
HAL Id: hal-02095089
https://hal.sorbonne-universite.fr/hal-02095089v1

Submitted on 10 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spontaneous formation and relaxation of spin domains
in antiferromagnetic spin-1 condensates

K. Jiménez-García, A. Invernizzi, B. Evrard, C. Frapolli, J Dalibard, F.
Gerbier

To cite this version:
K. Jiménez-García, A. Invernizzi, B. Evrard, C. Frapolli, J Dalibard, et al.. Spontaneous formation
and relaxation of spin domains in antiferromagnetic spin-1 condensates. Nature Communications,
2019, 10, pp.1422. �10.1038/s41467-019-08505-6�. �hal-02095089�

https://hal.sorbonne-universite.fr/hal-02095089v1
https://hal.archives-ouvertes.fr


ARTICLE

Spontaneous formation and relaxation of spin
domains in antiferromagnetic spin-1 condensates
K. Jiménez-García1,2, A. Invernizzi1,3, B. Evrard1, C. Frapolli1,3, J. Dalibard1 & F. Gerbier1

Many-body systems at low temperatures generally organize themselves into ordered phases,

whose nature and symmetries are captured by an order parameter. This order parameter

is spatially uniform in the simplest cases, for example the macroscopic magnetization of

a ferromagnetic material. Non-uniform situations also exist in nature, for instance in anti-

ferromagnetic materials, where the magnetization alternates in space, or in the so-called

stripe phases emerging for itinerant electrons in strongly correlated materials. Understanding

such inhomogeneously ordered states is of central importance in many-body physics.

Here we study experimentally the magnetic ordering of itinerant spin-1 bosons in inhome-

geneous spin domains at nano-Kelvin temperatures. We demonstrate that spin domains

form spontaneously, that is purely because of the antiferromagnetic interactions between the

atoms and in the absence of external magnetic forces, after a phase separation transition.

Furthermore, we explore how the equilibrium domain configuration emerges from an initial

state prepared far from equilibrium.
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Quantum gases of ultracold atoms offer an unprecedented
platform to study complex, multicomponent quantum
fluids in- and out-of-equilibrium1–3. In quantum gases

with several Zeeman components simultaneously confined in an
optical dipole trap, Van der Waals4–10 or dipole–dipole11,12

interactions drive internal conversion between the Zeeman
components. For bosonic atoms, this leads at very low tempera-
tures to Bose–Einstein condensation in a superposition of the
internal states where long-range phase coherence, superfluidity
and magnetic ordering can all take place. For instance, Josephson-
like spin oscillations due to spin-changing interactions have been
observed experimentally7–9, and spin superfluidity demonstrated
in recent experiments with sodium atoms13,14.

A major question that arises for multicomponent fluids—
quantum or classical—is the stability of spatially homogeneous
phases toward phase separation1. In cold atom experiments,
phase separation has been observed in numerous multi-
component systems, either in dual species Bose–Bose or
Bose–Fermi mixtures15–23 or for single-species quantum gases
with several hyperfine components, for example two-component
imbalanced Fermi gases with strong interactions24 or bosonic
mixtures of hyperfine states25–28. Reaching equilibrium in dual
species mixtures can be difficult if inelastic losses are strong, for
instance near a Feshbach resonance. In that context, metastable
phase-separated configurations were reported in ref. 20. Further-
more, in many cases the different components experience dif-
ferent trapping potentials due to different magnetic moments or
masses. A species- or spin-dependent trapping potential can
strongly influence phase separation in a trapped system, to the
point where it becomes the main factor deciding its occurrence
instead of interatomic interactions1,29.

In this work, we study the formation of spin domains in a
quasi-one-dimensional (1d) spinor Bose–Einstein condensate
(BEC) in an external, spatially uniform magnetic field without
any external magnetic force. The condensate is made from
sodium atoms carrying a hyperfine spin F= 1. The spin-
dependent interactions have an antiferromagnetic character that
leads to phase separation30–34. Early experiments observed spin
domains in a F= 1 sodium BEC immersed in a magnetic field
gradient around 10 mG/cm30,32,33. The magnetic force produced
by the gradient makes the mF= ±1 Zeeman components migrate
to opposite sides of the trap, with the mF= 0 component in-
between. Without applied gradient, only the miscible mF= ±1
phase was observed in ref. 30. References 35–37 pointed out the-
oretically that mF= 0 spin domains should also form without any
applied gradient. For a gas in a box, the domain should pre-
ferentially move to one side of the box to have only one interface,
with mF= 0 on one side of the box and mF= ±1 on the other. For
a trapped gas, the gain in interaction energy when the mF= 0
domain is located in the center of the trap outweights the ener-
getic cost of a second interface30,31,37.

Another important question besides the nature of the equili-
brium state is whether this state can be reached on a timescale
compatible with the lifetime of the atomic sample. References 32,33

studied relaxation in a strong applied magnetic field gradient,
observing that metastable configurations can persist for seconds.
Several experiments, mostly using F= 1 87Rb atoms with ferro-
magnetic interactions27,28,34,38–42, studied the dynamical forma-
tion of nonequilibrium spin domains after a quench. Reaching
an equilibrium state appears difficult for 87Rb atoms due to the
weakness of spin interactions43. Other experiments with F=
1 sodium atoms observed the formation of short-lived domains
across a quantum phase transition and studied their equilibration
dynamics44,45. However, heating due to the experimental
arrangement prevented to study the long-time regime and the
approach to the expected equilibrium state. The relation between

the formation of spin domains after a quench and the
Kibble–Zurek mechanism has also been discussed46.

The spin-1 quantum gas in our experiments is confined in a
spin-independent and highly elongated trap, realizing an effec-
tively 1d spinor gas where phase separation occurs only along the
weak axis. We take special care to compensate for magnetic field
gradients along that axis (canceling them below the mG/cm level)
to ensure the domains form in a negligible magnetic force. We
measure the equilibrium spatial distributions, which reflect (up to
interface effects that we quantify) the phase boundaries for sys-
tems with homogeneous particle density. We find qualitative
agreement but quantitative differences between the measured
equilibrium distributions and T= 0 mean-field theory. We
attribute these differences to thermal fluctuations, which play an
important role due to the low-energy scales associated with spin
ordering, and the low dimensionality. In the second part of the
article, we adress the issue of relaxation to equilibrium in a
gradient-free situation. We prepare a spin configuration far from
equilibrium and monitor how it relaxes to equilibrium. We
observe a slow relaxation on a time scale of several seconds, and a
spin dynamics that points to spin-mixing collisions as the
underlying relaxation mechanism.

Results
Experimental system. Our experiments are performed with a gas
of 23Na atoms trapped in a spin-independent optical trap with
frequencies ωx≪ ωy= ωz (Fig. 1a). With a total atom number
around N ≈ 104, the chemical potential of a single-component gas
at low temperatures is μ ~ 0.5ħωy. This implies a quasi-1d regime
where the transverse motion is almost frozen to the ground state
of the harmonic potential. The total atom number decays with a
measured 1/e lifetime around 50 s, presumably limited by residual
evaporation and three-body recombination.

We measure the linear integrated densities ρ1d;mF
ðxÞ ¼R

dydzρmF
ðrÞ along the weak axis of the trap after a short

expansion in a magnetic field gradient that separates all three
components mF= 0, ±1 by the Stern–Gerlach effect. Here and in
the following, ρmF

denotes the partial density of the Zeeman
component with magnetic quantum number mF= 0, ±1, ρ ¼P

mF
ρmF

the total density, and the subscript “1d” always indicates
linear quantities integrated over the transverse coordinates y, z.

Because of its quasi-1d character, the bosonic quantum gases
studied in our experiment are quasi-condensates47–52: density
fluctuations are essentially frozen, as for a true condensate, but
phase fluctuations along the weak axis of the trap can be
substantial at finite temperatures. These phase fluctuations do not
affect the thermodynamic properties of the mixture, but they
show up as density stripes in time-of-flight images49,51,52. The
density profiles reported in this article are averaged profiles over
many (typically several tens) repetitions of the experiment to
suppress the signature of phase fluctuations. Because of the very
weak expansion along x, the observed average distributions reflect
the linear in-trap density distributions to a good approximation.
We also take special care to cancel residual magnetic forces that
could affect the spatial distributions (see Methods). This is
reflected in the nearly symmetric linear distributions of the spin
components (Fig. 1b–d).

Brief review of ultracold spin-1 gases. Before discussing our
results, we first review the salient features of F= 1 spinor con-
densates3. At very low temperatures, Bose–Einstein condensation
leads to a macroscopic occupation of a single-particle state Ψ, a
superposition of all three Zeeman states behaving as a three-
dimensional vector. The equilibrium many-body state is
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determined by the competition between the interatomic interac-
tions and the Zeeman energy in an applied magnetic field. The
total mean-field energy at T= 0 takes the form3

E ¼
Z

dr Ψ�ĥΨþ g
2
ρ2 þ gs

2
m2

� �
: ð1Þ

Here, ĥ ¼ � �h2

2mNa
Δ � þV þ EZeeman is the single-particle Hamil-

tonian, mNa is the atomic mass, EZeeman is the Zeeman energy
discussed below, and V ¼ 1

2mNa½ω2
xx

2 þ ω2
yðy2 þ z2Þ� the trap-

ping potential. The partial densities are given by ρmF
¼ ΨmF

��� ���2,
and the total density by ρ ¼ P

m¼0;± 1 ρm. The magnetization
density m is defined by its Cartesian components
mα ¼

P
i;j Ψ

�
i Ŝα
� �

i;jΨj, with Ŝα (α= x, y, z) the standard spin-1

matrices3. We denote bym|| the component ofm along the axis of
the applied magnetic field B. For instance, for a spin-polarized gas
of atoms in mF= 1, the magnetization density is equal to the total
density, m||= ρ, while m||= 0 for atoms in mF= 0.

The two coupling constants g and gs characterize spin-
independent and spin-dependent interactions, respectively. For
sodium atoms in the F= 1 hyperfine manifold the spin-
dependent interactions are antiferromagnetic (gs > 0), a key
feature to observe phase separation30. Furthermore, the spin-
dependent term ∝gs, although much weaker than the dominant
spin-independent term gs=g � 0:036ð Þ, is essential to understand
spinor gases: This term lifts spin degeneracies left by g and
determines the magnetic properties at very low temperatures.

Spinor gases are typically immersed in a uniform magnetic
field B that shifts the internal energy levels by the Zeeman effect.
The interaction Hamiltonian conserves the total magnetization
Mjj ¼

R
drmjj. As a result, the constant of motion M|| should be

viewed as an experimental control parameter and not as a
dynamical variable. The conservation of M|| makes the first-order
Zeeman shift linear in B irrelevant to the equilibrium properties.
The relevant shift comes from the second-order or quadratic
Zeeman energy (QZE), EZeeman ¼ �q

R
drρ0 (up to a constant),

with q= αqB2 and αq ≈ h × 277 Hz/G2 for sodium atoms. Note

that the physics explored in this work does not depend of the
orientation of B with respect to the trap axis, only of its modulus |
B| determining the QZE. This conclusion only holds if
dipole–dipole interactions are negligible compared to short-
ranged van der Waals interactions.

Magnetic phase diagram and spontaneous phase separation.
We explore in Fig. 2a–c the equilibrium spatial structure of a
quasi-1d antiferromagnetic spin-1 Bose gas in a spatially uniform
applied field B. We set the total magnetization to M|| ≈ 0.5N and
vary the QZE q. We find that the spatial structure of the spinor
gas undergoes a marked change as q increases. For low q, we
observe a mixed phase where mF= ±1 domains coexist in the
same region of space in the center of the trap, surrounded by
magnetized mF=+1 regions near the edges of the cloud. Above a
critical QZE q1,exp ≈ h × 0.72(14) Hz (corresponding to a magnetic
field B1,exp ≈ 51(5) mG), the mF= 0 component appears and
develops into a domain expelling mF= ±1 from the central
region. The quoted experimental value of q1,exp is found by fitting
an empirical function—constant below q1,exp and growing as 1�
e�jq�q1;expj=Δq above—to the mF= 0 density in the trap center
(Fig. 2b—see also the Supplementary Fig. 5 that shows the
behavior of the reduced populations). Error bars denote the 90%
uncertainty level of the fit obtained by standard error analysis
assuming Gaussian noise. Furthermore, for q≳ h × 2 Hz (B≳ 85
mG), the mixed mF= ±1 region essentially disappears and the
spin-1 gas reduces to a binary mixture of mF= 0, +1. Our data
are summarized in Fig. 2a, where we plot the linear partial den-
sities ρ1d;mF

versus q. We observe similar behavior for other values
of the magnetization M||.

Besides the stripes due to phase fluctuations discussed earlier,
we also observe substantial position fluctuations of the spin
domains. For instance, in the examples shown in Fig. 1d, we find
that the center-of-mass of the mF= 0 component fluctuates by
~16 μm for B= 45 mG and by ~6 μm for B= 150 mG. We believe
that this behavior is due to thermal fluctuations of the domain,
and not to a technical artifact such as a magnetic gradient
fluctuating around the compensated value. The fluctuations of the
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Fig. 1 Spin domain formation in a quasi-1d spinor gas without applied magnetic force. a Experimental setup. A quasi-one-dimensional Bose–Einstein
condensate of spin-1 sodium atoms is immersed in a spatially uniform magnetic field B. We use the compensation coils to cancel stray magnetic field
gradients along the long axis of the cloud, thereby suppressing external magnetic forces. b–g Linear density profiles at different magnetic fields B. b–d show
the experimental profiles, obtained by averaging over about 100, 40, and 30 individual profiles, respectively. For low-applied magnetic fields, we find that
the Zeeman components mF= ±1 coexist, with mF= 0 atoms forming a broad, presumably thermal background. When the magnetic field increases, we
observe the formation and growth of a mF= 0 domain at the center of the trap. e–g show theoretical profiles at T= 0, calculated by solving numerically the
one-dimensional spin-1 Gross Pitaevskii equation (see Methods), in good agreement with the observed profiles. The average profiles are symmetric under
reflection, as expected in the absence of magnetic gradients along x. The trap frequencies are (ωx, ωy, ωz)= 2π × (3.1, 270, 270) Hz, the magnetization is
M||≈ 0.5N and the atom number is N≈ 104
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position of the spin domains and their possible use for low-
temperature thermometry will be explored in more detail in a
future publication.

Phase coexistence in homogeneous systems. The observed
characteristics of the phase diagram can be qualitatively under-
stood by considering first a uniform system in the thermo-
dynamic limit enclosed in a box of volume V. Three
homogeneous phases can be realized depending on the magne-
tization Mjj ¼ mjjV30,31,35,37,

Phase I or Unmagnetized phase: All atoms occupy the mF= 0
Zeeman state, with m||= 0 and ρ0= ρ,

Phase II or Partially magnetized phase: The components mF=
±1 coexist, with magnetization density 0 <m|| < ρ and ρ0= 0,

Phase III or Fully magnetized phase: All atoms occupy the
mF=+1 Zeeman state, with m||= ρ and ρ0= 0. Note that phase
II evolves continuously into phase III when the magnetization
increases.

The properties of the various phases are summarized in
Table 1. A completely homogeneous phase where the three
Zeeman components coexist is always unstable toward phase
separation35. For a partially magnetized system with 0 <M|| <N,
phase II is the only possible homogeneous phase compatible with
the conservation of the total magnetization M||. However, it
competes with inhomogeneous (phase-separated) configurations,
either I−II or I−III, depending on the value of q35.

A common choice in the literature30,35 is to describe the
evolution of the system for fixed ρ, m||, and with varying QZE q.
For low QZE, phase II minimizes the interaction energy and is the
stable equilibrium phase. As the QZE increases, a mixed
configuration where part of the system is in phase II and part
in phase I becomes energetically competitive. The preferred
equilibrium configuration can be determined by comparing the
energies of the competing possibilities (neglecting the energy cost
of the I−II interface),

δE ¼ EI�II � EII ¼ Vf0 ´
gsm

2
jj

2 1� f0ð Þ � qρ

" #
; ð2Þ

with f0 the fraction of the available volume occupied by phase I in
the mixed configuration. When q � q1 ¼ gsm

2
jj=ð2ρÞ, δE becomes

negative for f0= 0 and the homogeneous phase II becomes
thermodynamically unstable. Above q1, a phase I domain forms.
The equilibrium fraction of mF= 0 atoms grows as f0(q ≥ q1)= 1
− (q1/q)1/2. The conservation of the total magnetization M|| then
requires that the magnetization density in subregion II decreases
as mjj ¼ Mjj=½Vð1� f0Þ�. When m||= ρ (f0= 1−M||/N), one
obtains a phase-separated I−III mixture which remains the same
when ρ increases further. The sequence of transitions is illustrated
in Fig. 3a.

Anticipating the discussion of the trapped case within the
framework of the local density approximation (LDA), we now
adopt a slightly different point of view and consider the
properties of the system for fixed q and varying ρ, m|| (Fig. 3b).
It is convenient to chose a thermodynamic ensemble character-
ized by two thermodynamic potentials enforcing the conservation
of N and ofM||, respectively: the chemical potential μ and another
potential η (that could be called the thermomagnetic potential).
The equation of state of the various phases are given in terms of μ
and η in Fig. 3a. Phase II (respectively phase I) is the stable
equilibrium phase for densities below (resp. above) a critical value
defined by

ρqð Þ1¼
η2

2gs
¼

gsm
2
jj

2
; ð3Þ

where η= gsm|| in phase II. A second, continuous II–III transition

Table 1 Homogeneous phases of a spin-1 antiferromagnetic
BEC

Phase I (mF= 0) II (mF= ±1) III (mF=+1)

Spin density m||= 0 m|| < ρ m||= ρ
Energy
density

g
2 ρ

2 � qρ g
2 ρ

2 þ gs
2 m

2
jj

gþgs
2 ρ2

Equation of
state

μþ q ¼ gρ μ ¼ gρ, η=
gsm||

μþ η ¼ ðgþ gsÞρ

The table summarizes the thermodynamic properties of the three stable homogeneous phases
for uniform system in the thermodynamic limit
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Fig. 2 Formation of equilibrium spin domains without magnetic force. a–c Linear densities of each Zeeman component mF as a function of position for
increasing quadratic Zeeman energies q. Each line in the false color plots corresponds to an individual profile as shown in Fig. 1b. The arrows mark the
locations of the observed q1,exp and predicted qGP1 ; qGP2 critical quadratic Zeeman energies. dMagnetic transition forM||/N= 0.51(3). Evolution with q of the
normalized densities at the center of the trap. The gray lines show a piece-wise function constant below q1,exp and growing as 1� e�jq�q1;exp j=Δq above. We
obtain the quoted experimental values of q1,exp fitting this function to the experimental data for mF= 0. The quoted uncertainty correspond to a 90%
confidence interval assuming Gaussian noise and independent errors. The trap frequencies, magnetization, and atom number are as in Fig. 1
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occurs at m||= ρ*, with the characteristic density

ρ� ¼ 2q
gs

; ð4Þ

with the fully magnetized phase III realized for densities lower
than ρ*.

Spatial structure of a trapped system. The preceding discussion
is directly relevant to determine the spatial structure of a quasi-1d
gas in a harmonic trap where ρ, m||, and ρ0 vary with position. We
consider in this Section the purely 1d limit μ � �hωy where the
transverse motion is frozen in the transverse ground state of the
trap. We first perform our analysis within the LDA, and discuss
effects beyond the LDA at the end of this section. The equalities
established in the previous section remain valid substituting linear
densities ρ! ρ1d and g; gsð Þ ! g1d; g1ds

� �
, with effective 1d cou-

pling constants g1d; g1ds
� � ¼ g; gsð Þ ´ 1= 2πa2y

� �
. Here, ay ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h= mNaωy

� �r
is the transverse harmonic oscillator size. We keep

the same notation m|| for the integrated magnetization density
with a slight abuse of notation. The pure 1d limit is not strictly
realized in our experiment, as noted earlier. However, we have
evaluated corrections to this limit and found that they only
change marginally the conclusions (see Supplementary Fig. 4 and
Methods). As a result we stick to the 1d description in the core of
the article to keep the discussion as simple as possible.

In general, one can find three regions corresponding to the
three homogeneous phases. Moving from the edges to the center,
phase III first appears for low densities in a region where
0 	 ρ1dðxÞ 	 ρ�1d, followed by phase II where ρ�1d 	 ρ1dðxÞ 	 ρc2,

and eventually by phase I near the trap center where ρ1dðxÞ �
m2

jj
ρ�1d
.

The magnetization density m|| is zero in region I, equal to η=g1ds
and spatially uniform in region II, and equal to the total density
(and therefore nonuniform) in region III. A corresponding

trajectory in the ρ;mjj
� �

plane is shown in Fig. 3c.

For given N, M|| the condition for the appearance of phase I in
the center of the trap given in Eq. (3) can only be fulfilled for
sufficiently high QZE q. Similarly to the homogeneous case, this
leads to a first critical value q1 that corresponds to our measured
q1,exp. The magnetization density m|| in region II is uniform, but
not directly proportional to M|| as it was in the homogeneous
case. For a purely 1d system, we find following ref. 46 that m|| ≈
ρ1d(0)[1− (1− (M||/N))2/3]2 for q ≤ q1. Using Eq. (3), this gives
the LDA prediction for the first critical QZE46,

q1;LDA ¼ gsμ
2g

1� 1�Mjj
N

� �2=3
" #2

: ð5Þ

Using our experimental parameters (μ/h ≈ 120 Hz), we obtain q1,
LDA ≈ h × 0.3 Hz, substantially below the observed q1,exp ≈ h ×
0.72 Hz. The same conclusion holds when taking the deviations
from the purely 1d case into account (see Supplementary
Methods).

The quantitative difference between the observations and the
LDA prediction can be expected, as the latter completely neglects
the energy cost of the interface between two immiscible phases.
This cost comes from the balance between the kinetic energy,
increasing when the width of the interface decreases, and the
interaction energy, increasing when the interface spreads out due
to the increased overlap between the two components. The
interface energy is proportional to its width (typically several

times the spin healing length) ζ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2g= 2mNagsμð Þ

q

 7 μm

� �
,

and therefore not extensive and negligible for infinitely large
systems. However it can be significant in a gas of finite extent
as in our experiment where a typical cloud half-length is

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ= mω2

x

� �q

 100 μm.

These effects beyond the LDA can be explored at zero
temperature using the mean-field theory of spin-1 gases, which
takes the form of three coupled Gross–Pitaevskii equations. We
have solved these equations numerically to find the lowest energy
solution (see Methods). Examples of the density profiles that we
obtain numerically are shown in Fig. 1e–g. Using the same fitting
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procedure as for the experimental data in Fig. 2d, we find that the
first critical QZE predicted by the GP approach is
qGP1 � h ´ 0:36Hz. Therefore the discrepancy between the
measured and predicted first critical QZE is not resolved by
upgrading the theory from LDA to GP. A second critical QZE
qGP2 � h ´ 2Hz where mF=−1 disappears can also be identified
in the GP calculation. This is consistent with the experimental
results, although we find experimentally that the population of
the mF=−1 component decreases smoothly with q and does not
completely vanish at high q. This prevents us to clearly identify a
critical value q2,exp analogous to qGP2 .

To summarize, we used the LDA to describe the spatial
structure of a trapped gas in terms of the phase diagram of the
uniform system at T= 0. We were able to account qualitatively
for the observations, but found quantitative differences. In
particular, the measured critical field where spin domains appear
is higher than predicted. In the next section, we show that the
discrepancy between the measured q1 and the T= 0 prediction, as
well as the difficulty in identifying q2 in experiments, can be
understood qualitatively by considering the role of a finite
temperature of the sample.

Role of the thermal components. To compare the experimental
results with the prediction of the spin-1 GP theory in more detail
and discuss the role of a thermal component, we define an
effective size for each Zeeman component as the root-mean-
square (rms) radius restricted to the condensate region [−L, L],

RmF
¼ 1

N mF

Z L

�L
x2ρ1d;mF

ðxÞdx; ð6Þ

where the half-length L of the condensate is found by a
parabolic fit to ρ1d(x), and with a normalization factor
N mF

¼ R L
�L ρmF ;1d

ðxÞdx. We show in Fig. 4a–c the size RmF

computed from the measured profiles and from the calculated
ones. The size of mF=+1 increases only slightly with q, and stays
close to the T= 0 GP prediction for all values of q. In contrast,
both RmF¼0 and RmF¼�1 differ substantially from the T= 0 pre-
dictions. Focusing on mF= 0, the rms radius starts from a large
value at low q, then decreases above q1,exp before settling to an
asymptotic value above q≳ h × 2 Hz. The agreeement between
experiments and T= 0 theory improves with increasing q.

The differences between experiment and theory can be
explained qualitatively by thermal excitations. Low-energy
excitations of homogeneous spin-1 BECs have been studied
using the Bogoliubov approach2,3,53. In general, one expects for
q ≠ 0 that the Bogoliubov spectrum consists of three modes. For
low values of q � q1, where the (quasi-)condensate occupies the
mF= ±1 states, one spin mode essentially reduces to excitations
of atoms in the mF= 0 state with a gap Eg ≥ q2. In a Hartree–Fock
picture appropriate for kBT � gsρ, the effective potential seen by
the uncondensed mF= 0 atoms is almost flat (up to small terms
∝gs): The mean-field from the condensate in mF= ±1 cancels
almost exactly the trapping potential54,55. Uncondensed excita-
tions in mF= ±1 experience a different mean-field potential that
expels them from the trap center. As a result one expects that
below q1 the thermal component occupies mostly the mF= 0
Zeeman state. In Fig. 4d, we show a magnified view of the linear
density profiles for q < q1,exp. A subtantial population is present in
mF= 0 (in contrast to the T= 0 prediction, see Fig. 4e) and shows
a flat-top profile within the volume where the mF= ±1
condensate is present, in agreement with the Hartree–Fock
description. For a flat density confined within the condensate
region [−L, L], the rms radius is � ffiffiffiffiffiffiffiffi

1=3
p

L � 62 μm, in good
agreement with the measured RmF¼0 � 58 μm for low q.

This discussion, although qualitative, explains the increase of
the observed critical field from the T= 0 value. For q≳ q1, the
small domain expected at T= 0 does not actually form but rather
dissolve inside the existing mF= 0 thermal component. The
suppression of phase separation at finite temperatures has been
noted in a theoretical study of a two-component gas56, and is also
consistent with our previous experimental work on three-
dimensional spin-1 gases57. We are not aware of theoretical
studies of antiferromagnetic spin-1 gases in 1d that can explain
our observations quantitatively. Our experiments could be
modeled using classical field methods (see ref. 58 for a review)

0

0.1

0.2

0.3

R
el

at
iv

e 
po

pu
la

tio
ns

0.3 0.5 0.7 2

d e
20

15

10

5

0
–100 0 100

×0.25

mF = +1

mF = +1 mF = 0

mF = 0

mF = 0

mF = –1

mF = –1

mF = –1� 1
d,

m
F
 a

x 
/ N

 (
×

10
–3

)
R

m
F
 =

+
1 

(μ
m

)
R

m
F
 =

 0
 (μ

m
)

R
m

F
 =

 –
1 

(μ
m

)
Quadratic Zeeman energy, q / h (Hz)

1
q / h (Hz)x (μm)

GPE:

B = 30 mG
q / h = 0.25 Hz

q1,exp
65

55

45

60

40

20

65

45

25
3 4 5 6 7 9 1 2 3 4 5 6

b

a

c

8
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noise (total population below ~700 atoms). We ascribe the differences
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substantial thermal component. d Density profiles of the mF= 0 (solid,
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and perhaps used to benchmark such methods. To ease such
comparison, we have measured the temperature of the thermal
component by fitting the equation of state obtained from the
wings of the linear profiles59 to a Hartree–Fock model of our
quasi-1d gas60. Here, the wings correspond to the nondegenerate
region of the cloud where the one-dimensional phase space

density ρ1dλT ≤ 1, with λT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�h2=ðmNakBTÞ

q
the thermal

De Broglie wavelength and kB the Boltzmann constant. We find
T ≈ 30–40 nK without any obvious dependence on q. Note that
the measured temperature is substantially higher than the spin-
dependent energies η, q explored in this work. Hence, even if
quantum and thermal fluctuations probably lead to qualitatively
similar effects on the domain formation, we expect the latter to be
dominant in our experimental conditions.

Long-time relaxation of out-of-equilibrium spin textures.
Having characterized the equilibrium properties of a spin-1
antiferromagnetic gas, we now turn to nonequilibrium behavior.
We investigate how an initial, highly nonequilibribrium config-
uration relaxes to a final equilibrium configuration. The experi-
ment is performed at a uniform bias field B= 600 mG (q/h ≈ 100
Hz), well above qGP2 . We prepare the system at a magnetization
M|| ≈ 0.66(2)N using the same procedure as before, except for an
applied magnetic potential Vmag= gFmFμBb′x along x controlled
by an applied magnetic gradient b′ (μB is the Bohr magneton and
gF=−1/2 the Landé g-factor). Using b′= 24 mG/cm, the net
effect of the combined action of the magnetic force and of spin-
dependent interactions is to pull the mF=+1 Zeeman compo-
nent to the right side of the cloud while pushing the mF= 0
component to the left one. Atoms in mF=−1 are purely thermal
and barely discernible in this regime.

We remove the applied magnetic force at t= 0, leaving the
spin-1 gas in a purely optical potential independent of the
Zeeman state but also in a highly nonequilibrium configuration.
The first consequence is an excitation of the center-of-mass (c.o.
m.) motion of the cloud that persists up to 20 s, the longest time
we explored (see Fig. 5a). This motion is common-mode to the
mF= 0 and +1 components and occurs at the expected dipole
mode frequency ωx. In contrast, the relative positions of the two
Zeeman components do not display any detectable oscillation
and evolve on a much longer time scale than the axial period,
as pictured in Fig. 5b. To quantify the relaxation we introduce
the c.o.m. displacements

Δ�xmF
¼ 1

NmF

Z
x � �xð Þρ1d;mF

ðxÞdx; ð7Þ

of the mF=+1 and mF= 0 components from the center of mass
�x ¼ ð1=NÞR xρ1dðxÞdx of the whole cloud. Here, NmF

¼R
ρ1d;mF

ðxÞdx is the total population of the mF component. We
report in Fig. 5c the relative displacement of mF= 0, which
remains mostly constant for several periods of the c.o.m.
oscillations before decaying to zero within a timescale of ~4 s.

The profiles shown in Fig. 5b indicate that this relaxation
occurs progressively, with the mF= 0 component penetrating
slowly into the mF=+1 majority component. This behavior
could be surprising for a truly immiscible binary mixture, where
the repulsion between the species acts as an effective barrier
preventing relaxation. Figure 5d shows that the mF=−1
component, altough weakly populated, plays an important role
in the relaxation process. The relative populations of the
Zeeman states evolve on the same time scale as the relaxation,
with a decrease in the population of mF= 0 and a roughly
equal increase in the populations of mF= ±1. This indicates

that spin-changing collisions of the form 2 × (mF= 0)! (mF=
+1)+ (mF=−1) are involved in the mechanism enabling mF= 0
atoms to cross the effective energy barrier due to spin-dependent
interactions.

The process is most likely dominated by excitations residing
initially in the inferface between the mF= 0 and mF=+1 regions,
and seeding the long-time dynamics33. The effective mean-field
potential experienced by atoms in mF=−1 inside the volume of
the mF=+1 domain is not exactly flat but slightly attractive,
Veff ðxÞ= 1

2MNax
2 þ gρðxÞ− gsρþ1ðxÞ � μ� gsρþ1ðxÞ. Atoms in

mF=−1 created in the interface by the process 2 × (mF= 0) →
(mF=+1)+ (mF=−1) can thus freely migrate toward the trap
center, where they can recombine with mF=+1 atoms to
generate mF= 0 atoms by the inverse process. This mechanism
effectively enables mF= 0 atoms to crawl through the otherwise
impenetrable mF=+1 component. This mechanism could be
coherent (preserving the initial relative phase), but need not be.
Given that T � gsρ, we believe it is likely that the relaxation
process is seeded by the thermal component initially present near
the interface.

A recent experiment by Eto et al.61 appears similar at first sight,
but reports drastically different results: bouncing of the spin
components against each other in the strongly immiscible regime,
followed by relaxation in a few hundreds of ms to a highly excited
state with large kinetic energy. We believe the mechanism at
play in our experiments is different from the ones studied in
ref. 61, where the experimental parameters differ by orders of
magnitude. Eto et al. apply a bias field of 11G which supresses
completely spin-changing collisions (we use 600 mG), and a
gradient of 900 mG/cm (we use 10 mG/cm). It is then not really
surprising that we do not observe the bouncing motion, nor the
formation of stripes reported by Eto et al. in the strongly
immiscible regime.

Figure 5e displays histograms of the c.o.m. of the mF= 0, +1
components as a function of the relaxation time. We observe a
gradual change over time from a distribution peaked near the
cloud edges to a distribution peaked near the cloud center. The
distribution of x0 appears smooth and single-peaked at all times.
These observations rule out a scenario where relaxation is
explained by a macroscopic quantum tunneling of the mF= 0
component. In that case, we expect at intermediate times that the
mF= 0 component is in a superposition of two domains, one
localized on the left side of the mF=+1 cloud and one localized
near its center. This would lead to a bimodal spatial distribution
for which we find no evidence.

Discussion
Magnetically ordered many-body systems characterized by non-
uniform order parameters are plentiful. The simplest example
corresponds to antiferromagnetism of localized spins (here
the adjective localized means that the mobility of the spin-
carrying particles is irrelevant, and that the physics reduces to
a pure spin problem). A second, richer case occurs in itinerant
magnetism when the spin-carrying particles are mobile. Stripe
phases of electrons in strongly correlated materials are prominent
examples62. These materials are hole-doped antiferromagnets,
which organize for certain doping levels in antiferromagnetic
domains separated by nanometer-size conducting domain
walls. This structure is believed to arise from the competition
between the kinetic energy of the holes and the exchange inter-
actions between the spins. This example illustrates that one
can expect (and often finds) nonuniform phenomena in
the magnetism of itinerant quantum particles. In this article, we
have investigated the formation and relaxation of inhomogeneous
spin domains in a quasi-1d spin F= 1 Bose gas with
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antiferromagnetic interactions. The low-field configuration is a
mixed phase of the mF= ±1 components stabilized by anti-
ferromagnetic spin-exchange interactions. An applied uniform
bias magnetic field favors the appearance of mF= 0 atoms
through the QZE shift. The two influences compete agains each

other, and this competition leads to a critical value of the QZE
above which mF= 0 atoms appear and spontaneously organize in
a spin domain near the trap center. We experimentally measured
the critical value q1,exp where a mF= 0 domain appears and
characterized the phase diagram in detail.
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We found that the T= 0 mean-field theory of spin-1 Bose
gases describes qualitatively well our observations. However,
there exist discrepancies between the predicted and measured
values of the critical fields. The finite temperature of our samples,
although very low, could explain these discrepancies. Indeed,
energy scales in spinor gases are naturally low in comparison to
the natural scale set by the chemical potential of the BEC.
Therefore, we expect that thermal fluctuations are able to sup-
press the formation of spin domains near the transition where
different spin configurations are close in energy. The quasi-1D
nature of our experimental system may further enhance thermal
effects.

Finally, we studied the nonequilibrium dynamics and relaxa-
tion of spin domains in the phase-separated, high-q regime.
In contrast to the miscible regime14,63, we observe no spin–dipole
oscillations in the phase-separated regime. Instead we find
that spin dynamics is frozen on short time scales on the order
of the trap period, and undergoes slow relaxation toward
an equilibrium configuration on long times scales of several
tens of axial trap periods (about 10 s). We found evidence
that relaxation takes place through spin-changing collisions,
enabling atoms from immiscible Zeeman components to pass
through the effective barrier created by mean-field interactions
with the other component. Our results could be explained by
a thermally-assisted process where a scarcely populated, but
not empty thermal component in mF=−1 seeds the relaxation
dynamics. We found no clear evidence of macroscopic quantum
tunneling.

Methods
Optical dipole trap. Our experiments start with a spinor gas of ultracold 23Na
atoms with a fixed total magnetization M|| and immersed in a uniform magnetic
field B. The spinor gas is held in a crossed dipole trap (CDT) created at the
intersection of two Gaussian beams propagating along the x- and z-axes. We
prepare a normal gas with a well-defined magnetization far above the critical
temperature using spin-distillation in an applied magnetic field gradient at the
beginning of the evaporation64,65. We then cool the sample to degeneracy using
standard evaporative cooling, and obtain a three-dimensional condensate in the
CDT with >90% condensate fraction. We transfer the condensate to the 1d trap by
adiabatically turning off one of the dipole beams in 5 s (see Supplementary Fig. 1
and Methods for more details).

Stern–Gerlach imaging. We measure the density profiles of each Zeeman com-
ponent by removing suddenly the trapping potential and letting the cloud expand
for a time-of-flight (t.o.f.) of t= 8 ms in a magnetic field gradient (applied only
during the t.o.f.). We extract linear density profiles from the two-dimensional
absorption images (Supplementary Methods and Supplementary Fig. 2). Owing to
the large trap anisotropy, the expansion is essentially in the radial direction (At T
= 0, the condensate expands along its weak axis by a factor ≈10−4 66). The finite
width ζ of the spin domains entails a finite quantum confinement energy. When
the gas is released from the trap, the domains are therefore expected to expand at a
speed ~ħ/(mNaζ) 33. However, in our experiments we have ħt/(mNaζ) ≈ 1–2 μm≪ ζ,
so that we can safely neglect this expansion.

Magnetic field generation. We generate uniform magnetic fields using three
pairs of bias coils aligned along the x ± y and z-directions. We calibrate the mag-
netic fields using radio-frequency spectroscopy, with a typical resolution of ~1 mG.
We observe magnetic field fluctuations with δB ~ 3mG root-mean-square (r.m.s.)
amplitude and with a typical time scale of several tens of seconds. These
fluctuations, coming from a nearby subway line, are along the vertical z-axis,
orthogonal to the applied bias field B that lies in the x–y plane. The impact of
magnetic field fluctuations is minimized by working with applied fields B ≥ 30 mG.
The resulting r.m.s. uncertainty on q is then below δq ~ (δB/B)2 ~ 1%.

Magnetic force cancellation. Our experiments are performed after carefully
canceling stray magnetic field gradients (thereby canceling magnetic forces) along
the weak axis of the trap. Stray gradients have at least two origins: (i) the residual
ambient gradients (arising from inhomogeneously magnetized elements around the
experiment, power supplies, etc…) and (ii) the imperfections of the bias coils that
produce slightly inhomogeneous fields.

We cancel the residual magnetic force along x by two methods, either by
applying a compensation gradient along the weak axis of the trap (more

appropriate at low bias fields where effect (i) dominates), or by choosing the
direction of the applied field (more appropriate at large bias fields where effect
(ii) dominates) [see Supplementary Methods and Supplementary Fig. 3 for more
details]. We are able to cancel magnetic gradients to better than a few 100 μG/cm
along the weak trapping direction x. Residual magnetic forces along the y- and
z-directions are negligible due to the stronger confinement.

Spin-1 Gross–Pitaevskii equations. In the 1d limit, the complete BEC wave-
function can be written as Ψ= ϕ⊥(y, z)ζ(x) where ϕ⊥(y, z) denotes the transverse
harmonic oscillator ground state. The one-dimensional spin-1 Gross–Pitaevskii
equation can be written as a set of three equations for each Zeeman component, of
the form

i�h
∂ζþ1

∂t
¼ Lþ g1ds ρ1d;0 þmjj

� �h i
ζþ1 þ g1ds ζ20ζ

�
�1; ð8Þ

i�h
∂ζ0
∂t

¼ Lþ g1ds ρ1d � ρ1d;0

� �h i
ζ0 þ 2g1ds ζ�0ζ�1ζþ1;

i�h
∂ζ�1

∂t
¼ Lþ g1ds ρ1d;0 �mjj

� �h i
ζ�1 þ g1ds ζ20ζ

�
þ1;

with L ¼ � �h2

2MNa
∂2x þ 1

2MNaω
2
xx

2 þ EZeeman þ g1dρ1d the spin-independent GP

operator and mjj ¼ ρ1d;þ1 � ρ1d;�1 the magnetization density.
We propagate Eq. (8) in imaginary time to obtain the lowest energy state using

a split-step method. The evolution due to the kinetic energy, local spin-
independent and local spin-dependent terms are calculated separately by
exponentiating the corresponding operator. This can be done analytically, either in
the momentum or position basis. Then the total evolution at each time step is
approximated by multiplying all three evolution operators neglecting their
commutation properties (first-order Trotter expansion). We have studied the
influence of the time step carefully to make sure the higher-order terms are indeed
negligible.

We use harmonic oscillator units where time is rescaled by ω�1
x , energy by ħωx,

and lengths by ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h= mNaωxð Þp

. For the data shown in this paper, we typically
use a grid containing N= 64 points and toal length 30ax, an imaginary time step
ωxδt= 2 × 10−5 and we compute the imaginary time evolution up to ωxT= 103.
We use dimensionless coupling constants Ng1d ¼ Ng=ð2π�hωxa

2
yaxÞ � 378:9 and

g1ds =g1d ¼ 0:0357.

Data availability
The data that support the findings of this study and numerical programs used for data
analysis are available from the corresponding author upon reasonable request.
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