. The helical swimmer swims

parallel to the wall, as illustrated in Figure 9.

It can be noticed that the controller is efficient for a

path-wall distance over 2:5mm. Under this distance, the

accuracy decreases dramatically because the helical swim-

mer hits the wall and rolls on the surface when trying to

reach the reference path. But, this does not call into ques-

tion the controller robustness.

Other experiments putting the helical swimmer in con-

tact with the solid surface were performed in order to show

that the controller is robust to boundaries.

In the first experiment, the helical swimmer is initially

in contact entirely with the bottom surface of the beaker as

shown in Figure 10a (Extension 2). During the path follow-

ing, it can be seen that the robot manages to detach itself

from the solid surface and then converges to the reference

path as illustrated in Figure 10b (Extension 2). The contact

with the bottom surface makes the robot roll a little on the

surface in lateral displacements. However, despite the dis-

turbance, the controller is still efficient.

In the second experiment, the robot is placed entirely in

contact with the side surface of the beaker as shown in

Figure 11. It can be seen that when the robot is on the solid

surface, it rolls upwards until it detaches and then converges

to the reference straight line. Finally, the experiments show

that the controller is robust to boundary effects.

5.5. Open-loop versus closed-loop

As shown previously, the 3D control performance of the

helical swimmer depends on the viscosity of the liquid and

the boundary effects caused by the beaker wall. Comparing

the closed-loop control and the open-loop control allows us

to illustrate the different disturbances that the helical robot

undergoes during the path following.

The reference path is a straight line with a constant alti-

tude. The helical swimmer is initially on the path. As

shown in Figure 12, using the open-loop algorithm, the

helical swimmer drifts from the desired path because of:

the imperfection of the system such as magnetic field gra-

dient; modeling errors, namely the propulsion matrix and

compensation inclination angle; the friction between the

robot and the substrate; boundary effects; variation of the

temperature.

Fig. 7. Velocity variation of the helical swimmer using different

frequency profiles such as (a) a rectangular signal and (b) a

continuous arbitrary signal.

Table 2. The distance (mm) and orientation (rad) errors during

the inclined sinusoidal trajectory following with different velocity

profiles.

Velocity Errors dy dz ude uie

constant RMS 178 396 0.597 0.079
SD 173 337 0.594 0.068

rectangular RMS 292 301 0.255 0.108
signal SD 281 242 0.254 0.099
arbitrary RMS 211 330 0.308 0.153
signal SD 182 277 0.305 0.106

Table 3. The rotation frequency of the helical swimmer for

different viscosities of the fluid at 208C.

Glycerol Viscosity (mPa.s) Frequency (Hz)

99.99% 1,412 2.3
99% 1,150 2.5
98% 939 3
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On the other hand, using the closed-loop control, the

helical swimmer shows better performance despite distur-

bances, with an accuracy less than 0.2 mm (see Extension

3). In lab-on-chips and biomedical tasks, the motion of the

helical microswimmer should be robust and accurate and

using the closed-loop control allows the environmental dis-

turbances such as high flows in arteries to be overcome or

obstacles to be avoided.

5.6. The helical swimmer weight compensation

To compensate for the weight of the helical robot, it is

inclined by some angles with respect to the horizontal

plane. This is referenced by the so-called compensation

inclination angle dui
, which is defined as the angle between

the principal axis and the total linear velocity v of the heli-

cal robot. Below this angle, the helical robot loses altitude

and gains speed while descending owing to gravity. Over

this angle, the helical robot gains altitude and loses some

speed, as illustrated in Figures 13 and 14.

In Figure 13, the helical swimmer follows a sinusoidal

trajectory in the vertical plane (Extension 4) and it can be

seen that when the inclination angle is greater than the com-

pensation inclination angle, the robot increases in altitude

and when the inclination angle is lower than the compensa-

tion inclination angle the robot decreases in altitude.

The compensation inclination angle dui
is controlled in

open-loop and can be estimated by vision by computing the

vertical and horizontal velocities vver and vhor, respectively,

as follows:

dui
= tan

vver

vhor


 ��1

Fig. 8. The mean and standard deviation of the distance and

orientation errors while following an inclined sinusoidal

trajectory for three different viscosities. The tests were carried

out several times.

Fig. 9. Effect of a vertical solid surface on the performance of the path following of the helical swimmer. At each wall distance d, the

mean and standard deviation errors of the lateral distance dy are shown.

Fig. 10. Experiment 1: The interaction between the helical swimmer and the bottom surface of the beaker (a) and the distance errors

during the path following (b).
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The computing errors of the compensation inclination

angle will be corrected thanks to the closed-loop control.

To show the effects of this angle on the performance of

the path following, a series of test with different compensa-

tion inclination angles was performed using the sinusoidal

trajectory with constant altitude, while maintaining the

same rotation frequency and control gains during the

experiments (Figure 15).

In the horizontal plane (Figure 15a), all trajectories

converge to the desired path, the compensation inclina-

tion angle has no specific effects on the performance of

the path following on the horizontal plane. However, in

the vertical plane (Figure 15b), all trajectories converge

to the reference path with a more or less error depending

on the compensation inclination angle. The mean and

standard deviation of the distance and orientation errors

Fig. 11. Experiment 2: The interaction between the helical swimmer and the side surface of the beaker (a) and the distance errors

during the path following (b).

Fig. 12. Comparison between the open-loop control and the visual servo control: (a) horizontal plane; (b) vertical plane.

(a) (b)

Fig. 13. Sinusoidal trajectory following in the vertical plane using a scaled-up helical microswimmer with a compensation inclination

angle of 45� (a) and the evolution of the inclination angle of the helical swimmer (b).
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in the vertical plane are depicted in Figure 16 to compare

the different paths.

The experimental results show that the accuracy is quite

satisfactory for a compensating angle between 408 and 608,

as illustrated in Figure 16a. Indeed, the closed-loop control

tends to correct the compensation inclination angle com-

puting errors by increasing the inclination angle as shown

in Figure 16b. Finally, the closed-loop control can be used

to compensate the computing errors of the artificial helical

swimmer weight and uncertainties in general.

5.7. Gain tuning

The performance of the closed-loop controller (stability,

accuracy, and rapidity) can be adjusted using the control

gains kd1, 2 and kt1, 2. Several experiments using the same

(a) (b)

Fig. 14. Estimated linear velocities of the helical robot with different inclination angles in pure glycerol: (a) horizontal plane; (b)

vertical plane.

Fig. 15. Trajectories of the helical swimmer using the 3D closed-loop control with different compensation inclination angles: (a)

horizontal plane; (b) vertical plane.

Fig. 16. Mean and standard deviation of the (a) distance and (b) orientation errors in the vertical plane, as a function of the

compensation inclination angle.
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path with different control gains are performed to illustrate

the effect of these parameters on the performance of the

path following. Trajectories of the helical robot while fol-

lowing straight lines with different control gains in the hor-

izontal and vertical planes are depicted in Figure 17.

The helical swimmer is initially off the path. It can be

noticed that the helical swimmer converges to the path more

or less rapidly depending on the parameters kd1 and kd2. In

addition, the error due to the lateral disturbances at the end

of the trajectory in Figure 17a decreases by increasing the

gain kd1. On the other side, the gains kt1 and kt2 play a sta-

bilizing role. In fact, the parameters kd1, 2 and kt1, 2 can be

considered as the proportional and derivative gains of a PD

controller.

6. Conclusion

3D path following of magnetic helical swimmers is realized

for the first time in closed-loop. The robot is modeled in a

local frame using the Serret–Frenet frame, taking into

account the weight of the robot and lateral disturbances.

The decoupled stable controller is designed using a new

chained formulation to linearize the kinematic model.

This approach is validated and analyzed using a scaled-

up helical swimmer actuated magnetically. Several condi-

tions are tested: different velocity profiles, complex curves,

viscosities, gains, boundary effects, and compensation incli-

nation angles.

The experiments have shown that the path-following

controller is robust and accurate against disturbances such

as boundary effects that are significant at low Reynolds

numbers. In lab-on-chips, it can be used to transport objects

to a desired location with accuracy while avoiding obsta-

cles. For more complex situations with dynamic obstacles,

a motion planning technique, which is a combination of

path planning with smooth constraints and path following

control, could be a robust solution to avoid collisions with

obstacles.

In the future, we must find a robust identification

method of the mobility matrix especially the submatrix C

and make a comparison to see the effect of neglecting the

submatrix C in the magnetic controller B on the helical

robot performance. In addition, controlling a group of mul-

tiple magnetic microswimmers is interesting to improve

their performances such as targeted drug delivery inside

the human body using several microrobots.

Acknowledgment

The authors would like to warmly thank Pascal Morin for his valu-

able help in proof checking the derivation of chained form.

Funding

This work was supported by Région Franche-Comté and the
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Following 3D trajectories using a scaled-up helical microswimmer.
2 Video The impact of the boundaries on the servo control performance.
3 Video Open-loop control versus closed-loop control.
4 Video Compensating for the SHM weight using the compensation inclination angle.
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Appendix B: The kinematic model

computation

To compute the translation part of the kinematic model, the

position upG of the helical swimmer in the global frame F u

is used as follows:

upG = upS + uRF
FpG

Differentiating this equation with respect to time we have

uvd = uvF + uRF
F _pG + u _RF

F
pG

Expressing this equation in the Serret–Frenet frame we

have

FRu
uvd = FvF + F _pG + F _RF

F
pG

where

FRu
uvd = FRd

dvd

F _RF
F
pG = FvF × FpG

Replacing these parameters gives (7) as follows:

FRd
dvd = FvF + F _pG + FvF × FpG

Replacing the expressions of these parameters (see Table

1), Equation (7) can be rewritten as follows:

FRd

v

0

0

2
4
3
5=

_s
0

0

2
4
3
5+

0
_dy

_dz

2
4

3
5+

t _s
0

c_s

2
4

3
5×

0

dy

dz

2
4

3
5

Solving these equations for _s, _dy, and _dz gives the trans-

lation part of the kinematic model (9a), (9b), and (9c).

For the second part concerning the rotation part of the

kinematic model, the derivation of rotation matrix FRd can

be used as follows:

F _Rd = FRdSk
dvr

d,F

� �
The relative angular velocity between F d and FF is

expressed as follows:

dvr
d,F = dvd�dvF

= dvB + dvr
d,B�dvF

where

dvB = dRBΩ

dvF = dRF
FvF

dvr
d,B =

0

0

_dud

2
64

3
75+Rot(z, � dud

)

0

� _dui

0

2
64

3
75

Computing dvr
d,F = ½0 p q�T, Equation (8) can be rewrit-

ten as follows:

_ude

_uie

� �
=

Cu�1
ie 0

0 1

� �
p

q

� �

Replacing p and q gives the rotation part of the kinematic

model (9d) and (9e).
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