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Abstract
Motivation: Matrix factorization (MF) methods are widely used in order to reduce dimensionality of 
transcriptomic datasets to the action of few hidden factors (metagenes). MF algorithms have never 
been compared based on the between-datasets reproducibility of their outputs in similar independent 
datasets. Lack of this knowledge might have a crucial impact when generalizing the predictions made 
in a study to others.
Results: We systematically test widely-used MF methods on several transcriptomic datasets 
collected from the same cancer type (14 colorectal, 8 breast and 4 ovarian cancer transcriptomic 
datasets). Inspired by concepts of evolutionary bioinformatics, we design a novel framework based 
on Reciprocally Best Hit (RBH) graphs in order to benchmark the MF methods for their ability to 
produce generalizable components. We show that a particular protocol of application of Independent 
Component Analysis (ICA), accompanied by a stabilization procedure, leads to a significant increase 
in the between-datasets reproducibility. Moreover, we show that the signals detected through this 
method are systematically more interpretable than those of other standard methods. We developed a 
user-friendly tool BIODICA for performing the Stabilized ICA-based RBH meta-analysis. We apply 
this methodology to the study of colorectal cancer (CRC) for which 14 independent transcriptomic 
datasets can be collected. The resulting RBH graph maps the landscape of interconnected factors 
associated to biological processes or to technological artifacts. These factors can be used as clinical 
biomarkers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral 
microenvironment. Their intensities in different samples shed light on the mechanistic basis of CRC 
molecular subtyping.
Availability: The RBH construction tool is available from http://goo.gl/DzpwYp 
Contact: laura.cantini@curie.fr andrei.zinovyev@curie.fr 
Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction 
Large-scale cancer genomics projects, such as The Cancer Genome Atlas 
(TCGA) and the International Cancer Genome Consortium (ICGC), are 
generating an overwhelming amount of transcriptomic data. These data 
offer us the unprecedented opportunity to understand cancer, its onset, 
progression and response to treatment. To deal with the high-
dimensionality of transcriptomic data, Matrix factorization (MF) 
approaches, reducing high-dimensional data into low dimensional 
subspaces, are widely employed (Stein-O’Brien et al., 2017; Kim and 
Tidor, 2003). Given the natural representation of a transcriptomic dataset 
as a matrix X (n x m) with n genes in the rows and m samples in the 
columns, MFs decompose X into the product of an unknown mixing 
matrix A (n x k) and an unknown matrix of source signals S (k x m). In 
the following, we denote the columns of A as “metagenes” and the rows 
of S as “metasamples”. The rationale behind MF usage in biology is that 
the state of a biological sample, such as a tumor sample, is determined 
by multiple concurrent biological factors, from generic processes such as 
proliferation and inflammation to cell-type specific ones. Transcriptomic 
data can be thus interpreted as a complex mixture of various biological 
signals convoluted with technical noise of various kind (Avila Cobos et 
al., 2018; Brunet et al., 2004). 

The MF methods most widely applied to trascriptomic data are Principal 
Component Analysis (PCA), Non Negative Matrix Factorization (NMF) 
and Independent Component Analysis (ICA) (Biton et al., 2014; Ma and 
Dai, 2011; Devarajan, 2008; Alter et al., 2000). We will here consider 
the original NMF algorithm by Lee and Sung (Lee and Seung, 1999; 
Ochs et al., 1999), while for ICA three variants of the same fastICA 
algorithm (Himberg and Hyvarinen; Hyvarinen, 1999) will be 
considered: “Stabilized ICA (sICA)” the protocol previously proposed 
by us that maximizes kurtosis of metagenes and searches for stable 
components (Biton et al., 2014; Kairov et al., 2017); “ICA” that 
maximizes kurtosis of metagenes without stabilization and “ ICA' ” the 
application of ICA that maximizes kurtosis of metasamples (see Supp 
Text 1). A component output of any of these MF methods potentially 
recapitulates a biological signal that can be rediscovered in another 
independent dataset of the same kind (e.g., in independently profiled 
cohort of the same cancer type). If this is the case, we call such a 
component reproducible. Here we will evaluate the reproducibility of the 
above MF methods, i.e. their capability to identify many reproducible 
components. Note that this definition is different from other metrics of 
MF reproducibility, such as subsampling and cross-validation (Molinaro 
et al., 2005). Surprisingly, little is known about the level of between-
dataset reproducibility of various MF methods when applied to 
transcriptomic data. Lack of this knowledge might have a crucial impact 
when extrapolating predictions made in a particular study to future 
transcriptomic studies of the same kind.

In this manuscript we developed a framework for assessing the 
reproducibility of MF methods. The metrics is based on exploiting 
Reciprocal Best Hit (RBH) relations between MF metagenes and 
quantifying structural properties of the RBH graph. Given its ultimate 
aim, our framework evaluates the reproducibility of components 
independently identified from multiple datasets, differently from multi-
level factorizations that co-factorize multiple datasets as a whole 
(Argelaguet et al., 2018; Tenenhaus et al., 2017).

We applied our framework based on the RBH graph to compare the 
performances of various MFs (PCA, NMF, sICA, ICA and ICA’) in 

three biological contexts: colorectal, breast and ovarian cancer. We 
found marked differences in terms of reproducibility among the various 
MFs. Stabilized ICA (sICA) remarkably outperformed alternative 
approaches and it valuably reconstructed the landscape of factors 
shaping cancer transcriptomes.

2 Methods

2.1 Biological contexts chosen for the comparison 
The large number of carefully annotated transcriptomic datasets 
available in cancer biology and the wide heterogeneity of these data are 
the reasons that motivated our choice toward using cancer trascriptomes 
for assessing MF reproducibility. We here use colorectal cancer (CRC), 
breast cancer (BRCA) and ovarian cancer (OVCA) for our comparison. 

CRC and BRCA have been chosen as being among the most studied 
cancers, especially in the context of transcriptional subtyping (Guinney 
et al., 2015; Parker et al., 2009). We employed 14 independent CRC 
datasets and 8 BRCA datasets.  In these two test cases both the profiling 
platform and the cohort of patients are changing across the various 
datasets. In addition, we chose OVCA to test to which extent the type of 
profiling platform affects the reproducibility of the different MF 
methods. Four TCGA ovarian cancer datasets profiled with four different 
platforms: Affymetrix U133, Agilent and Affymetrix HuEx, plus 
RNAseq (Bell et al., 2011) have been used. The 418 samples common to 
all four datasets have been used for our analysis. The samples have been 
organized into four datasets each of them associated to one of the four 
platforms and composed of the same samples. See Table S1 for data 
availability.

2.2 Computational framework for metagene comparison 
Fig.1. Schematic 
representation of MF 
comparison framework.

We here introduce a 
framework to 
compare four 
standard MF 
algorithms: PCA, 
NMF, ICA, ICA' and 
sICA (see Figure 1, 
Supp Text 2). First, 
the number k of 
components in which 
the expression matrix 
is decomposed should 
be chosen for all the 
compared MFs. We 
overdecomposed the 
matrices and we fixed 
the same number of 
components for all 
the MFs (see Table 
S1). 
Overdecomposition 
here stands for the 
fact that the selected 
number of 
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components is taken larger than the estimation of the effective 
transcriptome dimension. 

In our previous work, we have shown that in case of ICA, 
overdecomposition is not detrimental for the interpretability of the 
resulting components (Kairov et al., 2017). The same is true for PCA, 
since the higher-order components do not alter the lower order ones. For 
NMF the number k of components in which a dataset should be 
decomposed is frequently decided by looking at the last local maximum 
of the cophenetic coefficient, summarizing the results of a consensus 
over different runs of the algorithm (Brunet et al., 2004). We thus chose 
to also compare our four algorithms against the version of NMF whose 
number of components is chosen based on the cophenetic coefficient, 
called in the following “cophNMF”. Such comparison, reported in Table 
S2, did not affect our conclusions. 

As shown in Figure 1, our framework is composed of 4 main steps to be 
separately performed for each MF algorithm. The only inputs required to 
perform the comparison are as many independent transcriptomic datasets 
as possible for the same biological context. At step 1, each dataset is 
decomposed into a set of metagenes and metasamples. At this step, when 
the variants of ICA and PCA are applied to the input datasets we first 
perform a centering step, i.e. for each gene expression value we subtract 
its average expression across all samples. This is a standard procedure 
aimed at avoiding to capture the signal connected to the genes’ average 
expression, i.e. the vector containing the mean gene expression across all 
the samples of the dataset, as first component. Of note, the centering 
could not be applied to NMF due to the non-negativity constraint. In step 
2, the graph of reciprocal correspondences between the metagenes 
obtained from the various independent datasets is reconstructed. 

Given the two sets of metagenes {M1 … Mk} and {N1 … Nk} obtained in 
step 1 from the trascriptomic datasets Tm and Tn, respectively. We here 
define Mi and Nj as a Reciprocal Best Hit (RBH) iff

. (1)max (𝑐𝑜𝑟(𝑀𝑖 , {𝑁𝑡}𝑘
𝑡 = 1)) = max (𝑐𝑜𝑟({𝑀𝑡}𝑘

𝑡 = 1 , 𝑁𝑗 ))

The procedure (1) is then repeated for all couples of available 
trascriptomic datasets Tm and Tn and the obtained RBHs are merged into 
a single graph whose nodes are the metagenes of all transcriptomic 
datasets and whose links correspond to their RBHs. Here and in the 
following we will refer to this graph as “RBH graph”. This name is 
chosen in analogy with the namesake common definition of orthology in 
comparative genomics (Tatusov et al., 1997; Bork et al., 1998). The idea 
behind our approach is thus to identify orthologous biological factors 
across different transcriptomic datasets. The RBH approach is free of 
necessity to define a threshold as opposed to correlation graph 
construction procedure and it leads to relatively sparse graphs. In Figure 
S1 we compare the number of RBHs and the dimension of the largest 
connected component of the correlation graph for various thresholds vs. 
the RBH network in all the MFs. The RBH construction tool is available 
from http://goo.gl/DzpwYp as part of “ICA for Big Omics Data 
(BIODICA)” tool (see Supp Text 3).

Following the reconstruction of the RBH graph, we observed that the 
components detected by NMF were strongly biased toward the genes’ 
average expression (see Figure S2), i.e. the vector containing in each row 
the average expression of a gene across all the samples of the dataset. As 
a further standardization, we thus regressed each metagene over the 
genes’ average expression of the associated dataset and we used the 
resulting residues in place of the original metagenes to construct the 
RBH graph. Alternative normalizations of the datasets before the 
application of NMF have been also considered, but they appeared 
detrimental for the reproducibility of its metagenes (see Supp Text 4). 

At step 3, differently from previous works (Biton et al., 2014; Kairov et 
al., 2017), communities are detected in the RBH graph using the Markov 
Clustering algorithm (MCL) (Enright et al., 2002). Such communities 
reflect the existence of factors strongly reproduced across different 
transcriptomes. Finally, at step 4 different objective measures are 
computed to compare the results obtained by the various MFs. The idea 
in this last step is to evaluate the performances of the different 
algorithms focusing on measures that are of practical interest to 
researchers when analyzing high-throughput data. In particular, we 
evaluated the ability of the different MFs to (i) produce components 
reproducible in at least one other dataset; (ii) determine widely 
reproducible components; (iii) derive an RBH graph characterized by a 
tight community structure and (vi) identify components biologically 
meaningful and specific, i.e. accurately and univocally predicting known 
biological signals. 

In CRC, we also employed our framework to compare the various MFs 
to Regularized Generalized Canonical Correlation Analysis (RGCCA), 
which co-factorizes all the datasets together by explicitly maximizing 
inter-dataset correlations (Tenenhaus et al., 2017). To this end, we had to 
restrict the number of genes to 11300 common to all datasets, which is 
not needed in case of independent MF applications. This evaluation of 
the performances of RGCCA is aimed at exploring the consistency of 
our framework, that should in this case achieve the maximal match 
between components and thus the maximal scores in criteria (i)-(iii). 
Finally, we characterized the communities obtained in the RBH graph of 
sICA using the available biological and clinical annotations as described 
in Supp Text 5.

3 Results 
Fig.2. RBH graphs of widely-used MFs built for 14 independent CRC datasets. 
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Once steps 1 and 2 have been performed, as discussed in the Methods 
section, we obtained the RBH graphs visualized in Figure 2. The nodes 
of these graphs are the metagenes obtained by the different MFs while 
the links correspond to the presence of an RBH. The topological 
structure of the obtained graphs is substantially different. The RBH 
graphs of sICA and ICA are characterized by tight communities and less 
disconnected nodes in respect to the others. NMF has some areas of 
densely connected nodes but these are less pronounced in respect to 
those of sICA. The graph of PCA reflects the hierarchical structure of the 
principal components (PC). A densely connected area can be indeed 
identified in the lower part of the graph, where the first, second and third 
PCs are localized. This topological organization is lost when going 
toward higher-order components. Finally, the graph of ICA' has a 
surprisingly divergent structure in respect to the one of sICA, with a 
much lower number of tight communities. This last result suggests that 
the protocol used to apply ICA has a strong impact in the obtained RBH 
graph. Similar conclusions on the RBH graph topology have been made 
when we tested the effect of subsampling onto MFs applied to the same 
dataset (Supp Text 6 and Figure S3). 

The qualitative characteristics here discussed will be extensively tested 
in the next sections, devoted to the comparison of the measures defined 
as step 4 of our framework.

3.1 Reproducibility in at least one other dataset
Having multiple independent transcriptomic datasets from the same 
biological condition (in our case CRC, BRCA or OVCA), we can expect 
to have similar biological factors captured by the MF in at least few 
datasets. As a consequence, a metagene should find a RBH in at least 
one other dataset. This may not happen if the metagene captures a 
technical dataset-specific bias or a rare subpopulation of tumors uniquely 
present in one dataset or due to the inability of an MF method to 
generalize to other cohorts.

To measure this aspect, we evaluated the number of disconnected 
nodes/metagenes in the results of the various MFs (Supp Text 2). As 
shown in Figure 3, sICA, with 65, 224 and 36 disconnected metagenes in 

CRC, BRCA and OVCA, respectively, outperforms other approaches 
(see Figures 3A, S4A, S5A). For example, NMF and PCA had 
respectively 129 and 173 disconnected nodes in CRC. Finally, cophNMF 
obtained 12% of disconnected nodes against the 6.7% of sICA (see Table 
S2). As expected, RGCCA-based RBH graphs has less disconnected 
components than any other MF method independently applied to each 
dataset (Figure S6A).

3.2 Wide across-datasets reproducibility 
To evaluate the reproducibility of the metagenes output of the different 
MFs we computed the number of links in their RBH graphs (Supp Text 
2). For example, working with 14 CRC datasets, in an optimal scenario a 
metagene should find 13 RBHs corresponding to the metagenes that 
reflect the same biological factor in the remaining 13 datasets. In reality, 
this is not always the case given that a biological factor can be 
underrepresented in some datasets due to the choice of the samples or to 
their number. However, higher is the number of RBHs lower is the 
deviation of the performances of a MF approach from the optimal 
scenario. As shown in Figures 3B, S4B and S5B sICA, with 2900 RBHs 
in CRC 1605 in BRCA and 390 in OVCA, strikingly outperforms 
alternative approaches. In CRC, for example, sICA identified 
approximately 1000 RBHs more  than the other MFs, including also 
cophNMF (see Table S2). At the same time, RGCCA-based RBH graph 
for CRC was characterized by 3730 RBH links (Figure S6B). 
Interestingly, sICA, without forcing the correlation between the 
components of different datasets, provides only 830 RBHs less 
(corresponding to 22% less) than RGCCA.

Fig3. Comparison of MFs in CRC. Different measures are here plotted for the 
comparison of the various MFs: Stabilized ICA (red), ICA (dark green) ICA' (green), 
NMF (blue) and PCA (violet).

3.3 Tightness of the community structure in the RBH graph
Concerning the topological structure of the RBH graph, the best MF 
algorithm should derive a cluster-graph like graph, i.e. a disjoint union of 
tight communities. Indeed as discussed above an optimal MF algorithm 
should find a component for each relevant biological factor underlying 
the transcriptome. Working with various transcriptomic datasets obtained 
from the same disease (for example CRC), those components associated 
to the same biological factor should cluster together forming a tight 
community. The final structure of the optimal RBH graph should be thus 
composed of various tight communities sparsely connected one to each 
other.  

In order to verify how the RBH graphs resulting from the different MF 
approaches are close to this optimal topology, we considered four well-
established measures (Supp Text 2): (i) clustering coefficient; (ii) 
modularity; (iii) number of communities and (iv) average size of the 
communities. The first two are standard measures in network theory for 
evaluating how evident is the presence of communities in a graph 
(Fortunato, 2010). The average size and the number of the communities 
are instead used to evaluate how consistently each MF algorithm merges 
components obtained from different datasets. From the results reported 
in Figures 3C-F, S4C-F and S5C-F the superior performances of sICA 
with respect to alternative approaches can be clearly appreciated. 
Especially the clustering coefficient and modularity are strikingly higher 
in sICA in respect to its alternatives. Of note, concerning the number of 
communities, in CRC NMF performs as sICA and, in OVCA, PCA 
outperforms sICA. However while PCA detects more communities than 
sICA in OVCA, these are smaller and in two cases they merge 
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metagenes coming from the same dataset. As shown in Table S2, also 
concerning the topology of the RBH graph, the performances of NMF do 
not improve if considering cophNMF. RGCCA-based RBH graph for 
CRC was characterized by tighter communities as expected (Figure S6C-
F).

3.4 Biological content and specificity of the components
Finally, we checked if the communities identified in the RBH graph were 
effectively associated to specific biological factors. In particular, we 
tested the ability of the communities of the different MFs in predicting 
three biological factors that are expected to influence cancer 
transcriptomic profiles: patient gender, proliferation status of a tumor 
and the level of stromal infiltration. For this test we performed a 
regression analysis of the metasamples obtained from the different MFs. 

The gender annotation is composed of discrete values M/F obtained from 
the available clinical annotations: in this case, we thus performed a 
logistic regression. Proliferation was evaluated averaging the expression 
of the genes belonging to a well-known proliferation signature (Giotti et 
al., 2017) and it is thus a vector of continuous weights. Finally, stromal 
infiltration was estimated using the average expression of the genes 
belonging to the stromal signature of ESTIMATE tool (Yoshihara et al., 
2013). 

The results of this first test are summarized in Figures 3G-I, S4G-H and 
S5G-H. We focused on the community that predicted the best the 
specified biological signal. The community was selected as the one with 
the highest percentage P of metasamples whose regression on the 
biological signal was significant. We used three parameters commonly 
used to evaluate the quality of a linear regression: R2, Bayesian 
information criterion (BIC) and Akaike's information criterion (AIC). 
We finally define a score to combine them in a single value as (P*R2) / 
(BIC*AIC). The higher this score the stronger is the association between 
the community and the biological factor. Indeed a good regression would 
correspond to R2 value near to 1 and low BIC and AIC values. Such 
scores are reported in Figures 3G-I, S4G-H and S5G-H.  The specific 

values obtained by the single scores are reported in Table S3. As shown 
in Figures 3G-I, S4G-H and S5G-H, sICA better approximates all three 
tested biological factors. In particular, NMF does not identify any 
component that can significantly predict the gender signal.  We then 
investigated the specificity of such predictions, meaning the ability of the 
MF approach to define a clear one-to-one association between a 
biological signal and a component. To test for the specificity of the 
different MFs we focused on the components obtained on the GSE39582 
dataset (see Table S1) and considered the R2 obtained in the previously 
computed regressions by all the 100 components. As shown in Figure 
S7, sICA resulted to be far more specific than the alternative MFs. In 
particular for all the three biological factors (gender, proliferation and 
stromal infiltration) sICA found only one component strongly associated 
to them. On the opposite, NMF and ICA' identified multiple components 
with similar regression performances. Finally PCA resulted to be specific 
in stromal infiltration and proliferation prediction. However, PC1 was 
the component predicting simultaneously both signals, confirming the 
already observed limitation of PCA of conflating multiple biological 
processes into a single component. 

3.5 Impact of the technical platform on the MFs
We used OVCA as a case study to evaluate the impact of the profiling 
platform on the results of the various MF algorithms. Indeed having four 
OVCA datasets composed of the same samples we are sure that no 
biological variability is present across them. In the optimal scenario, all 
the metagenes of an MF algorithm should find a RBH with a metagene 
of the other three datasets. At step 2 of our framework applied to OVCA 
we checked the number of RBH links of the different MFs together with 
their average absolute correlation. sICA resulted to perform better than 
alternative approaches also in this case, with 390 links and average 
correlation of 0.396 (see Table S4 and Figure S5B). Finally, we 
evaluated if a specific agreement could be identified between profiling 
platforms (see Figure S8 and Supp Text 2). The correlations among the 
obtained across different platforms are highly variable, depending on the 
MF method employed. Agilent seems to show the lower correlation with 
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Affymetrix microarray and RNAseq platforms. From such analysis, 
together with the results of BRCA and CRC, we can conclude that 
RNAseq and microarray platforms give similar results in terms of 
extracted components.

Fig.4. RBH graph of sICA built in CRC with the main biological annotations. The 
node colors indicate the dataset from which the components have been computed. The 
edge thickness indicates the magnitude of the correlation. Communities with more than 
six elements are marked with an integer number. For details on the community 
annotations see Table S5.

3.6 sICA identifies biological insights on CRC consistent with 
previous knowledge
In the previous sections we showed that sICA has more reproducible 
results than alternative approaches according to multiple measures of 
practical interest for high-throughput data analysis. We now concentrate 
more deeply on the biological insights that can be derived from the RBH 
graph of this MF algorithm in CRC. To this aim we added to the analysis 
other four datasets: single-cell RNAseq from normal and tumoral CRC 
tissue (Li et al., 2017), Patient-derived Xenograft (PDX) CRC Models 
and liver metastasis (LM) (Isella et al., 2017). Combining sICA 
components from scRNASeq data together with those obtained in bulk 
RNA-seq transcriptomes through the RBH network allows better 
characterization of cell-type specific signals in bulk transcriptomes while 
PDX and liver metastasis data help to better discriminate tumor cell-
specific signals from microenvironment signals. Given the different 
nature of such data in respect to the previous 14 we only employed them 
for the biological characterization and not in the assessment of MF 
algorithm performances. We then biologically annotated the 
communities of the RBH graph by using consensus metagenes and 
metasamples according to the procedure described in the Supp Text 5. 
The consensus metagenes obtained for the communities of sICA are 
reported in Table S5 and represent a useful resource for further analyses.  
Figure 4 reports the RBH graph of Stabilized ICA and the main 
biological informations extracted from it. Four main categories of 
biological factors can be distinguished in the graph: factors intrinsic to 
the tumor, microenvironment signals, technical signals, effects of small 
groups of genes and unknown factors. Concerning the tumor-specific 
factors, some communities were found to be associated to core tumoral 
functions, such as proliferation, inflammation, stemness, interferon 
response and mitochondria. Other tumor-specific communities resulted 
instead to be associated to CRC-specific tumoral signals, such as 
MSI/MSS (microsatellite instability/microsatellite stable), goblet cells (a 
differentiated cell of the colon) and KRAS mutation. Finally, one 
community was found to be related to chromatin silencing and histones. 
The stromal communities instead include microenvironment signals, 
such as cancer-associated fibroblasts (CAFs), smooth muscle, immune, 
complement system and B-cells. Of particular interest is the 
identification of the communities related to B-cells and CAFs whose 
association to these cell types was evident not only using MSigDB 
signatures, but also from single-cell data (see Supplemtnary text 4 and 
Figure S9). The technical factors included instead GC-content and 
gender. Finally, 10 communities have been found to be associated with 
small groups of genes. In this last case, the consensus metagenes 
associated to these communities contained few genes having a much 
higher weight than the others.
Concerning the association with the predefined CRC Consensus 
Molecular Subtypes (CMS) we could clearly match CMS1 with our 
immune component, concordantly to what previously observed. 
Communities associated to CMS3 and CMS4 were also identified. Of 
note, the CMS4 subtype resulted from our analysis to be associated to 

both smooth muscles and CAFs. A strong CAFs infiltration had been 
already observed in this CRC subtype (Isella et al., 2015; Guinney et al., 
2015). 

4 Discussion
In this manuscript we compared the three most commonly used matrix 
factorization methods for their ability to detect reproducible and 
biologically interpretable signals in independent transcriptomic datasets 
of the same cancer type (CRC, BRCA, OVCA). For one of the methods, 
Independent Component Analysis, we also compared three protocols of 
its application to transcriptomic data, named ICA, ICA’ and sICA. We 
designed a framework based on the concept of Reciprocal Best Hit 
(RBH), for assessing the reproducibility of any MF method. From our 
study we can conclude that minimizing mutual information between 
metagenes (ICA, sICA) rather than metasamples (ICA’) results in better 
metagene reproducibility and interpretability. Moreover, using multiple 
runs of ICA for stabilisation and prioritizing stable components (as done 
by sICA) significantly improves reproducibility. By contrast, PCA 
components appear to systematically mix multiple sources of 
transcriptome variability, reducing interpretability. Also, the higher-
order PCA components are regularly not reproducible which is partly 
expected given rotational invariance of the linear subspaces spanned by 
the principal components (Ochs and Fertig, 2012). From previous studies 
it is known that NMF shows a good performance in the analysis of 
mutation data (Alexandrov et al., 2013) and cancer subtyping (Isella et 
al., 2017).  However, the NMF components are less frequently 
selectively associated with biological factors compared to ICA. 
Moreover, to the best of our knowledge, we lack validated tools for 
stabilizing NMF components, similarly to sICA, in transcriptomic data 
analysis.

We demonstrated that the meta-analysis of the results of sICA, based on 
constructing the RBH graph, provides a biologically rich image of the 
signals shaping tumoral transcriptomes and their interconnection. Tight 
communities, existing in the RBH graph, whose meaning can be 
compared to the Clusters of Orthologous Genes (COGs) in evolutionary 
bioinformatics, can be matched to previously known and/or expected 
highly reproducible biological signals (such as proliferation and immune 
infiltration) but also highlights novel biological mechanisms which 
require further investigation and interpretation.

The metagenes obtained through application of MF methods can be 
compared to other methods, sharing similar spirit. In particular, attractor 
metagenes were suggested in order to serve as surrogates of cancer 
phenotypes (Cheng et al., 2013). Attractor metagenes were used as 
variables in the DREAM Challenge winning approach for predicting 
breast cancer clinical outcome (Margolin et al., 2013). We find ICA-
based framework for identifying metagenes more computationally 
elegant and potentially producing less poorly generalizable signatures; 
however, further study is required to compare the results of both 
approaches and their computational performances. INSPIRE method 
uses the latent variable approach to infer modules of co-expressed genes 
and the dependencies among the modules from multiple expression 
datasets that may contain different sets of genes (Celik et al., 2016). 
Therefore, INSPIRE shares general objectives of MF-based meta-
analysis but significantly differs in terms of methodology. For example, 
INSPIRE is based on the assumption of Gaussianity in the data 
distributions and uses disjoint module definitions rather than metagenes, 
where each gene can contribute to several biological functions.
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Lastly, here we compared MF methods in application to cancer 
transcriptomic datasets. However, the suggested approach can be easily 
extrapolated to other data types (methylomic, proteomic) or other fields 
of research collecting massive transcriptomic datasets (such as drug 
screenings). 
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