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Abstract: In this paper, we used a Genotyping-by-Sequencing (GBS) approach to find and genotype
more than 4000 genome-wide SNPs (Single Nucleotide Polymorphisms) from striped killifish exposed
to a variety of polychlorinated biphenyls (PCBs) and other aromatic pollutants in New Bedford Harbor
(NBH, Massachusetts, USA). The aims of this study were to identify the genetic consequences of
exposure to aquatic pollutants and detect genes that may be under selection. Low genetic diversity
(HE and π) was found in the site exposed to the highest pollution level, but the pattern of genetic
diversity did not match the pollution levels. Extensive connectivity was detected among sampling
sites, which suggests that balanced gene flow may explain the lack of genetic variation in response
to pollution levels. Tests for selection identified 539 candidate outliers, but many of the candidate
outliers were not shared among tests. Differences among test results likely reflect different test
assumptions and the complex pollutant mixture. Potentially, selectively important loci are associated
with 151 SNPs, and enrichment analysis suggests a likely involvement of these genes with pollutants
that occur in NBH. This result suggests that selective processes at genes targeted by pollutants may
be occurring, even at a small geographical scale, and may allow the local striped killifish to resist the
high pollution levels.

Keywords: candidate outliers; migration; evolutionary genomics; GBS; SNPs; toxicant resistance

1. Introduction

Anthropogenic stressors are a major threat to ecological balance in both terrestrial and aquatic
environments. Most anthropogenic stressors are related to several classes of chemical compounds
that are directly or indirectly released in the environment by human activities [1]. Although most of
these chemicals are released in terrestrial environments, they affect marine environments because of
the tight relationship between terrestrial and marine ecosystems [2]. For example, more than 80% of
terrestrial contaminants reach coastal and oceanic waters [3]. These pollutants can negatively impact
ecosystem functioning of both marine coastal and pelagic areas by reducing the primary production
and increasing respiration [4], and these negative effects contribute to demographic instability of
several marine species, which induces strong ecological shifts in species composition as well as
physiological and evolutionary changes in wild populations [5,6]. The mass-mortality or the shift in
available niches generated by some pollutants may alter natural patterns of genetic structure, which
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triggers selectively important micro-evolutionary events. Pollutants might act as a selective force,
which eliminates individuals that cannot tolerate the pollutants and consequently reduces genetic
variability [7,8].

The physiological and evolutionary consequences of several pollutants in wild populations
are still not completely understood [9–12]. Finding pollutant-mediated evolutionary trajectories in
aquatic populations is a complex task due to high local variability in pollutant mixtures, which can
change the pattern and the target of genes affected by selection [13–17]. In this context, methods
based on pools of pre-selected markers (i.e., a “candidate genes approach”) may not clarify how
natural selection is acting when pollutant mixtures occur. The current Next Generation Sequencing
(NGS) methods may offer a broader survey of genetic variation and an unbiased opportunity to scan
population genomes and identify genome-wide polymorphisms affected by selective pressures from
anthropogenic pollutants [10,18]. Among the NGS methods, the use of Genotyping by Sequencing
(GBS) is currently becoming a fast, effective, and inexpensive choice to target thousands of single
nucleotide polymorphisms (SNPs) throughout the genome [19] and characterize population genetic
variation and genomic selection in aquatic toxicology [10].

A promising location to examine the population genetic effects of anthropogenic pollution is in
New Bedford Harbor, Massachusetts, USA (hereafter NBH). NBH is a US Superfund site, a polluted
site designated for cleanup with funds from the responsible party, and contains hazardous chemicals
discharged into it since the mid-1940s. These hazardous chemicals pose a risk to humans and the
environment needs to be cleaned up. Despite the cleanup effort in NBH, there is still a persistent
pollution gradient that runs from the upper harbor (where the River Acushnet discharge freshwater)
to the lower harbor. The pollution level was tracked by a monitoring program run between 1993 and
2009, and data about PCB levels were recorded [20,21]. The NBH hosts a complex pollution mixture
made up of polychlorinated biphenyls (PCBs), polychlorinated di-benzo-p-dioxins, polychlorinated
dibenzofurans, polycyclic aromatic hydrocarbons (PAHs), and metals [20,21]. These pollutants are
associated with local biodiversity loss and affect fisheries and shellfish catch because tissues are
too contaminated for public consumption [21]. Previous analyses have shown that exposure to
environmentally-relevant concentrations of PCB-like compounds (i) have detrimental effects to fish
population reproduction [22], (ii) induce embryological developmental anomalies [23], (iii) produce
cardiotoxicity [24], and (iv) result in natural selection in wild fish populations [9,25,26].

Two common NBH fish species are the striped killifish (Fundulus majalis) and the Atlantic killifish
(Fundulus heteroclitus) [27]. Atlantic killifish (F. heteroclitus) have been used to identify genetic and
physiological responses to pollutants in the wild [23,25,28,29]. Key features of F. heteroclitus include:
(i) large population sizes (>10,000 individuals), (ii) rapid tolerance to new environmental features,
(iii) a wide range (that spans from New Brunswick, Canada to the North Atlantic Florida Coast),
(iv) non-migratory behavior with limited seasonal movements (in the range of a few meters), and
(v) short generation times (essential to evaluate if natural selection affects variation in allele frequencies
across generations) [30]. The Atlantic killifish is able to respond physiologically to a large set of
environmental variations and stress [11,28,31–33]. The F. heteroclitus population in the NBH was found
to be tolerant to contaminants and showed genetic differences when related to congeneric populations
in unpolluted sites [9,16,30,33–35]. For precisely the reasons mentioned above, F. heteroclitus is often
used as a model to test physiological and evolutionary responses to local contaminants [9,25,36].

The striped killifish F. majalis shares similar biological and ecological features with F. heteroclitus.
Both killifish species have a sympatric range, but, unlike the more well-known congener (F. heteroclitus),
the striped killifish is (i) seldom found high in the upper-inner tidal, (ii) infrequently found in fresher
water, and (iii) has a greater mobility, which allows this fish to move for several Km and have greater
population connectivity [37].

Despite the little information about the evolutionary and physiological responses to pollutants,
the striped killifish population in the NBH area persists, which suggests the possibility that it has
developed resistance to pollutants. In addition, the striped killifish lacks many resources available for
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the Atlantic killifish (i.e., well characterized populations resistance to toxicants or extensive genomic
resources) and is, therefore, a good model to assess the power of GBS methodologies and the effects
of pollutants in the wild. The GBS approach has been infrequently used with non-model species in
an ecotoxicological context and at a fine scale (in this study within a single harbor) [38]. The aim of
this study is, therefore, to investigate the genetic variation in striped killifish samples collected along
a steep pollution variation in the New Bedford Harbor (MA, USA). We apply an unbiased genomic
approach (genotyping by sequencing, GBS) to simultaneously find and genotype thousands of SNPs
in striped killifish and offer the possibility to add this species as a new model for genomic resistance to
aquatic pollutants. We use multiple tests to detect candidate outliers and verify how they respond
when used on non-model species exposed to steep variation in pollutants.

2. Results

2.1. NGS Sequencing

Illumina GBS sequencing using the TASSEL pipeline with the Fundulus heteroclitus reference
genome (https://www.ncbi.nlm.nih.gov/genome/743) recovered 5403 SNPs found in at least 80% of
individuals with 136 individuals having at least 70% of all SNPs. Among these SNPs, 1275 SNPs were
in the Hardy Weinberg disequilibrium with observed heterozygosity significantly exceeding expected
heterozygosity (HWE, p < 0.01). These SNPs were removed, and the final dataset of 4128 SNPs was
subsequently used for statistical analyses.

The preliminary test for detecting SNPs under directional selection identified 564 SNPs as potential
candidate outliers from all the six possible pairwise comparisons among sampling sites. Subsequent
analyses, where neutral genetic variation was expected, were run using 2208 presumably neutral SNPs
(excluding SNPs with significant linkage disequilibrium and candidate outliers).

2.2. Genetic Differentiation Between Populations and Gene Flow

Pairwise genetic differentiation (FST values) based on 2208 neutral SNP loci were all
non-significant, which shows negative values that ranged between −0.0039 (PIL vs. FAH) and −0.0057
(HST vs. MAT, Table 1). When pairwise FST values were estimated using candidate outliers, 5 out of
6 pairwise population comparisons were significant and ranged between 0.0034 (PIL vs. HST) and
0.0303 (PIL vs. FAH, Table 1). The AMOVA test showed that most of the molecular variance was
explained within populations (99.67%, FST: 0.0023) even though a significantly small portion was
explained by groups (0.23%, FCT: 0.0032, Table S1).

Table 1. Pairwise FST values between sampling sites based on neutral genetic markers (2208 SNPs,
below the diagonal) and non-neutral genetic markers (linked loci + candidate outliers, above the
diagonal). * p-value < 0.05, ** p -value < 0.01, *** p -value < 0.001.

PIL FAH HST MAT

PIL 0 0.0303 ** 0.0034 0.0111 *
FAH −0.0039 0 0.0250 *** 0.0221 ***
HST −0.0048 −0.0053 0 0.0158 **
MAT −0.004 −0.0052 −0.0057 0

Results from DAPC were stable after retaining 28 out of 60 PCAs and showed the first two
components as significant. In general, all four sampling sites were not well resolved. However, along
the axis of the first significant component, a separation between PIL + FAH + HST against MAT appears
(Figure 1). Similarly, along the axis of the second most significant component, a slight separation
between PIL + FAH, MAT, and HST was detected (Figure 1).

https://www.ncbi.nlm.nih.gov/genome/743
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Figure 1. Figure 1 (above) DAPC (Discriminant Analysis of Principal Components) plot of individuals 
from the four sampling sites along the two most significant axes (PC1 41.75%, PC2 18.37% explained 
variance). In red are the individuals from Pilgrim Avenue (PIL) and, in blue, are the individuals from 
Fairhaven (FAH). Both PIL and FAH are located in the inner New Bedford Harbor (NBH) close to the 
pollution source. Depicted in light brown are individuals from Hacker Street (HST) and, in yellow, 
are individuals from Mattapoisett (MAT). Both these latter sampling sites are located in the outer 
NBH area and are exposed to lower pollution concentrations. The insert explains the percent of 
variance for the first three discrimination eigenvalues (in dark grey are the significant DAs). Figure 1 
(below), STRUCTURE plots of the most likely K tested from the simulations with non-neutral (K = 2), 
only neutral (K = 2), and the complete set of markers analyzed (K = 3). 

STRUCTURE simulations of 2208 neutral SNPs yielded after the Evanno method, the most likely 
structure of two genetic clusters (K = 2) (Ln[P(K)] = −29,0230.24 ± 68.46) and a potential substructure 
for four genetic clusters (K = 4) (Figure 1, Figure S1). A similar structure (K = 2 and a substructure for 
K = 4) was detected using 1920 loci that included candidate outliers and loci under potential linkage 
disequilibrium (Figure 1, Figure S1). The simulation carried out using all SNPs yielded a higher log 
likelihood for three main genetic clusters (K = 3) (Ln[P(K)] = −531,638.50 ± 51.84). The same scenario 
was confirmed after the Evanno method (Figure S1). However, the q value distribution in both 
simulations did not detect a spatially explicit genetic structure among the four sampling sites (Figure 
1). 

Figure 1. Figure 1 (above) DAPC (Discriminant Analysis of Principal Components) plot of individuals
from the four sampling sites along the two most significant axes (PC1 41.75%, PC2 18.37% explained
variance). In red are the individuals from Pilgrim Avenue (PIL) and, in blue, are the individuals from
Fairhaven (FAH). Both PIL and FAH are located in the inner New Bedford Harbor (NBH) close to the
pollution source. Depicted in light brown are individuals from Hacker Street (HST) and, in yellow, are
individuals from Mattapoisett (MAT). Both these latter sampling sites are located in the outer NBH
area and are exposed to lower pollution concentrations. The insert explains the percent of variance
for the first three discrimination eigenvalues (in dark grey are the significant DAs). Figure 1 (below),
STRUCTURE plots of the most likely K tested from the simulations with non-neutral (K = 2), only
neutral (K = 2), and the complete set of markers analyzed (K = 3).
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STRUCTURE simulations of 2208 neutral SNPs yielded after the Evanno method, the most likely
structure of two genetic clusters (K = 2) (Ln[P(K)] = −29,0230.24 ± 68.46) and a potential substructure
for four genetic clusters (K = 4) (Figure 1, Figure S1). A similar structure (K = 2 and a substructure
for K = 4) was detected using 1920 loci that included candidate outliers and loci under potential
linkage disequilibrium (Figure 1, Figure S1). The simulation carried out using all SNPs yielded a
higher log likelihood for three main genetic clusters (K = 3) (Ln[P(K)] = −531,638.50 ± 51.84). The
same scenario was confirmed after the Evanno method (Figure S1). However, the q value distribution
in both simulations did not detect a spatially explicit genetic structure among the four sampling sites
(Figure 1).

Estimation of the number of first generation migrants showed large connectivity among sampling
sites. Table S2 provides the percentage of individuals assigned to the same sampling site). Migration
ranges between 8.82% in MAT and 16.67% in HST. The source of first-generation migrants was mostly
HST (representing 45.71% in PIL, 35.48% in FAH, and 32.35% in MAT) and PIL (representing 38.89% in
HST and 32.35% in MAT, Table S2).

MIGRATE-n results showed values of the Θ parameter ranging from 0.00010 in MAT to 0.00057 in
HST (Figure 2). The historical gene flow seemed to be symmetrical between every sampling location
pair except between FAH and HST (MFAH→HST = 61.7, MHST→FAH =127.7, Figure 3). The M values
ranged between 61.7 (MFAH→HST) to 131.8 (MHST-MAT) (Figure 2).
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Figure 2. Pattern of historical gene flow from the Migrate-n simulation. The squares represent the four
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sampling location of the same color and explain the directionality and rate of gene flow (M values are
reported at the corner of each arrow with a 95% confidence interval).
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The FST-based test to detect SNPs under directional selection in Lositan indicates 361 SNPs as 
candidate outliers. The pairwise comparison between PIL vs. MAT detected 117 candidate outliers 
(after 1% FDR correction), PIL vs. HST, 82 candidate outliers, FAH vs. MAT 115 candidate outliers, 
FAH vs. HST, 96 candidate outliers, and HST vs. MAT, 90 candidate outliers.  

Identification of outlier SNPs using a Hierarchical Island Method (HIM) implemented in 
Arlequin 3.5.2.2 detected 109 candidate outliers (after 1% FDR correction). 

A third analysis to detect SNPs evolving by natural selection used Bayenv 2 analysis, which 
defines SNPs correlated with an environmental parameter (pollution) after correcting for 
demography [39]. A total of 128 SNPS [with Log10(BF) > 1 and with empirical p-values < 0.05] were 
detected among the 10 replicates performed. Among them, 110 SNPs were detected only in one 

Figure 3. Venn diagram of the outlier loci interpolation among four candidate outlier detection tests and
FST value distribution of each outlier locus along the scaffolds position. In the Venn diagram (above),
the numbers encased represent the number of shared SNPs between and among the corresponding set
of methodologies. The colors in the Venn diagram reflect the pattern of color used in the Manhattan
plot (below) that represents the scaffold position of each outlier locus and its estimated FST value.

2.3. Tests for Detecting Signatures of Selection

The FST-based test to detect SNPs under directional selection in Lositan indicates 361 SNPs as
candidate outliers. The pairwise comparison between PIL vs. MAT detected 117 candidate outliers
(after 1% FDR correction), PIL vs. HST, 82 candidate outliers, FAH vs. MAT 115 candidate outliers,
FAH vs. HST, 96 candidate outliers, and HST vs. MAT, 90 candidate outliers.

Identification of outlier SNPs using a Hierarchical Island Method (HIM) implemented in Arlequin
3.5.2.2 detected 109 candidate outliers (after 1% FDR correction).

A third analysis to detect SNPs evolving by natural selection used Bayenv 2 analysis, which defines
SNPs correlated with an environmental parameter (pollution) after correcting for demography [39]. A
total of 128 SNPS [with Log10(BF) > 1 and with empirical p-values < 0.05] were detected among the
10 replicates performed. Among them, 110 SNPs were detected only in one replicate, 13 SNPs were
detected in two replicates, 3 SNPs were detected in three replicates, and 2 SNPs were found six times.

Outcomes from (i) Lositan, (ii) HIM, and (iii) Bayenv 2 revealed a total of 539 potential candidate
SNP outliers. In all the tests performed, we detected outliers with a distribution across the whole
Fundulus genome (Figure 3). There was overlap for three loci with all the three outlier’s detection
methods (S0_4352665, S0_4352669, S9887_384963) including 56 SNPs were found to overlap between
at least two detection methods (Lositan, Bayenv2 and HIM) (Figure 3).
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2.4. Tests for Functional Annotation of Candidate Outliers

The sequences (75 base pair sequences) for the 539 candidate outliers were aligned against any
available GenBank resource using the blastn algorithm. A total of 237 SNPs out of 539 (28.01%) had
hits with significant (E-value < 0.0001) annotations. A total of 99.75% of those hits matched Eukaryote
sequences. Additionally, 68.77% of the Eukaryote hits were related to teleost fish species (Figure S2)
and 36.23% of them belonged to the Cyprinodontiformes Order, of which 41.76% of them specifically
referred to Fundulus heteroclitus, which is the most closely related species to F. majalis with available
genomic resources (Figure S2).

A total of 151 SNPs loci out of the 237 SNPs with annotations were related to coding regions
(functionally annotated SNPs) NCBI ID codes for these functionally annotated SNPs, which were
converted into human UNIPROT ID codes and used for the enrichment analysis in DAVID 6.7. These
151 SNPs produced a total of 958 Uniprot hits associated with 429 different human genes (Homo sapiens)
(Table S3). The analysis with DAVID 6.7 identified 44 different gene clusters and 14 out of 44 clusters
showed significant associations (p < 0.05, Table S4). These clusters are associated with 35 functional
pathways and 25 out of 35 pathways showed significant cellular/biochemical/physiological functions
(Bonferroni p -values < 0.05, Table 2). A total of 1126 of the total 1147 Uniprot hits were also significantly
(p -value < 0.001) related to 13 different disease classes that span from metabolic (167), cardiovascular
(137), and cancer (103) to developmental (60) and reproductive (37) pathologies (Table 3).

Table 2. The list of 35 cellular/physiological pathways targeted by the enrichment analysis (KEGG
Pathways) with DAVID 6.7. The analysis includes results from a list of 429 genes. N = number
of genes participating to the KEGG Pathway. % = percentage of genes in the total of 429 genes.
Category = represents the general cellular/physiological function to which the KEGG pathway is
involved in. The Kegg pathway terms in red are not supported by significant P-values (P > 0.05).
Categories: a = Metabolism. b = Cellular differentiation/survival. c = Cellular organization/adhesion.
d = Cancer. e = Development. f = Immune response. g = Reproduction. h = Inflammatory processes.
I = Neuronal transmission.

KEGG Pathway Terms N % p-Value Category

Nitrogen metabolism 11 2.5 3.40 × 10−12 a
PPAR signaling pathway 11 2.5 1.30 × 10−5 a

Mineral absorption 9 2.1 2.70 × 10−5 a
Neurotrophin signaling pathway 14 3.2 2.40 × 10−5 b
Regulation of actin cytoskeleton 18 4.2 6.30 × 10−5 c

ErbB signaling pathway 11 2.5 1.30 × 10−4 b, d
Adherens junction 8 1.9 3.30 × 10−3 c

Ras signaling pathway 15 3.5 3.80 × 10−3 b, c
MAPK signaling pathway 16 3.7 4.20 × 10−3 b, h

Fc gamma R-mediated phagocytosis 8 1.9 8.30 × 10−3 b, c, f
Proteoglycans in cancer 13 3 9.20 × 10−3 b, c, d

Tight junction 8 1.9 1.00 × 10−2 b, c
Epithelial cell signaling in Helicobacter pylori infection 7 1.6 1.00 × 10−2 b, f, h

Pathogenic Escherichia coli infection 6 1.4 1.30 × 10−2 c, f, h
Rap1 signaling pathway 13 3 1.30 × 10−2 b, c

Leukocyte transendothelial migration 9 2.1 1.40 × 10−2 c, f, h
Endocytosis 14 3.2 1.60 × 10−2 a, c

cAMP signaling pathway 12 2.8 2.10 × 10−2 b, c, e, f, g
Salmonella infection 7 1.5 4.60 × 10−2 b, f, h

Renal cell carcinoma 6 1.4 3.50 × 10−2 b, d
Arhythmogenic right ventricular cardiomyopathy (ARVC) 6 1.4 4.20 × 10−2 c, f, h

Cell adhesion molecules (CAMs) 9 2.1 4.20 × 10−2 c, f
Inflammatory mediator regulation of TRP channels 7 1.6 4.30 × 10−2 h

Estrogen signaling pathway 7 1.6 4.60 × 10−3 b, g
T cell receptor signaling pathway 7 1.6 5.80 × 10−2 b, f, h

Choline metabolism in cancer 7 1.6 6.00 × 10−2 b, c, h
Dopaminergic synapse 8 1.9 6.40 × 10−2 i

Bacterial invasion of epithelial cells 6 1.4 6.40 × 10−2 c, f, h
Non-small cell lung cancer 5 1.8 6.80 × 10−2 b, d

Regulation of lipolysis in adipocytes 5 1.8 5.80 × 10−2 a
Hepatitis C 8 1.9 7.50 × 10−2 d, h
Apoptosis 5 1.2 9.10 × 10−2 b, d
Shigellosis 5 1.2 1.00 × 10−1 d, h

Central carbon metabolism in cancer 5 1.2 1.00 × 10−1 d, h
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Table 3. The list of 13 group of diseases targeted by the enrichment analysis (DAVID 6.7). The analysis
includes two tests to assess significance of the genes participating to each disease category (Permutation
test P-value and FDR correction). N = number of genes with implication in the categorized disease. %
= percentage of representation in the total of 429 genes.

Disease Category N % P-Value FDR

Metabolic 167 34.9 1.80 × 10−3 4.60 × 10−3

Cardiovascular 137 28.7 4.50 × 10−3 1.00 × 10−2

Chemo-dependency 115 24.1 1.90 × 10−2 2.80 × 10−2

Pharmacogenomic 109 22.8 2.40 × 10−6 4.30 × 10−5

Neurological 106 22.2 1.80 × 10−4 8.00 × 10−4

Cancer 103 21.5 1.70 × 10−2 2.80 × 10−2

Psych 81 16.9 4.10 × 10−5 2.50 × 10−4

Unknown 66 13.8 3.10 × 10−4 1.10 × 10−3

Developmental 60 12.6 1.10 × 10−3 3.40 × 10−3

Other 58 12.1 1.10 × 10−2 1.90 × 10−2

Renal 54 11.3 5.70 × 10−3 1.10 × 10−2

Reproduction 37 7.7 2.10 × 10−2 2.90 × 10−2

Normal-variation 33 6.9 7.00 × 10−6 6.30 × 10−5

3. Discussion

Evolutionary toxicology, which is the study of evolutionary responses of populations to
human-mediated stressors, is still in an early stage [40]. It aims to understand how pollutants
contribute to (i) changes in genome-wide genetic diversity, (ii) population differentiation, and (iii) local
selection at genes that modify physiological pathways associated with pollutant resistance [40].
Genomic approaches provide unbiased genome-wide analyses that help clarify populations’ molecular
evolutionary responses to pollutants.

In this study, we investigated how natural selection affects local population exposed to
contaminants in an estuarine, non-model species: the striped killifish (F. majalis). Particularly, this
method successfully allowed us to obtain more than 4000 SNP markers from Fundulus majalis, that
were used to detect allelic shifts in loci potentially connected to the exposure to different levels of
pollutants. Similar approaches were previously tested comparing genomes of individuals collected
from contrasting environments [12,41,42]. This strategy should help define loci under strong selection,
typically in isolated environments. An important caveat is that we are assuming that pollutants,
primary PCBs, are important selective forces. Yet, other abiotic (salinity) and biotic (community
composition) factors could also co-vary with PCBs and may also be selectively important. The focus on
pollution in this study seems reasonable because we are investigating a single population with samples
separated by few Km of coastal area where the pollutant concentration has the largest environmental
variation relative to many other abiotic factors. Additionally, this approach is supported by the
observation that more than half of the annotated outlier loci were related to genes known to be
influenced by PCBs. The factors include (a) regulation of apoptosis and cell lifespan, (b) cancer,
and (c) hormones and neuropeptides signaling. In this case, we examine the genetic variation of
a population of Fundulus majalis in New Bedford Harbor (Massachusetts, USA) exposed to a large
variation in aquatic contaminants.

3.1. Genetic Variability and Population Differentiation for F. majalis in the New Bedford Harbor

Along the pollution gradient, our data indicate consistently high genetic variation. This
goes against basic assumptions in evolutionary toxicology and the “genetic erosion hypothesis”
postulated by van Straalen and Timmermans [43] that suggests genetic variability erosion due to
rapid demographic collapse when populations are faced with contaminants. Such an event can
decrease genetic variability promoted by genetic drift and selection [40]. This model predicts that
“genetic erosion” should be proportional to the proximity of individuals to the contaminant source
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and should result in a progressive loss of genetic variation with lower diversity in the most polluted
sites and higher diversity in the unpolluted ones. Yet, in this study, there is no apparent progressive
reduction in genetic variation (Figure 4, expected heterozygosity and nucleotide diversity) along
the pollution gradient. The same result was observed in a genotyping-by-sequencing analysis for a
rove beetle (Staphylinus erythropterus) population along a heavy metals pollution gradient in Poland
where there was no clear pattern of reduced genetic variation measured from over three thousand
SNPs in beetles located close to the pollution source [38]. This beetle study also found weak genetic
differentiation between sampling sites and suggested that it was due to extensive gene flow among
sites. Therefore, high beetle mobility may counteract genetic variation loss associated with pollution
by continuous migration from nearby, less impacted sites. Similar reasoning could explain the data for
the NBH striped killifish population. A lack of population structure in the striped killifish collected in
the NBH area and high connectivity among sampling sites were detected. This connectivity is likely
related to the mobility of the species, which covers similar distances to those that separate the sampled
sites (<20 Km). Boorse and Storlie [44] suggest that striped killifish daily movements can enhance
the connectivity of local groups of individuals. This observation suggests that connectivity within
populations may contribute to counteract the local genetic variability loss [45,46]. Yet, even in the face of
high connectivity, our data suggest that evolutionary divergence affects allele frequencies at many SNP
loci. This is in agreement with new theories that suggest the need for high genetic variation in order to
maintain adaptive responses in populations chronically exposed to stressful environments [47]. In this
context, selective divergence with high gene flow could be advantageous by increasing population size
and introducing new alleles that may be locally beneficial [46,47]. The evidence for and the problems
with identifying selective divergence in the striped killifish are discussed below.

3.2. What Tests for Candidate Outliers can Tell Us about Selective Response to Pollutants: A Matter of
Relative Performance

One of the main challenges in ecological genomics is to identify genes underlying functional traits,
such as toxicant resistance [18,48]. Currently, tests to detect selectively important genetic variation
are based on different assumptions that affect their statistical power and accuracy [49–51]. In general,
comparing the results from several tests is a good practice to assess the occurrence of functionally
relevant genetic variation [49,52]. In this study, we used three different tests for detecting outlier
loci based on (i) FST-based pairwise comparisons of most divergent loci, (ii) an FST-based approach
that can account for a hierarchical structure, and (iii) a Bayesian correlation test between pollutant
concentrations and the genetic variation at loci. The proportions of candidate outliers ranged between
2.64% and 8.75% of the total SNPs markers we retrieved. These percentages are roughly in accordance
with the relative number of SNPs showing significant genetic variation (<5–10% of loci screened) found
in other studies [48–53].

There was limited overlap among the methods applied (Lositan, HIM and Bayenv2) with only
three overlapping loci. Limited overlap is a frequent issue when comparing genome-environment
association methods (i.e., Bayenv2) with others that rely on divergence in FST (i.e., Lositan and
HIM) [49–51] and depends on the assumptions made by the different statistical tools that could not
perform in the same manner when dealing with (i) polygenic traits, (ii) panmictic/highly connected
populations, and/or (iii) when the selective agent is actually represented by a mix of multiple
stressors/features.

For instance, several investigations demonstrated that the polygenic nature of phenotypic traits
poorly accord with the basic assumptions of most genome-wide scan approaches [12,54,55]. With
polygenic selection, allele frequency changes only need to occur at a subset of loci that could alter an
evolutionary trait. Thus, signals of selection are distributed across many loci and are not necessarily the
same in all individuals, which leads to weak individual-locus detection for selection [54,55]. It could
be supposed that genes functionally relevant for tolerance to pollutants might be polygenic traits and,
hence, vary in the degree of detectability by the different methods used in this scenario.
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Demography also affects the power of outlier tests producing a high type II error (falsely accepting
the null hypothesis) [49–51]. This is frequently found when there is a lack of population structure
or in the case of strong connectivity [56]. In this context, FST-related estimates between sampling
sites would be lowered by higher gene flow and, in turn, affect the power of tests to detect loci
under selection [49,57]. A similar outcome was proposed in a study on the panmictic American eel
(Anguilla rostrata) that also exhibited less than 1% of candidate outliers from a genome-wide scan
performed at a larger spatial scale than this study [58]. This scenario fits well with the high level of
connectivity we detected in F. majalis from NBH and could be an explanation for the small overlap of
candidate outliers obtained.

Similarly, the effects generated by a gradual variation of the agent that is supposed to generate
local selection can lead to analogous outcomes. In fact, other studies have pointed out how
environmental gradients break the assumption of population isolation and exposure and lead the
genome scan methods to bias the expected number of outlier loci [56,57].

The role of multiple interacting stressors could also lead to variation in the relative performance
produced by different tests to detect outliers. The New Bedford Harbor (NBH) pollution source comes
mainly from PCBs, but they are not the exclusive contaminants in the area [20,21].

Although we assumed that all contaminants in NBH follow the same pattern of concentration,
we can speculate either that contaminants other than PCBs (to which information about local
concentrations are not available) could be more greatly affecting (i) the selective responses in the striped
killifish or (ii) the responsiveness of the environmental correlation methods employed (i.e., Bayenv2).

3.3. Genome-Environment Interaction in F. majalis from NBH

Although the outliers SNPs obtained from four different methods did not consistently overlap,
enrichment analysis of the functionally annotated SNPs suggest the possibility that these loci relate
to important traits that respond to pollution in the striped killifish. The enrichment analysis
showed that most of these markers can be clustered in 14 different functional groups involved in:
(i) antioxidant, xenobiotic, and fatty acid metabolisms, (ii) control of the cell fate (i.e., apoptosis, cell
proliferation), (iii) control of the innate immunity, and (iv) neuromodulation. Similarly, these genetic
clusters reflect 25 functional pathways that control analogous physiological responses. Most of the
functionally annotated SNPs were also related to pathologies that span from cancer, cardiovascular,
metabolic, and neurological to reproductive diseases. All these disease categories are known to be
associated with physiological cellular interactions with xenobiotics, such as PCBs and other aromatic
compounds [59–61]. These toxicants are usually highly lipophilic, and their functions are connected to
membranes and the vesicles structure as well as to their transmembrane molecular crosstalk [61].

Several targeted SNPs are in genes involved in ATP-GTP binding activities (i.e., Ras-related
protein RAB38 and syntrophin alpha) or with calcium-dependent molecules (i.e., susd1, cacng5,
PLCD4, and stx2). These genes can be connected with the cardiovascular activities, and, in general,
the cardiovascular system has been identified as a main target of dioxin-like compounds toxicity in
all vertebrates [61] and more specifically in F. heteroclitus [62]. One of the calcium-dependent genes,
syntaxin 2, was also identified to be involved in the acrosomal reaction and with sperm mobility [63].
This function may be put in relation with the estrogen-mimicking behavior that many xenobiotics (i.e.,
PCBs) assume and their role as endocrine disruptors for many organisms, including fish [22,64]. PCBs
act as estrogen-like molecules in both males and females, inducing cancer and reproductive alterations,
like induced feminization in males [65]. The reproductive consequences of PCBs are supported by the
significant allele frequency change for the estrogen receptor 1 (esr1). This gene receptor is one of the
main targets for synthetic xenoestrogens [22,66] and it plays a protective role from PCB-induced DNA
damage in human breast cancer cells and apoptotic cycle alterations [67]. It also has been shown to be
differentially regulated in NBH F. heteroclitus compared to reference fish [68,69].

Additionally, our approach identified genes directly connected with the metabolism of xenobiotic
like the cytochrome P450 genes (CYP2F2, CYP2K4, CYP2P2) and the Aryl Hydrocarbon Receptor
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Nuclear Translocator 2 (ARNT2). A total of 137 genes encoding P450s were recently identified in fish,
and their general activities relate to detoxifying systems against pollutants [70]. CYP2F2 and CYP2K4
are specifically associated with epoxygenase and hydroxylase activities of arachidonic acid, which
is a polyunsaturated fatty acid involved with cellular signaling and inflammatory responses [71]. A
significant transcriptional alteration of a member of the CYP2 family (CYP2N2), which is also involved
with molecular mobilization of arachidonic acid, was also detected in the NBH F. heteroclitus population
where the lower CYP2 expression in the polluted populations could be related to a limitation in energy
storage and other metabolic functions [31]. The change in CYP2 allele frequency could have a similar
role for F. majalis from the same area. The Aryl Hydrocarbon Receptor Nuclear Translocator 2 (ARNT2)
was also demonstrated to be one of the genes that transcriptionally respond to exposure from PCBs
and other aromatic compounds in F. heteroclitus embryos [72]. This gene resists pollutants developed
by F. heteroclitus in the NBH, and it can be speculatively proposes that it has the same phenotype results
for the F. majalis population we examined.

Furthermore, we detected SNPs loci associated with metallothioneins (MTs), which is a group of
functionally diversified proteins with metal binding and redox capabilities that confer tolerance to
metal pollutants. An increase in MTs is frequently associated with hepatotoxicity due to PCB exposure
in fish. MTs could be similarly involved in toxicant resistance of F. majalis in NBH.

Another interesting result comes from the cluster that contains the Leucine-rich repeat genes
(LRRs, genomic components that are involved in the innate immune response) and the functional
pathways connected with the immunological response to bacterial infections. In fact, it is not so
surprising that the existing connection between chronic exposure to contaminants like PCBs and metals
and the development of transgenerational immunological suppression effects. Nacci et al. found that
both adults and embryo F. heteroclitus from NBH are producing an immune response comparable to
control specimens, and, therefore, they proposed that this killifish population might have evolved
mechanisms that minimize the immuno-suppressive effects of PCBs [73]. A similar consideration could
be proposed for the striped killifish population that we examined. The emerging genes from our GBS
analysis that relate to the immunological response to bacterial infections could suggest that F. majalis
from NBH have developed a genomic resistance that contrasts the immunosuppressive effect of PCBs
or that, in general, genes related to the immune system are playing a role in the NBH population.

These findings suggest that local selection of genes that resist toxicants may occur in F. majalis.
However, other relevant genes found in the adaptation of F. heteroclitus to PCB-contaminated
environments [35,62] were not identified. In particular, we found no association between nucleotide
variation and PCB-tolerant phenotype at the aryl hydrocarbon receptors 1 and 2 (AHR1, AHR2) [35,62],
cathepsin Z, the cytochrome P450s (CYP1A and CYP3A30), and the NADH dehydrogenase subunits
genes [62]. This points out one of the short-comings of GBS. GBS samples of approximately 0.1% of
the Fundulus genome often does not assay all relevant genes. Thus, although we observed potential
selection acting on previously described genes (i.e., the estrogen receptor 1 and CYP450 genes), the
GBS approach is not comprehensive in detecting all loci implicated with F. majalis’ selective response
to local pollutants.

4. Materials and Methods

One-hundred and fifty-eight striped killifish were collected from the New Bedford Harbor (NBH,
MA, USA). These individuals were collected in four sampling sites representative of a polychlorinated
biphenyl (PCB) gradient measured as standard dry mass weight of the sediment, as reported in
Roark et al. [36]. Two collection sites were in the Acushnet River estuary within New Bedford Harbor
(Figure 4, PIL and FAH). These sites represent the areas closest to the pollution source where striped
killifish naturally can occur. The other two collection sites have lower pollution levels. One site was
in the New Bedford Outer Harbor (Figure 4, HST) while the most distant sampling site was in the
Mattapoisett Harbor (Figure 4, MAT). The latter site was defined as a reference site for our analysis.
This is because it: (i) experiences lower pollution levels, (ii) belongs to a different embayment system
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than NBH, and (iii) represents the farthest geographical site from the pollution source compared to
the other sampled sites. Fish were collected using minnow traps. All fish were returned to their
environment after removal of small fin clips (<10 mm2). Fin clips were stored in 320 µL of Chaos buffer
(4.5 M guanadinium thiocynate, 2% N-lauroylsarcosine, 50 mM EDTA, 25 mM Tris-HCL pH 7.5, 0.2%
antifoam, 0.1M β-mercaptoethanol) at 4 ◦C prior to being processed. Genomic DNA was isolated using
a silica column protocol [74] and the DNA quality was assessed via agarose gel electrophoresis. DNA
concentrations were quantified and standardized using AccuBlue broad range quantitation assays,
according to the manufacturer’s instructions (Biotium Inc., Fremont, CA, USA; https://biotium.com/).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  13 of 20 
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The GBS library was prepared as described in Elshire et al. [19] using the restriction enzyme Ase I.
Adaptors (0.4 pmol/sample) were ligated to 50 ng of gDNA. The GBS library was sequenced on a single
lane using Illumina HiSeq 2500 with a 75 bp single-end reads (Elim Biopharmaceuticals, Inc., Hayward,
CA, USA; https://www.elimbio.com/). Sequence reads were aligned and putative SNPs were retrieved
using the TASSEL 5.0 pipeline [75] with the F. heteroclitus genome as a reference [76]; https://www.
ncbi.nlm.nih.gov/genome/743]. Discovered SNPs were filtered with TASSEL 5.0 retaining individuals
with at least 70% of SNPs and SNPs found in at least 80% of individuals. Allele frequencies and
heterozygosities (HE, HO) from filtered data were calculated per sampling site and per locus using
Arlequin 3.5.2.2 [77]. SNPs with observed heterozygosity (HO) exceeding expected heterozygosity (HE,
HO > HE) and significantly different from Hardy-Weinberg expectation (p < 0.01) were excluded. This
latter filter is used to remove potential SNPs that represent differences between paralogs versus true
allelic variants for a single locus [78,79]. Overall and by-population estimates of nucleotide diversity,
(π) were computed using DNAsp v5 [80]. Initially, SNPs under neutral and non-neutral expectations
were evaluated with Lositan [81]. Lositan settings consisted of 500,000 iterations based on an Infinite
Allele model. A list of candidate outliers detected under positive selection was annotated from each
possible pairwise comparison. Each test between localities (for a total of six pairwise comparisons)
was replicated three times, and the final list of candidate outliers (presumably non-neutral markers)
was obtained by merging lists from the three replicates. A False Discovery Rate (FDR, 1%) correction
method was applied after evaluating significances with p-values < 0.01. This strategy was applied
with the aim to use a more stringent criterion to detect significant, non-neutral SNPs.

The population structure was evaluated using AMOVA in Arlequin [77], multivariate
discrimination analysis (DAPC) in the R package ADEGENET 1.3-4 [82] (http://adegenet.r-forge.r-
project.org/), and STRUCTURE version 2.3.4 [83] (https://web.stanford.edu/group/pritchardlab/
structure_software/release_versions/v2.3.4/html/structure.html). Migration rates were evaluated
as implemented in GENECLASS 2.0 [84] as well as MIGRATE-n v. 3.5.1 [85] (https://peterbeerli.
com/migrate-html5/index.html). The genetic distance among populations was estimated using
FST values [86], as implemented in Arlequin [77] (http://cmpg.unibe.ch/software/arlequin35/
Arl35Downloads.html). Among the four sampling sites, the variation within and among populations
was determined by analyzing molecular variance (AMOVA, Arlequin) [77]. In the AMOVA, a
hierarchical structure based on both the PCB concentration and geographical distance (measured
as the shortest linear sea distance among sampling sites) was provided. The two most polluted sites
were grouped together in the first cluster (PIL and FAH) while the remaining two sampling sites (HST
and MAT) represented two other distinct clusters. A thousand permutations were applied to test the
significance of molecular variance partitions, and a threshold of 1% (p-value < 0.01) was assumed.

Discriminant analysis of principal components was performed using the software DAPC [82]
implemented in the ADEGENET 1.3-4 package [87] since R DAPC is a multivariate approach that
describes the genetic differences among groups while minimizing the differences within groups using
principal components of genetic variation (PCA). A set of 60 principal components was retained as
predictors for discriminant analysis and cross-validation using the default setting was performed.

A Bayesian method performed with STRUCTURE version 2.3.4 [83] was used to cluster
individuals and investigate the population structure. An admixture model and correlated allele
frequencies were assumed. Simulation settings were based on 10,000 discarded iterations (burn-in)
and 50,000 MCMC (Monte Carlo Marcov Chain) retained replicates. The population structures were
comprised of between one and six clusters (K) were simulated, and each K was tested five times.
Two separate simulations were performed based respectively on (i) exclusively neutral and (ii) all
markers. The online software STRUCTURE HARVESTER 0.6.92 [88] (http://taylor0.biology.ucla.edu/
structureHarvester/) was used to evaluate results under the Evanno method expectations [89] while
CLUMPAK server (http://clumpak.tau.ac.il) [90] was used to obtain graphical plots.

Gene flow and connectivity between sampling sites were evaluated by two separate methods
using the same 2208 presumably neutral SNPs (as tested from Lositan runs in a pre-screening trial).

https://www.elimbio.com/
https://www.ncbi.nlm.nih.gov/genome/743
https://www.ncbi.nlm.nih.gov/genome/743
http://adegenet.r-forge.r-project.org/
http://adegenet.r-forge.r-project.org/
https://web.stanford.edu/group/pritchardlab/structure_software/release_versions/v2.3.4/html/structure.html
https://web.stanford.edu/group/pritchardlab/structure_software/release_versions/v2.3.4/html/structure.html
https://peterbeerli.com/migrate-html5/index.html
https://peterbeerli.com/migrate-html5/index.html
http://cmpg.unibe.ch/software/arlequin35/Arl35Downloads.html
http://cmpg.unibe.ch/software/arlequin35/Arl35Downloads.html
http://taylor0.biology.ucla.edu/structureHarvester/
http://taylor0.biology.ucla.edu/structureHarvester/
http://clumpak.tau.ac.il


Int. J. Mol. Sci. 2019, 20, 1129 14 of 19

The first method allowed the calculation of current gene flow levels by estimating the number of
first generation migrants using the Bayesian method of Rannala and Mountain [91] implemented in
GENECLASS 2.0 [57] (http://www1.montpellier.inra.fr/URLB/GeneClass2/Help/). A set of 1000
MCMC iterations was produced to test the most probable site of each individual’s origin based on their
multi-locus neutral genotype assets. A threshold p-value of < 0.01 was used to assess the significance.

The second method to detect gene flow and connectivity was based on the coalescent calculation
of historical migration rates between sampling locations using MIGRATE-n v. 3.5.1 [85]. A Bayesian
method was applied [85] and FST estimates among localities were used as a baseline for calculating the
demographic parameter Θ (Θ = 4Neµ, where Ne is the effective population size and µ is the mutation
rate) and the historical migration rate, M (M = m/µ, where m is the immigration rate per generation and
µ is the mutation rate). Negative FST were set to zero. A Brownian motion model was used, and mutation
was considered constant over a set of 1000 neutral SNPs. The MCMC procedure consisted of one long
chain with 500,000 recorded genealogies for each locus, with 10,000 genealogies discarded as the burn-in.

Two FST-based tests were performed to detect SNPs under positive selection. The first FST-based
test was carried out using Lositan [81] (https://popgen.net/soft/lositan/), which extracted potentially
selected SNPs from pairwise comparisons (PIL vs. MAT, PIL vs. HST, FAH vs. MAT, FAH vs. HST,
and HST vs. MAT) of PCB polluted sites in NBH against the reference sampling site in Mattapoisett
Harbor (MAT). The Lositan settings were the same used for the preliminary analysis in which neutral
and non-neutral SNPs were identified. SNPs under potentially positive natural selection (candidate
outliers) were considered only if SNPs were significant in every replicate. The second FST-based test
was carried out in Arlequin [77,92] using the Hierarchical Island method (HIM). This method differs
from the Lositan test by evaluating the impact of a hierarchical structure among the collected samples.
The hierarchical structure considered in this test took into account site-by-site variation in PCBs. The
first cluster included samples that are experiencing high pollution (PIL and FAH), the second cluster
included a sample (HST) with low PCB concentrations, and the third cluster was represented by
the reference samples collected in the Mattapoisett Harbor (MAT). HIM settings were characterized
by simulating 100 demes with 10,000 coalescent iterations under the assumption of the hierarchical
structure mentioned above. A significance threshold of 1% (p-value < 0.01) and a 1% FDR were applied
to increase the level of accuracy in avoiding false positive tests.

The last test to identify candidate outliers was based on a statistical procedure in Bayenv2 [39]
(https://gcbias.org/bayenv/). This method assesses genomic evidence for natural selection to specific
environments by performing locus-by-locus Bayesian analysis to detect linear relationships between
allele frequencies and environmental variables, assuming non-linear allele frequency changes [39]. The
variance-covariance matrix was built up using 500,000 MCMC iterations in a simulation that involved
only presumed neutral SNPs (candidate outliers and linked SNPs were excluded from the dataset). In
order to apply a more rigorous approach, the last 200 variance-covariance matrices were averaged,
and the resulting matrix was used to test environmental correlation against all SNPs (4128). A set of
10 replicates of environmental correlation were produced, and logarithmic values of Bayesian Factors
(BF) were averaged in each locus. Only SNPs that showed average logarithmic values of Bayesian
Factors (BF) larger than one (Log10BF > 1) were considered significant and potentially evolving by
natural selection.

An intersection analysis was performed to find candidate outliers jointly identified by all these
methods. A Venn diagram, that represents the candidate outlier’s intersections, was produced.

To annotate potentially selectively important genes, a FASTA file containing candidate
outlier sequences was loaded in the online software BLAST (http://blast.ncbi.nlm.nih.gov/Blast.
cgi?PROGRAM=blastnandPAGE_TYPE=BlastSearchandLINK_LOC=blasthome) [93] good matches
(E-values < 0.0001) between the queries and any similar sequence in GenBank were searched using the
blastn algorithm. The annotated sequences from candidate outliers were further used for a UniProt
(http://www.uniprot.org) search. The search was aimed to find Human UniProt code associated
with candidate outliers found in Fundulus and other organisms’ annotations. These UniProt codes

http://www1.montpellier.inra.fr/URLB/GeneClass2/Help/
https://popgen.net/soft/lositan/
https://gcbias.org/bayenv/
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastnandPAGE_TYPE=BlastSearchandLINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastnandPAGE_TYPE=BlastSearchandLINK_LOC=blasthome
http://www.uniprot.org


Int. J. Mol. Sci. 2019, 20, 1129 15 of 19

were subsequently used in DAVID 6.7 [94] (https://david.ncifcrf.gov/content.jsp?file=citation.htm) to
produce Functional Annotation Clustering and provide further information about the molecular and
biological pathways in which annotated genes are involved.

5. Conclusions

We found that samples collected within a radius of 20 km (shoreline distance) in New Bedford
Harbor experiencing a steep variation in aquatic pollution, exhibited ~530 SNPs with unexpected
genetic variation patterns. The high mobility and connectivity within this striped killifish population
made it difficult to identify changes in overall genetic variation (HE or π) associated with the role of
pollutants. The enrichment analysis of loci likely under selective processes revealed that most of these
SNPs occur in genes that are presumably associated with pollution resistance and are involved in
physiological processes that can determine an inherited tolerance of this population to pollutants. The
unbiased approach of GBS that detected functionally-relevant loci suggests that, even in a species with
large migration rates, pollution can significantly affect allele frequencies. Yet, the lack of agreement
among different tests for detecting SNPs under selection might suggest how these tests are sensitive to
different evolutionary forces and/or might lack the power to identify important loci (type II error) or
mis-identify genes (type I error). In addition, there is the possibility that other environmental features
may have reduced the power of the genomic scan analyses, which limits the ability to detect more
loci associated with pollutant resistance. Overall, the evidence still suggests non-neutral divergence
among samples that occurs in spite of a small geographic scale, a panmictic population, and large
migration rates.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/5/
1129/s1.
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