P. C. Nowell, The clonal evolution of tumor cell populations, Science, vol.194, pp.23-28, 1976.

D. P. Cahill, K. W. Kinzler, B. Vogelstein, and C. Lengauer, Genetic instability and darwinian selection in tumours, Trends Cell Biol, vol.9, pp.57-60, 1999.
DOI : 10.1016/s0168-9525(99)01874-0

B. Vogelstein and K. W. Kinzler, The multistep nature of cancer, Trends Genet, vol.9, pp.138-141, 1993.

M. Greaves and C. C. Maley, Clonal evolution in cancer, Nature, vol.481, pp.306-313, 2012.
DOI : 10.1038/nature10762

URL : http://europepmc.org/articles/pmc3367003?pdf=render

M. Gerlinger, N. Mcgranahan, S. M. Dewhurst, R. A. Burrell, I. Tomlinson et al., Cancer: Evolution within a lifetime, Annu. Rev. Genet, vol.48, pp.215-236, 2014.
DOI : 10.1146/annurev-genet-120213-092314

N. A. Wright, Boveri at 100: Cancer evolution, from preneoplasia to malignancy, J. Pathol, vol.234, pp.146-151, 2014.
DOI : 10.1002/path.4408

K. Curtius, N. A. Wright, and T. A. Graham, Evolution of Premalignant Disease. Cold Spring Harb. Perspect, vol.7, 2017.
DOI : 10.1101/cshperspect.a026542

URL : http://perspectivesinmedicine.cshlp.org/content/7/12/a026542.full.pdf

P. Valent, C. Akin, M. Arock, C. Bock, T. I. George et al., Proposed Terminology and Classification of Pre-Malignant Neoplastic Conditions: A Consensus Proposal, vol.26, pp.17-24, 2017.
DOI : 10.1016/j.ebiom.2017.11.024

URL : https://doi.org/10.1016/j.ebiom.2017.11.024

J. P. Dutcher and P. H. Wiernik, Accelerated and blastic phase of chronic myeloid leukemia, Curr. Treat. Options Oncol, vol.1, pp.51-62, 2000.
DOI : 10.1007/s11864-000-0015-z

H. D. Preisler, Evolution of secondary hematologic disorders: preMDS->MDS->sAML, Cancer Treat. Res, vol.108, pp.185-230, 2001.
DOI : 10.1007/978-1-4615-1463-3_11

J. V. Melo and D. J. Barnes, Chronic myeloid leukaemia as a model of disease evolution in human cancer, Nat Rev Cancer, vol.7, pp.441-453, 2007.

O. Abdel-wahab, T. Manshouri, J. Patel, K. Harris, J. Yao et al., Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias, Cancer Res, vol.70, pp.447-452, 2010.

P. Lundberg, A. Karow, R. Nienhold, R. Looser, H. Hao-shen et al., Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms, Blood, vol.123, pp.2220-2228, 2014.

C. A. Cargo, N. Rowbotham, P. A. Evans, S. L. Barrans, D. T. Bowen et al., Targeted sequencing identifies patients with pre-clinical MDS at high risk of disease progression, Blood, vol.126, pp.2362-2365, 2015.

M. Pfeilstöcker, H. Tuechler, G. Sanz, J. Schanz, G. Garcia-manero et al., Time-dependent changes in mortality and transformation risk in MDS, Blood, vol.128, pp.902-910, 2016.

C. Biernaux, M. Loos, A. Sels, G. Huez, and P. Stryckmans, Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals, Blood, vol.86, pp.3118-3122, 1995.

F. Passamonti, E. Rumi, D. Pietra, M. Lazzarino, and M. Cazzola, JAK2 (V617F) mutation in healthy individuals, Br. J. Haematol, vol.136, pp.678-679, 2007.

L. Busque, J. P. Patel, M. E. Figueroa, A. Vasanthakumar, S. Provost et al., Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis, Nat. Genet, vol.44, pp.1179-1181, 2012.

S. Jaiswal, P. Fontanillas, J. Flannick, A. Manning, P. V. Grauman et al., Age-related clonal hematopoiesis associated with adverse outcomes, N. Engl. J. Med, vol.371, pp.2488-2498, 2014.

G. Genovese, A. K. Kähler, R. E. Handsaker, J. Lindberg, S. A. Rose et al., Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, N. Engl. J. Med, vol.371, pp.2477-2487, 2014.

D. P. Steensma, R. Bejar, S. Jaiswal, R. C. Lindsley, M. A. Sekeres et al., Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes, Blood, vol.126, pp.9-16, 2015.

P. Valent, A. Orazi, D. P. Steensma, B. L. Ebert, D. Haase et al., Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions, Oncotarget, vol.8, pp.73483-73500, 2017.

, Int. J. Mol. Sci, vol.20, p.789, 2019.

M. R. Corces-zimmerman and R. Majeti, Pre-leukemic evolution of hematopoietic stem cells: The importance of early mutations in leukemogenesis, Leukemia, vol.28, pp.2276-2282, 2014.

L. I. Shlush, S. Zandi, S. Itzkovitz, and A. C. Schuh, Aging, clonal hematopoiesis and preleukemia: Not just bad luck?, Int. J. Hematol, vol.102, pp.513-522, 2015.

S. M. Sykes, K. D. Kokkaliaris, M. D. Milsom, R. L. Levine, and R. Majeti, Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia, Exp. Hematol, vol.43, pp.989-992, 2015.

L. Malcovati and M. Cazzola, The shadowlands of MDS: Idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP), Hematology Am. Soc. Hematol. Educ. Program, pp.299-307, 2015.

A. S. Sperling, C. J. Gibson, and B. L. Ebert, The genetics of myelodysplastic syndrome: From clonal haematopoiesis to secondary leukaemia, Nat. Rev. Cancer, vol.17, pp.5-19, 2017.

P. Valent, . Icus, and . Idus, Diagnostic Criteria, Separation from MDS and Clinical Implications, vol.1, pp.1-9, 2018.

S. Jaiswal, P. Natarajan, A. J. Silver, C. J. Gibson, A. G. Bick et al., Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease, N. Engl. J. Med, vol.377, pp.111-121, 2017.

R. Itzykson, O. Kosmider, and P. Fenaux, Somatic mutations and epigenetic abnormalities in myelodysplastic syndromes, Best Pract. Res. Clin. Haematol, vol.26, pp.355-364, 2013.

T. Haferlach, Y. Nagata, V. Grossmann, Y. Okuno, U. Bacher et al., Landscape of genetic lesions in 944 patients with myelodysplastic syndromes, Leukemia, vol.28, pp.241-247, 2014.

U. Bacher, T. Haferlach, S. Schnittger, M. Zenger, M. Meggendorfer et al., Investigation of 305 patients with myelodysplastic syndromes and 20q deletion for associated cytogenetic and molecular genetic lesions and their prognostic impact, Br. J. Haematol, vol.164, pp.822-833, 2014.

S. Jeromin, T. Haferlach, S. Weissmann, M. Meggendorfer, C. Eder et al., Refractory anemia with ring sideroblasts and marked thrombocytosis cases harbor mutations in SF3B1 or other spliceosome genes accompanied by JAK2V617F and ASXL1 mutations, Haematologica, vol.100, pp.125-127, 2015.

H. Makishima, T. Yoshizato, K. Yoshida, M. A. Sekeres, T. Radivoyevitch et al., Dynamics of clonal evolution in myelodysplastic syndromes, Nat. Genet, vol.49, pp.204-212, 2017.

C. M. Hirsch, A. Nazha, K. Kneen, M. E. Abazeed, M. Meggendorfer et al., Consequences of mutant TET2 on clonality and subclonal hierarchy, vol.32, pp.1751-1761, 2018.

S. Weissmann, T. Alpermann, V. Grossmann, A. Kowarsch, N. Nadarajah et al., Landscape of TET2 mutations in acute myeloid leukemia, Leukemia, vol.26, pp.934-942, 2012.

D. Rose, T. Haferlach, S. Schnittger, K. Perglerova, W. Kern et al., Subtype-specific patterns of molecular mutations in acute myeloid leukemia, vol.31, pp.11-17, 2017.

J. Schwaab, S. Schnittger, K. Sotlar, C. Walz, A. Fabarius et al., Comprehensive mutational profiling in advanced systemic mastocytosis, Blood, vol.122, pp.2460-2466, 2013.

M. Jawhar, J. Schwaab, S. Schnittger, K. Sotlar, H. P. Horny et al., Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event, Leukemia, vol.29, pp.1115-1122, 2015.

T. N. Wong, C. A. Miller, J. M. Klco, A. Petti, R. Demeter et al., Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML, Blood, vol.127, pp.893-897, 2016.

C. J. Gibson, R. C. Lindsley, V. Tchekmedyian, B. G. Mar, J. Shi et al., Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma, J. Clin. Oncol, vol.35, pp.1598-1605, 2017.

, Int. J. Mol. Sci, vol.20, p.789, 2019.

K. Takahashi, F. Wang, H. Kantarjian, D. Doss, K. Khanna et al., Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: A case-control study, Lancet Oncol, vol.18, pp.100-111, 2017.

M. Jongen-lavrencic, T. Grob, D. Hanekamp, F. G. Kavelaars, A. Hinai et al., Molecular Minimal Residual Disease in Acute Myeloid Leukemia, N. Engl. J. Med, vol.378, pp.1189-1199, 2018.

K. J. Hope, L. Jin, and J. E. Dick, Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity, Nat. Immunol, vol.5, pp.738-743, 2004.

P. Valent, Targeting of leukemia-initiating cells to develop curative drug therapies: Straightforward but nontrivial concept. Curr. Cancer Drug Targets, vol.11, pp.56-71, 2011.

P. Valent, D. Bonnet, R. De-maria, T. Lapidot, M. Copland et al., Cancer stem cell definitions and terminology: The devil is in the details, Nat. Rev. Cancer, vol.12, pp.767-775, 2012.

A. Pandolfi, L. Barreyro, and U. Steidl, Concise review: Preleukemic stem cells: Molecular biology and clinical implications of the precursors to leukemia stem cells, Stem Cells Transl. Med, vol.2, pp.143-150, 2013.

P. Valent, D. Bonnet, S. Wöhrer, M. Andreeff, M. Copland et al., Heterogeneity of neoplastic stem cells: Theoretical, functional, and clinical implications, Cancer Res, vol.73, pp.1037-1045, 2013.

M. J. Walter, D. Shen, L. Ding, J. Shao, D. C. Koboldt et al., Clonal architecture of secondary acute myeloid leukemia, N. Engl. J. Med, vol.366, pp.1090-1098, 2012.

M. Cazzola, M. G. Della-porta, and L. Malcovati, The genetic basis of myelodysplasia and its clinical relevance, Blood, vol.122, pp.4021-4034, 2013.

J. D. Milosevic, A. Puda, L. Malcovati, T. Berg, M. Hofbauer et al., Clinical significance of genetic aberrations in secondary acute myeloid leukemia, Am. J. Hematol, vol.87, pp.1010-1016, 2012.

T. Mori, Y. Nagata, H. Makishima, M. Sanada, Y. Shiozawa et al., Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms, Leukemia, vol.30, pp.2270-2273, 2016.

J. Nangalia and T. R. Green, The evolving genomic landscape of myeloproliferative neoplasms, Hematology Am. Soc. Hematol. Educ. Program, pp.287-296, 2014.

R. Rampal, J. Ahn, O. Abdel-wahab, M. Nahas, K. Wang et al., Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms, Proc. Natl. Acad. Sci, vol.111, 2014.

M. C. Kuo, D. C. Liang, C. F. Huang, Y. S. Shih, J. H. Wu et al., RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation, Leukemia, vol.23, pp.1426-1431, 2009.

B. J. Patel, B. Przychodzen, S. Thota, T. Radivoyevitch, V. Visconte et al., Genomic determinants of chronic myelomonocytic leukemia, Leukemia, vol.31, pp.2815-2823, 2017.

M. M. Patnaik, E. A. Wassie, T. L. Lasho, C. A. Hanson, R. Ketterling et al., Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome, Am. J. Hematol, vol.90, pp.411-416, 2015.

C. Elena, A. Galli, E. Such, M. Meggendorfer, U. Germing et al., Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia, Blood, vol.128, pp.1408-1417, 2016.

M. Jan, T. M. Snyder, M. R. Corces-zimmerman, P. Vyas, I. L. Weissman et al., Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia, Sci. Transl. Med

E. Papaemmanuil, M. Gerstung, L. Bullinger, V. I. Gaidzik, P. Paschka et al., Genomic Classification and Prognosis in Acute Myeloid Leukemia, N. Engl. J. Med, vol.374, pp.2209-2221, 2016.

, Int. J. Mol. Sci, vol.20, p.789, 2019.

M. Xie, C. Lu, J. Wang, M. D. Mclellan, K. J. Johnson et al., Age-related mutations associated with clonal hematopoietic expansion and malignancies, Nat. Med, vol.20, pp.1472-1478, 2014.

L. Malcovati, A. Galli, E. Travaglino, I. Ambaglio, E. Rizzo et al., Clinical significance of somatic mutation in unexplained blood cytopenia, vol.129, pp.3371-3378, 2017.

C. A. Ortmann, D. G. Kent, J. Nangalia, Y. Silber, D. C. Wedge et al., Effect of mutation order on myeloproliferative neoplasms, N. Engl. J. Med, vol.372, pp.601-612, 2015.

J. Boultwood, J. Perry, R. Zaman, C. Fernandez-santamaria, T. Littlewood et al., High-density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia during disease progression, Leukemia, vol.24, pp.1139-1145, 2010.

V. Grossmann, A. Kohlmann, M. Zenger, S. Schindela, C. Eder et al., A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases, Leukemia, vol.25, pp.557-560, 2011.

H. Makishima, A. M. Jankowska, M. A. Mcdevitt, C. O'keefe, S. Dujardin et al., CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia, Blood, vol.117, pp.198-206, 2011.

E. Hadzijusufovic, K. Albrecht-schgoer, K. Huber, G. Hoermann, F. Grebien et al., Nilotinib-induced vasculopathy: Identification of vascular endothelial cells as a primary target site, Leukemia, vol.31, pp.2388-2397, 2017.

R. K. Patel, N. C. Lea, M. A. Heneghan, N. B. Westwood, D. Milojkovic et al., Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome, Gastroenterology, vol.130, pp.2031-2038, 2006.

D. Colaizzo, L. Amitrano, G. L. Tiscia, G. Scenna, E. Grandone et al., The JAK2 V617F mutation frequently occurs in patients with portal and mesenteric venous thrombosis, J. Thromb. Haemost, vol.5, pp.55-61, 2007.

V. De-stefano, A. Fiorini, E. Rossi, T. Za, G. Farina et al., Incidence of the JAK2 V617F mutation among patients with splanchnic or cerebral venous thrombosis and without overt chronic myeloproliferative disorders, J. Thromb. Haemost, vol.5, pp.708-714, 2007.

D. Colaizzo, L. Amitrano, M. A. Guardascione, G. L. Tiscia, G. ;-d'andrea et al., Outcome of patients with splanchnic venous thrombosis presenting without overt MPN: A role for the JAK2 V617F mutation re-evaluation, Thromb. Res, vol.132, pp.99-104, 2013.

O. Kilpivaara and R. L. Levine, JAK2 and MPL mutations in myeloproliferative neoplasms: Discovery and science, Leukemia, vol.22, pp.1813-1817, 2008.

T. Klampfl, H. Gisslinger, A. S. Harutyunyan, H. Nivarthi, E. Rumi et al., Somatic mutations of calreticulin in myeloproliferative neoplasms, N. Engl. J. Med, vol.369, pp.2379-2390, 2013.

S. Ferreira-cristina, B. Polo, and J. F. Lacerda, Somatic Mutations in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms, Semin Hematol, vol.55, pp.215-222, 2018.

S. Delic, D. Rose, W. Kern, N. Nadarajah, C. Haferlach et al., Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera, Br. J. Haematol, vol.175, pp.419-426, 2016.

A. Senín, C. Fernández-rodríguez, B. Bellosillo, L. Camacho, R. Longarón et al., Álvarez-Larrán, A. Non-driver mutations in patients with JAK2V617F-mutated polycythemia vera or essential thrombocythemia with long-term molecular follow-up, Ann. Hematol, vol.97, pp.443-451, 2018.

M. Meggendorfer, A. De-albuquerque, N. Nadarajah, T. Alpermann, W. Kern et al., Karyotype evolution and acquisition of FLT3 or RAS pathway alterations drive progression of myelodysplastic syndrome to acute myeloid leukemia, Haematologica, vol.100, 2015.

R. A. Padua, B. A. Guinn, A. I. Al-sabah, M. Smith, C. Taylor et al., FMS and p53 mutations and poor clinical outcome in myelodysplasias: A 10-year follow-up, Leukemia, vol.12, pp.887-892, 1998.

V. Gelsi-boyer, V. Trouplin, J. Adélaïde, N. Aceto, V. Remy et al., Genome profiling of chronic myelomonocytic leukemia: Frequent alterations of RAS and RUNX1 genes, vol.8, p.299, 2008.

C. Ricci, E. Fermo, S. Corti, M. Molteni, A. Faricciotti et al., RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant, Clin. Cancer Res, vol.16, pp.2246-2256, 2010.

J. Peng, Z. Zuo, B. Fu, Y. Oki, G. Tang et al., Chronic myelomonocytic leukemia with nucleophosmin (NPM1) mutation, Eur. J. Haematol, vol.96, pp.65-71, 2016.

L. Palomo, O. Garcia, M. Arnan, B. Xicoy, F. Fuster et al., Targeted deep sequencing improves outcome stratification in chronic myelomonocytic leukemia with low risk cytogenetic features, Oncotarget, vol.7, pp.57021-57035, 2016.

Y. Lin, Y. Zheng, Z. C. Wang, and S. Y. Wang, Prognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: A meta-analysis, Hematology, vol.21, pp.454-461, 2016.

D. A. Sallman, R. Komrokji, T. Cluzeau, C. Vaupel, N. H. Ali et al., ASXL1 frameshift mutations drive inferior outcomes in CMML without negative impact in MDS, Blood Cancer J, vol.7, p.633, 2017.

H. Y. Kim, K. O. Lee, S. Park, J. H. Jang, C. W. Jung et al., Poor Prognostic Implication of ASXL1 Mutations in Korean Patients With Chronic Myelomonocytic Leukemia, Ann. Lab. Med, vol.38, pp.495-502, 2018.

N. Daver, P. Strati, E. Jabbour, T. Kadia, R. Luthra et al., Qin Dong, X.; et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia, Am. J. Hematol, vol.88, pp.56-59, 2013.

L. Zhang, R. R. Singh, K. P. Patel, F. Stingo, M. Routbort et al., BRAF kinase domain mutations are present in a subset of chronic myelomonocytic leukemia with wild-type RAS, Am. J. Hematol, vol.89, pp.499-504, 2014.

K. Mrózek, G. Marcucci, P. Paschka, and C. D. Bloomfield, Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia, Curr. Opin. Oncol, vol.20, pp.711-718, 2008.

G. Marcucci, T. Haferlach, and H. Döhner, Molecular genetics of adult acute myeloid leukemia: Prognostic and therapeutic implications, J. Clin. Oncol, vol.29, pp.475-486, 2011.
DOI : 10.1200/jco.2010.30.2554

L. Bullinger, K. Döhner, and H. Döhner, Genomics of Acute Myeloid Leukemia Diagnosis and Pathways, J. Clin. Oncol, vol.35, pp.934-946, 2017.

D. A. Arber, A. Orazi, R. Hasserjian, J. Thiele, M. J. Borowitz et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, vol.127, pp.2391-2405, 2016.

G. W. Roloff and E. A. Griffiths, When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter, Blood Adv, vol.2, pp.3070-3080, 2018.
DOI : 10.1182/bloodadvances.2018020206

B. Schlegelberger and P. Heller, RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM), Semin. Hematol, vol.54, pp.75-80, 2017.
DOI : 10.1053/j.seminhematol.2017.04.006

D. C. Bellissimo and N. A. Speck, Mutations in Inherited and Sporadic Leukemia. Front. Cell. Dev. Biol, vol.5, 2017.

K. Tawana, A. Rio-machin, C. Preudhomme, and J. Fitzgibbon, Familial CEBPA-mutated acute myeloid leukemia, Semin. Hematol, vol.54, pp.87-93, 2017.

H. Ke, J. U. Kazi, H. Zhao, and J. Sun, Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis, Cell. Biosci, vol.6, 2016.

, Int. J. Mol. Sci, vol.20, p.789, 2019.

R. Zanotti, L. Simioni, A. C. Garcia-montero, O. Perbellini, P. Bonadonna et al., Somatic D816V KIT mutation in a case of adult-onset familial mastocytosis, J. Allergy Clin. Immunol, vol.131, pp.605-607, 2013.

D. A. Hinds, K. E. Barnholt, R. A. Mesa, A. K. Kiefer, C. B. Do et al., Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms, Blood, vol.128, pp.1121-1128, 2016.

T. Tashi, S. Swierczek, and J. T. Prchal, Familial MPN Predisposition. Curr. Hematol. Malig. Rep, vol.12, pp.442-447, 2017.

M. Mayerhofer, K. V. Gleixner, A. Hoelbl, S. Florian, G. Hoermann et al., Unique effects of KIT D816V in BaF3 cells: Induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens, J. Immunol, vol.180, pp.5466-5476, 2008.

W. Warsch, E. Grundschober, A. Berger, L. Gille, S. Cerny-reiterer et al., Sexl, V. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia, Oncotarget, vol.3, pp.1669-1687, 2012.

C. Marty, C. Lacout, N. Droin, J. P. Le-couédic, V. Ribrag et al., A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression, Leukemia, vol.27, pp.2187-2195, 2013.

D. S. Krause and R. A. Van-etten, Right on target: Eradicating leukemic stem cells, Trends Mol. Med, vol.13, pp.470-481, 2007.

E. Pelosi, G. Castelli, and U. Testa, Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells, Blood Cells Mol. Dis, vol.55, pp.336-346, 2015.

A. Schulenburg, K. Blatt, S. Cerny-reiterer, I. Sadovnik, H. Herrmann et al., Cancer stem cells in basic science and in translational oncology: Can we translate into clinical application?, J. Hematol. Oncol, vol.8, p.16, 2015.

B. J. Druker, Translation of the Philadelphia chromosome into therapy for CML, Blood, vol.112, pp.4808-4817, 2008.

J. Gotlib and J. Cools, Five years since the discovery of FIP1L1-PDGFRA: What we have learned about the fusion and other molecularly defined eosinophilias, Leukemia, vol.22, 1999.

G. Metzgeroth, J. Schwaab, D. Gosenca, A. Fabarius, C. Haferlach et al., Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase, Leukemia, vol.27, pp.2254-2256, 2013.

A. M. Vannucchi and C. N. Harrison, Emerging treatments for classical myeloproliferative neoplasms, vol.129, pp.693-703, 2017.

J. Gotlib, H. C. Kluin-nelemans, T. I. George, C. Akin, K. Sotlar et al., Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis, N. Engl. J. Med, vol.374, pp.2530-2541, 2016.

P. Valent, C. Akin, K. Hartmann, T. I. George, K. Sotlar et al., Midostaurin: A magic bullet that blocks mast cell expansion and activation, Ann. Oncol, vol.28, pp.2367-2376, 2017.