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Abstract

The basic phenomenology of experimentally observed synchronization (i.e. a stochastic phase locking)
of identical, beating flagella of a biflagellate alga is known to be captured well by a minimal model
describing the dynamics of coupled, limit-cycle, noisy oscillators (known as the noisy Kuramoto
model). As demonstrated experimentally, the amplitudes of the noise terms therein, which stem from
fluctuations of the rotary motors, depend on the flagella length. Here we address the conceptually
important question which kind of synchrony occurs if the two flagella have different lengths such that
the noises acting on each of them have different amplitudes. On the basis of a minimal model, too, we
show that a different kind of synchrony emerges, and here it is mediated by a current carrying, steady-
state; it manifests itself via correlated ‘drifts’ of phases. We quantify such a synchronization
mechanism in terms of appropriate order parameters Q and Qs—for an ensemble of trajectories and
for a single realization of noises of duration S, respectively. Via numerical simulations we show that
both approaches become identical for long observation times S. This reveals an ergodic behavior and
implies that a single-realization order parameter Qg is suitable for experimental analysis for which
ensemble averaging is not always possible.

1. Introduction

There is experimental evidence that two beating flagella, extending from one end of the biflagellate alga
Chlamydomonas reinhardtii, synchronize their dynamics. Analyzing the oscillatory intensity signals

x(t) = [1,(¢)sin 276, »(¢)) (where I'y 5(f) and 0, ,(¢) are the amplitudes and the instantaneous phases of the
periodic motion of flagella 1 and 2, respectively), which are obtained by local sampling of the video light intensity
near the two flagella, Polin et al [ 1] observed that the phase difference A, = 0,(t) — 6,(¢) contains periods of
synchrony (i.e. the so-called phase locking behavior with A, &~ const [2-5]), interrupted by sudden drifts of
either sign. Referring to earlier ideas, that the hydrodynamic interactions between eukaryotic flagella or cilia may
underlie their synchronization [6—13], Goldstein et al[14] proposed a phenomenological, minimal, stochastic
model in which the motion of a flagella pair is described by two noisy phase oscillators which move on circular
trajectories and are coupled via an antisymmetric function of the phase difference A;. In terms of the notations
used in [14], the equations of motion read

O1(t) = vy + mesin[27(0,(t) — 61())] + ¢ (D),
02(t) = v, + mesin[2m (01(t) — 62(t)] + (1. (D

In equation (1), the dimensionless functions 6, () € (—1/2,1/2) are the two phases mentioned above, the dot
denotes the time derivative, v; and v, are the natural frequencies (Hz) of the flagella 1 and 2, respectively, and e

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ab0a80
https://orcid.org/0000-0002-2371-4183
https://orcid.org/0000-0002-2371-4183
https://orcid.org/0000-0001-8467-3226
https://orcid.org/0000-0001-8467-3226
mailto:oshanin@lptmc.jussieu.fr
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab0a80&domain=pdf&date_stamp=2019-03-28
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab0a80&domain=pdf&date_stamp=2019-03-28
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 21 (2019) 033036 V S Dotsenko et al

(Hz) is the amplitude of the coupling between the flagella. This phenomenological parameter accounts for the
fact that fluid flows driven by beating flagella provide a hydrodynamic coupling between the latter. Lastly, ¢; »(#)
are delta-correlated, Gaussian white noises with zero mean and identical covariances® [15]:

¢ ()¢ j(t’ ) = 2T 6;,j6 (t — t'), where the bar denotes the average over realizations of the noises; i, j € 1,2; 6; jis
the Kronecker symbol while T, (Hz) can be considered as an effective ‘temperature’, because it defines the
amplitude of the noise terms. Importantly, the major contribution to Tegstems from the fluctuations of the
rotary motors of flagella [14, 16, 17]. Indeed, these active fluctuations are several orders of magnitude larger than
the thermal noise [14, 17], so that the flagella are not in thermal equilibrium with its bath.

We note that the sine terms in equation (1), which link the time evolutions of 8, (¢) and 8,(%), describe the
actual coupling due to hydrodynamic interactions between the two flagella [6—13] only in an effective way.
However, up to now no other good and justified alternative to such a phenomenological description has
emerged. In particular, explicit results presented in, e.g. [13], are based on the assumption that the distance
between the two flagella is much larger than their length, which is not the case for the system studied in [14]. We
also note that in more complex situations of unicellular algal species bearing multiple flagella, both the effective
coupling introduced in [14] and the results in [6—13] may turn out to be insufficient to describe properly all
facets of the synchronized behavior: a different synchronization scenario may be realized which is provided, e.g.
by contractile fibers of the basal apparatus [18, 19].

Solving equation (1) numerically for given realizations of the noise terms, Goldstein et al [ 14] have found
consistency between A, evolving according to equation (1) and the experimentally observed behavior of the
flagella of the biflagellate alga [1], i.e. the calculated trajectories of the phase difference exhibit essentially the
same noisy synchronization interrupted by occasional phase slips.

The comparison with experimental data has facilitated to identify the physically relevant values of the
parameters entering the effective Langevin equations. In particular, for flagella of length [ ~ 12 ym,
observations based on the dynamics of 21 individuals and the comparison with the time series for A, spanning
over an interval of 10%s (i.e. containing several thousands of beats), have shown that € lies within the range
0.14-0.7 Hz and that the effective temperature Tgis within the range 0.05-0.28 Hz, while
v= (v + 1,)/2 ~ 47Hzand év/v = |v; — v»|/v =~ 0.004. The experimentally obtained values of € appear
to bein line with the theoretical prediction in [13]. Importantly, the results of [ 14] have emphasized for the first
time the essential role played by the biochemical noise in the dynamics of eukaryotic flagella as manifested by its
realization-to-realization fluctuations.

A more sophisticated experimental analysis has been performed in [20], which is focused on the dependence
of the coupling parameter ¢ and of the effective temperature T, on the length [ of the flagella. This enhanced
experimental analysis took advantage of the ability of the Chlamydomonas reinhardtii alga to shed its flagella and
to regrow them after a deflagellation has occurred [21]. The flagella of length / ~ 10.82 yum have been first
clipped by a micropipette [20] and then left to regrow. Within 90 min the flagella reached the length I ~ 11.48
wm, which, surprisingly, exceeded the original one. The dynamics of the slowly growing flagella has been
recorded every ten minutes within time intervals two minutes long (within which the length of the flagella did
not appreciably change).

From 19 such experiments it was inferred [20] that, for progressively longer flagella, the periods of the
synchronous beating of both flagella become more pronounced. Analyzing the data, it was shown that, as the
flagella grow, the beating frequency v decreases o<1/, implying that the beating mechanism operates at constant
power output per length (see [20]). The coupling parameter ¢ turned out to be linearly proportional to /, which
explains the trend for a progressive increase of the synchronization periods. Therefore, the proportionality € o< I
is in agreement with the elastohydrodynamic scaling € P as predicted in [13]. Lastly, a variation of Tegwith [
hasbeen observed. In particular, for I ~ 6 pum, T.gwas found to lie within the range 0.06—0.09 Hz, while for
I ~ 8 pym it lies within the range 0.04-0.06 Hz, which is not overlapping with the previous interval. For larger
values of [, T.¢ewas shown to saturate at a constant value of the order of 0.04 Hz. Therefore, T.gevidently
depends on ], atleast for sufficiently short flagella, such that it is larger for shorter flagella. In view of the active
nature of the fluctuations of the rotary motors, this is in line with the intuitively expected behavior’.

Once noise appears to be a physically relevant parameter, it is natural to explore a wider range of possible
effects. In this sense the conceptually important question arises what kind of synchronization, if any, may take
place in situations in which the length of the two flagella differ. Such a situation may apparently be realized
experimentally by amputating just one flagellum of the biflagellate alga, and by leaving the second one intact, as
described in [21]. We note that in this case the regeneration scenario is more complicated, as compared to the

6 .. . . . .

Note that the definition of the covariance of the noise terms used in [ 14] does not contain the usual prefactor 2 of the temperature (see, e.g.
[15]). Thus, in our settings T is half the analogous quantity in [14]. The values of T, which we present in the main text, take this property
into account.

7 We note that the amplitude of the noise of a single flagellum as a function of its length / might be different from that inferred from the
experimental data in [20] for a pair of flagella.
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case when both flagella are removed (see [20]). Here, the intact flagellum first shortens linearly in time while the
amputated one regenerates. This way the two flagella attain an equal, intermediate length. Then both grow and
eventually approach their initial length at the same rate. However, the time required to reach an equal
intermediate length can be quite long, i.e. 20-40 min [21]. It can become even longer if certain chemicals (e.g.
colchicine) are added after a deflagellation, which inhibit the regeneration process [21, 22]. Therefore, thereis a
time window in which both flagella have distinctly different lengths. Within this time window, the coupled
phases 6,(f) and 6,(f) will undergo a stochastic evolution—each at its own temperature TR or Te(fzf), respectively.
Such a system is no longer characterized by a unique effective temperature T, One expects that the Fokker—
Planck equation [15] associated with the Langevin equations (1) will have a non-trivial, current-carrying steady-
state solution. In the following we shall refer to the case of unequal temperatures as an out-of-equilibrium case,
keeping in mind, of course, that the original physical system is not in equilibrium with its bath, even
for T = TR.

Viewed from a different perspective, which is perhaps equally important due to certain other applications
(see [24] for a discussion) we note that the minimal model in equation (1) with a unique effective temperature
T.grepresents the so-called Sakaguchi model [25] which is a noisy version of the celebrated Kuramoto model of
coupled oscillators (see, e.g. [2-5]). Its generalization to the case of two different temperatures® emerges
naturally within the present context of the synchronization of beating, non-identical flagella. We note
parenthetically that recently the stochastic evolution of systems with several temperatures was intensively
studied and a wealth of interesting out-of-equilibrium phenomena has been predicted (see, e.g. [26—33] and
references therein). To the best of our knowledge, the issue of synchronization under out-of-equilibrium
conditions in general, and in a system with two degrees of freedom exposed to two different effective
temperatures in particular, has not yet been addressed. Inter alia, this motivates our quest for synchronyina
minimal model with two different effective temperatures.

Here, we focus on the stochastic evolution of the phases 0, (¢) and 8,(t) of two coupled oscillators, which
obeys the minimal model in equation (1) with the covariance functions of the noise terms of the form

GOGH =268; TR 6t — 1), i, j=1,2 ©)

where T and T are, in general, not equal. For simplicity, we assume that the natural frequencies of both
oscillators are the same, ; = v, = v. On one hand, this assumption appears to be justified because the
experimentally observed difference of the natural frequencies is indeed rather small (see above) [14], so thatina
first approximation it can be neglected. On the other hand, this assumption allows us to disentangle the effects of
an out-of-equilibrium active noise from the effects caused by a possible, albeit small, difference of the natural
frequencies v; and v,.

We demonstrate, both analytically and numerically, that in such a system an emerging steady-state is
characterized by a nonzero current j(6}, 8,) in the frame of reference rotating with frequency v (note that j(6,,

0,) = Owhen TY = T2). This current, which is the same for both phases, with an amplitude depending on the
instantaneous values of 8, (f) and 6,(¢), sustains a synchronized time evolution of the rates 0,(t)and 0, (¢) at
which the phases change, i.e. it produces correlated drifts of phases. At the same time, we realize that the
stochastic phase locking seen in [ 14] degrades for unequal effective temperatures (see figure 1) and is weakest in
the case that one of the effective temperatures equals zero, i.e. that the corresponding rotary motor does not
fluctuate. In order to quantify the degree of synchronization, based on the correlated drifts of phases, we define a
characteristic order parameter Q, which measures the relative amount of the novel, out-of-equilibrium
synchronization mechanism and vanishes if the effective temperatures of the noise terms become equal. This
definition of Qis based on the explicit expression derived here for the steady-state current j(#,, 6,) and hence, it
represents a property averaged over the statistical ensemble of the trajectories of 6, (¢) and 6,(¢). In experiments,
however, it is often not possible to garner a sufficiently large statistical sample in order to carry out this kind of
averaging. For this reason, we propose an analogous order parameter Qs defined on the level of a single-
realization of the trajectories 6, () and 6,(¢) tracked within a time interval (0, S). We show, via numerical
simulations, that both definitions lead to consistent results, i.e. Qs — Q in the limit of an unlimited long
observation time S. This result, inter alia, shows that the system under study is ergodic, which cannot be
expected a priori, especially if Te(flf) = Te(fzf).

The outline of the paper is as follows. In section 2 we present our main results obtained for the model defined
by equations (1) and (2). We present here explicit expressions for the probability density function (pdf) in the
steady-state, the steady-state current and an ensemble-averaged order parameter. Further on, we introduce
analogous quantities for individual realizations of 6, (f) and 6,(¢). In section 3 we discuss the behavior of the
ensemble-averaged quantities and of their counterparts defined for a single realization of noises, and outline

8 The dynamics of two coupled Kuramoto oscillators exposed to two unequal noises has been already studied (see [3, 23, 24]). However, for
this situation the only (albeit quite complicated) issue, which was considered, concerns the form of the diffusion coefficient of the phase
difference A,.
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Figure 1. Individual realizations of (short) trajectories 6, (¢) and 6,(¢) (recall that 6, (), 0,(f) € (—1/2, 1/2) are periodic quantities),
defined in the reference frame rotating with the frequency v, for T = 0.5 Hzas functions of the reduced, dimensionless time

7= T t. The observation timeis S = 1sonly. Panel (a):¢ = 0.5Hzand T% = 0, 1.e. the rotary motor of the second flagellum is
perfect in that it does not fluctuate. Panel (b): ¢ = 0.5 Hzand thfzf) = 0.1 Hz. Panel (c):¢ = 0.5Hzand Te(fzf) = 0.5Hz. Panel (d):e = 1
Hzand Te(fzf) = 0.Panel (e):¢ = 1 Hzand Te(fzf) = 0.1 Hz. Panel (f): ¢ = 1Hzand Te(fzf) = 0.5 Hz. The individual trajectories 6;(f) and
0,(1) exhibit a noisy dynamics, but nonetheless evolve alongside each other for rather extended periods of time. This is precisely the
stochastic phase locking phenomenon described in [14] for the case of equal temperatures. It is inferred by following the time
evolution of the phase difference A; = 6,(t) — 6,(¢) in experiments and in numerical simulations. Here, we observe that this kind of
stochastic synchronization [14] degrades if T = T/2. Indeed, the stochastic phase locking is seemingly strongest in the case of equal
temperatures (panels (¢) and (f)). Itis less pronounced for the combination Te(f‘f) = 0.5Hzand Te(fzf) = 0.1 Hz (panels (b) and (e)), and
it is weakest for Te(flf) = 0.5Hzand Te(fzf) = 0 (panels (a) and (d)), for which the periods of synchronization in the dynamics of 6,(f) and
0,(t) are hardly visible.

some perspectives for future research. Details of calculations are relegated to the appendix. Here, we provide the
Fokker—Planck equation associated with the minimal Langevin model in equations (1) and (2), and present its
solution in the limit # — co. We also describe our numerical approach, which is based on the discretization of
the Langevin equations in equation (1).

2. Results

2.1.Ensemble-averaged properties

2.1.1. Pdfin the steady state

Our main analytical result is an exact expression for the joint pdf P(6;, 0,), which is the steady-state solution of
the Fokker—Planck equation (see equation (A1) in the appendix) associated with a system of two coupled
Langevin equations (equation (1)), and with the noise terms defined by equation (2):

POy, 0) = %exp( ——— cos (2 (0 - ez»), 3)
eff

where T, is the ‘mean’ effective temperature’ Ty = (Te(flf) + Te(fzf) ) / 2, while Zinsures that P(,, 6,) is properly

1/2 p1/2
normalized, i.e. L 1/ P 71/ /2

d6,d6, P (6, 6,) = 1. This normalization constant can be calculated exactly and is

? The effective temperatures enter the steady-state pdfin equation (3) only in an additive way, such that there is no singular behavior in the
case that they are unequal; here the only pertinent quantity is the mean effective temperature To¢. We note that this seems to be a general rule
(see equation (3) in [28]) for any form of the coupling term between the phases 6, () and ,(¢) in equation (1), which depends on the phase
difference only. As a consequence, the standard complex order parameter r exp(i¥) = (exp(27if;) + exp(27ib,)) /2, where r defines the
phase coherence and W the average phase [2, 4, 5], averaged over the pdf given in equation (3), is exactly equal to zero.

4
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Figure 2. Ensemble-versus time-averaged properties. Panel (a): the pdf P(6;, 6,) as a function of ¢, for four values of 6,. The coupling
parameterise = 0.5Hz, Te(flf) = 0.5Hz,and Te(fzf) = 0.1 Hz, consistent with the observations made in [14, 20]. The curves correspond
to the analytical prediction made in equation (3). The symbols represent the results of the numerical simulations (see section 3), based
on a single-realization, time-averaged Ps(f;, 6,) (equation (12)) with S = 10* s (such that for a typical value of the frequency

v ~ 47 Hz[14], each flagella makes, on average, 4.7 x 10° full beats). Panel (b): sign of the out-of-equilibrium current j(6;, 6,)
(equation (5)), which causes synchronized ‘drifts’ of phases 0, (f) and 0,(t), on the periodic (6, 6,)-plane for Te(flf) > Te(fzf). The black
lines 0; = 6,and |0; — 6,] = 1/2 correspond to a change of sign, i.e. j(6;, 6,) = 0. Panel (c): the out-of-equilibrium current j(6;, 6,)
as a function of 6, for four values of 6,. The coupling parameterise = 0.5 Hz, Téflf) = 0.5Hz,and Te(fzf) = 0.1 Hz. The curves
correspond to the analytical prediction made in equation (5). The symbols represent the results of numerical simulations for a single-
realization time-averaged current j5(6;, 6,) in equation (13) with S = 106 s. Panel (d): dimensionless order parameter Qas a function
of 0, for TY = 0.5 Hz, coupling parameter & = 0.5 Hz, and five values of T2 The curves correspond to the analytical prediction
made in equation (7), which defines the ensemble-averaged order parameter Q. The symbols represent the results of the numerical
simulations for the time-averaged order parameter Qs (equation (14)), based on a single realization of the noises with S = 10% s (i.e.
approximately 2.8 h). Note that for TZ = 0.5 Hz, i.e. in the case of equal effective temperatures, both the ensemble-averaged order
parameter Q and its time-averaged counterpart Qg are equal to zero.

givenby Z = Iy(e/(2Tix)), where Iy(x) is a modified Bessel function of the first kind. We note that equation (3)
here represents a particular case of a more general result derived in [28].

Since both natural frequencies v and v, are taken to be equal, the steady-state solution P(6,, 6,) depends on
the phases only via the phase difference, and thus becomes independent of v = v; = v, (see equation (3)). At
first glance, the latter property appears to be somewhat astonishing, but it can be readily understood once one
notices that the time evolution of the phase difference in the Langevin equations (1) becomes independent of v if
both natural frequencies are equal to each other. This means that P(0;, 0,) is defined in the frame of reference
rotating with the unique frequency v. Naturally, the maximum of P(6;, 6,) occurs for §; = 0,, regardless of the
relation between the temperatures Te(flf) and Te(fzf). For e/(2Ty) — 00, the pdfturns into a delta function of the
difference 6, — 0,. Figure 2(a) provides the pdf P(6,, 6,) (equation (3)) as a function of ¢, for several fixed values
of 0,.

2.1.2. Out-of-equilibrium current

A remarkable feature of the minimal model with two different temperatures is, that in the non-equilibrium
steady-state a nonzero current J occurs. This is a well-known aspect for stochastic dynamics of coupled
components, each evolving at its own temperature (see, e.g. [26—33]). However, in the case at hand this nonzero
current has a peculiar form due to the fact that the coupling term in equation (1) is a periodic function of the
phase difference. The components J; and J, of this current can be inferred directly from the Fokker—Planck
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equation (A1) (see appendix, equation (A2)). They obey
i = = j(0, 0;) + vP(0,, 65). 4

The expression on the right-hand side (rhs) of equation (4) contains the trivial term vP(6;, 6,), which is the
same for both components as could be expected on general grounds. It appears due to the constant drift term
v = 1) = v, ontherhsof the Langevin equations (1). In addition, there is a non-trivial contribution j(}, 8,),
which is a steady-state current in the frame rotating with the unique frequency v; it reads

. ATy .
(O 02) = —me 2 T sin2m (6, — )P (B, 6), 5)
eff

with ATy = T — T Rather unexpectedly, j(0;, 6,) appears also to be the same for both components J; and
J» of the current J, due to the form of the pdf in equation (3).
The mean out-of-equilibrium current

1/2 pl/2
oo = [ [ a0de o 09 =0, ©)

vanishes such that, due to (P (6;, 6,)) = 1, () = () = v.One can straightforwardly check that
fl/z d61j (0, 6,) = 0 = fj 1//22 d6,j (), 6,). On the other hand, j(6,, 6,) is not equal to zero locally (except

~1/2
for /91 = O,and |0, — 6,] = 1/2, where the current changes sign), and its sign and amplitude depend on the
precise values of the phases 6, and 6,. In figure 2(b), for a particular example with Te(flf) > Téfzf), we present a
‘phase chart’ for the sign (i.e. the direction) of the out-of-equilibrium current j(6;, 6,) in the periodic (6;,
6,)-plane. Further on, in figure 2(c) we show the current j(6,, 6,) (equation (5)) as a function of 6, for several
fixed values of 8, which also provides insight into its amplitude.

2.1.3. Out-of-equilibrium synchronization

Equations (4) and (5) demonstrate that in a minimal model with two different effective temperatures, in addition
to a stochastic phase locking of the coupled phases 6, and 0, (as observed in [14]), there is a different
synchronization mechanism (based on the out-of-equilibrium current j(6;, 6,)) which manifests itself via drifts
of the phases. These drifts are correlated in that they have the same sign (i.e. direction) and the same amplitude
for both phases. The actual direction of such drifts depends on the sign of AT, as well as on the relative
positions of 8, and 6, with respect to each other. In order to illustrate this behavior, we suppose AT > 0and
0 < 6, — 6, < 1/2.Inthis case, according to equation (5), both 6, and 6, experience a drift in the negative
direction up to the time at which, due to the thermal noise, the phase difference exceeds the value 1/2 so that

0, — 6, > 1/2.Then, both 0, and 0, revert the direction of their drift. Once 6, and 8, interchange their
positions, such that —1/2 < 6, — 0, < 0, the current j(}, 8,) changes sign and turns positive, so that both 6,
and 6, drift in the positive direction. Once 6, — 0; < —1/2, the drift direction again changes sign and becomes
negative.

2.1.4. An order parameter in the steady-state

In order to quantify this novel synchronization mechanism, and also in order to render it observable either
experimentally or in numerical simulations, one has to introduce a meaningful order parameter. In view of the
above discussion, for a minimal model with two effective temperatures the latter should be associated with the
steady-state current j(y, 8,). As in general, there is, however, some liberty in choosing this parameter. Here we
define an order parameter by integrating the out-of-equilibrium current j(6;, 8,) over 8, across half of the
domain in which this variable is defined, and dividing the result by the mean effective temperature. This gives the
following dimensionless order parameter (see equations (3) and (5))

1/2
Q(91>:T1 J a0 0

eff
ATy sinh((e/(2Teg) cos (26;))

Test In(e/2Tewr))

)

This order parameter Q is a function of the phase 6, and depends on the coupling parameter € as well as on the
values of the effective temperatures. It vanishes for ¢ — 0, for Tu¢ — 00, and for Te(flf) — Te(ff) , the latter limit
being characteristic of the transition to the equilibrium setup. The order parameter also vanishes for §; = £ /4.

Itis rewarding to determine the asymptotic behavior of Q in several particular limits. For instance, in the
high-temperature limit one has
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Q) = S5 - cos anth), Tr > </2, ®)
2T 5

which reduces to

2sign(Ty — Tif)

0, ~ 15 27, 9
Q0 max (T, TO) cos (2mty) )

if one of the effective temperatures is much higher than the other one.

In the opposite limit T < (g cos(276),)) /2, which can be reached either via a sufficiently strong coupling
(and for such values of 8, for which cos(276,) is nonzero) or if both temperatures are sufficiently small. In these
cases the system is close to the realm of the standard noiseless Kuramoto model and one finds directly from
equation (7) that, in leading order in the parameter £ /(2T¢r) — 00, the order parameter Q varies as

ATt € .
Q) = —=(me)l/2 exp(—_— sin? (7‘(‘91)). (10)
2T Test

In these limits Te(flf’z) — 0and forany 6; = 0, Q(f,) is exponentially small. For #; = 0, the exponential factor in
the latter expression equals 1 and hence the order parameter Q varies algebraically as function of the effective
temperatures and the coupling parameter ¢:

_ AT (me)!/?

Q0 =0) TR (11)

i.e.itis a non-analytic function of the coupling parameter and the effective temperatures.

2.2. Time-averaged properties for individual realizations of noises

It is not always possible to generate a statistical sample of large enough size, either in experiments or in numerical
simulations, which allows one to average over an ensemble of trajectories. To this end, we present alternative
definitions for the pdf P(6;, 6,), the current j(6;, 6;), and the order parameter Q, based on their time-averaged
counterparts.

2.2.1. The pdf for a single realization of noises
The pdf P(6,, 6,) (equation (3)) obeys P (6, 6,) = limgs_, Ps(6;, 6,) with

1 S
B0 0) = < fo dt 6(0,(t) — 0))6(05(t) — ), (12)

where 6,(f) and 6,(¢) are two individual realizations of the trajectories of the phases, corresponding to the
solutions of the Langevin equations (equation (1)) for a given realization of the noises {;(f) and (,(¢) in
equation (2). In equation (12), Ps (6}, 6) is the total number of simultaneous occurrences, within the time
interval (0, S), of two given realizations of the trajectories 0;(f) and 6,(¢) at the positions 6, and 65, respectively,
divided by the observation time S. If the system under study is ergodic, as it is the case (see section 3), the
ensemble average and the time average yield identical results, such that, in the limit S — oo, Ps(6;, 6,) should
attain P(6,, 6,).

2.2.2. Time-averaged current
We introduce the current jg(6;, 6,) as an average over the observation time S:

(0., 0 L% a4 o066 0,)6(0 0
js(0s 2)——§f0 £ 0,16 (0,(1) — 0))5(0x(t) — 05)
N ,
=—§ 7 dt 5@ - o500 - 0, (13)

where 6,(f) and 6,(¢) obey equation (1) with v set to zero. Note that the expressions in the first and the second line
in equation (13) correspond to the components of the current J and differ with respect to the time derivative of
the phases, i.e. 6, (t) or 6,(t). As we have shown above, the components of the ensemble-averaged current are
exactly equal to each other. We thus expect (and verify via numerical simulations) that the same holds for their
introduced time-averaged counterparts.

2.2.3. Time-averaged order parameter Qs

We integrate the expression in the first line on the rhs of equation (13) over 6, across one half of the domain in
which this variable is defined. Dividing the result by the mean effective temperature (see the definition of Q in
equation (7)), we obtain
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S / 1/2
Q= _571_;& ‘fO 4 BHEO) — &) x L do, 6(0,(t) — 0)
S .
_ _S%H fo dt 0,(6)5(0,(t) — 0))0n(62(1)), ”

where 014(2) is the Heaviside theta-function, which is zero forz < 0 and 1 forz > 0. We expect that, similarly to
the time-averaged quantity Ps(6;, 6,) (equation (12)) and to the time-averaged current in equation (13), for
large observation times S — o0, Qg converges to Q given in equation (7).

3. Discussion

In figure 1 we present appropriately discretized, individual realizations of the trajectories 6;(f) and 6,(f) which
consist of n = 10° steps with a discrete time step 6t = 10~ s (see the appendix for more details) for two distinct
values of the coupling parameter (¢ = 0.5 Hz for the upper row and ¢ = 1 Hz for the lower row), for the fixed
effective temperature T} = 0.5 Hz of flagellum 1, and for three temperatures of flagellum 2 (T% = 0, 0.1 ,
and 0.5 Hz). The case Te(fz) = 0.5 Hz,i.e. Te(flf) = Te(fzf) corresponds to the original one considered in [14]. In
contrast, the trajectories in panels (a) and (d) of figure 1 correspond, within the present choices, to the extreme
case of maximal disparity between the temperatures. In (a), 8,(¢) corresponds to zero temperature (i.e. a perfect
rotary motor operating with no noise) and is entrained in random motion by 6, (¢), which is subject to random
noise. Interestingly, the stochastic phase locking described in [14] is seemingly strongest in the case of equal
temperatures (panels (c) and (f)), is less pronounced for the combination Te(flf) = 0.5Hz and Te(fzf) = 0.1 Hz
(panels (b) and (e)) and it is weakest for Te(flf) = 0.5 Hz and Te(fzf) = 0 (panels (a) and (d)) for which the periods of
synchrony are hardly visible. Therefore, the synchronization observed in [14] degrades if the effective
temperatures become unequal.

The pdf P(6,, 0,) as a function of 6, for several values of 6, is illustrated in figure 2(a) together with the results
of numerical simulations for the time-averaged, single-trajectory quantity Ps(6;, 6,) in equation (12). The very
nice agreement between P(6,, 6,) and Ps(6,, 6,) shows indirectly that the system is indeed ergodic. Such an
agreement is, however, achieved for trajectories which are substantially longer than the ones shown in figure 1.
Here we have used the same 6t = 10~ ®sbutalarger value n = 10, so that the observation time is S = 10*s.

We use next the trajectories provided in figure 1 in order to obtain the introduced time-averaged current
Js (01, 6,) (equation (13)) for individual realizations of 1 (¢) and &,(£). The results (see the appendix for more
details) are presented in figure 2(c) together with the ensemble-average of j(0,, 6,) (equation (5)) as obtained
from the solution of the Fokker—Planck equation. The agreement between the two results is very satisfactory for
n = 10"%and 6t = 10~ °s, such that the observation time S = 10° s. For smaller 7 the data appear more noisy
and no conclusive statement on the convergence of j¢(6;, 6,) to j(6;, 0,) can be made.

In figure 2(d) we show Q obtained from equation (7) together with Q¢ following from equation (14). The
latter is obtained from the trajectories depicted in figure 1 (with 6t = 10 ®and n = 10'°, such that S = 10*s),
as function of 0, for e = 0.5 Hz, T} = 0.5 Hz, and three values of T3. We observe full agreement between our
theoretical prediction in equation (7), which is defined for an ensemble of trajectories, and Qg as introduced in
equation (14), which is defined for a single realization of noises. This implies that the latter can be conveniently
used for a single-trajectory analysis of corresponding experimental and numerical data. Finally, we note thata
rather long observation time S = 10* s has been used in figure 2(d) in order to demonstrate convergence of the
time-averaged order parameter to the ensemble-averaged one. The observation that the order parameter Qs
deviates from zero in out-of-equilibrium conditions can be made already for more moderate values of ,
although the data will look more noisy.

In summary, we have presented a generalization of a minimal model introduced in [14] to the case in which
the phases in equation (1) are subject to noises with different amplitudes. This can be thought of as a noisy
Kuramoto (or Sakaguchi) model of two coupled oscillators with distinct effective temperatures. From a physical
point of view, the original model in [ 14] has been introduced in order to describe the noisy synchronization of
two identical flagella of a biflagellate alga. Our generalized model is expected to be appropriate for the
description of a noisy synchronization of two flagella having different lengths. Indeed, the analysis in [20] has
revealed that the noise amplitudes depend on the length of the flagella. Viewed from a different perspective, our
study provides an, apparently first, solvable example for the synchronization of coupled oscillators under out-of-
equilibrium conditions. Hence, it opens new perspectives for a similar analysis of more complicated models,
such as a FitzHugh—Nagumo model (see, e.g. [24]). Note that in the example studied here the difference between
the effective temperatures is not artificially imposed but emerges naturally.

We have shown, both analytically and numerically, that in such a system a very peculiar form of a
synchronization of two coupled oscillators takes place. It is mediated by an emerging, current-carrying steady-
state. More specifically, we have shown that, on top of the synchronization of the phases as observed in [14],i.e. a

8
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stochastic phase locking, an additional synchronized rotation (drifts) of the phases takes place. In order to
quantify the degree of such a synchronization, we have introduced a characteristic order parameter, which
vanishes if the effective temperatures become equal to each other. This order parameter has been determined as
the average over an ensemble of realizations of the stochastic evolution of phases, as well as on the level of an
individual realization. The latter makes the order parameter suitable for experimental and numerical analyses,
for which a sufficiently large statistical sample cannot be formed. Via numerical simulations we have shown that
both definitions become equivalent in the limit of sufficiently long observation times, which also demonstrates
the ergodicity of the system under study. Finally, we remark that we expect a much richer behavior for the
relevant situation in which, in addition to unequal effective temperatures, the natural frequencies are also
different. This is a challenging subject for future research.
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Appendix. Details of calculations

A.1. Analytical approach

We provide the Fokker—Planck equation for the joint pdf P(6,, 6,), associated with the system of two coupled
Langevin equations (equation (1)) with the noise terms defined by equation (2). The associated Fokker—Planck
equation is derived by standard means [15] and reads

. 0 9
PO, b)) =—div] = —— ) — —
( 1 2) IV] 801 ]1 892 IZ
— (%[Téflf)aial + (mesin (2w (0, — 6,)) — V)]
L9 T(?i — (mesin 2w (0) — 62) + v) [ [P0y, 02), (A1)
892 ¢ 802

where] = (J1, J,) is the probability current. The steady-state solution of equation (A1) can be determined
analytically and is given by equation (3) in section 2.

From equation (A1) we infer the following expressions for the components J; and ], of the out-of-
equilibrium currentJ:

I = —(ng% + (mesin (2w (0, — 6,)) — V))P(Hl, 0,)
1

L= —(T@)i — (mesinRm (0, — 60y)) + V))P(@l, 6,). (A2)

Inserting the explicit expression of the pdfin equation (3) into (A2), and performing differentiations, we obtain
equation (4).

Rewriting the components J; and J, of the out-of-equilibrium current J in that frame of reference which
rotates with the frequency v, for j(6,, 0,) (see the definition in equation (5)) we find

(6, 02) = _(ngg% 4 e sin (27 (01 — 92)))p(91, 0,)
1

=— ngi — wesin(2m(6; — 6,)) |P(6,, 65).
20,

= el g Q7 (6, — 01))P (6, 6). (A3)
2T

The expression in the last line in equation (A3) corresponds to our equation (5).

A.2.Numerical approach

Here, we provide a brief description of our numerical algorithm. To this end we rewrite the Langevin equations
(equation (1)) in the frame of reference rotating with the frequency v, i.e. we change variables according to

01, = 91,2 (t) + vt,and then we discretize the time variable t = ndt, where n is an integer; 0t is the time-interval

9
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between the consecutive steps. Without loosing generality, in what follows we set v = 0 and, in order to avoid a
clumsy notation, we drop the tilde mark. Lastly, we recall the standard scaling properties of Gaussian delta-
correlated noises (; »(#) in order to cast the noise terms into a different (but equivalent) form, in which the
effective temperatures appear explicitly as amplitudes of the noises [ 15]. This turns equation (1) into recurrence
relations of the form

2T(1)
0i(t + 6t) = 0,(t) — 6t| e sin[2mA] + 6—:“771(0 ,
)

2T
0,(t + 8t) = 0,(t) + &t| mesin[27A] + 6—:ffn2(t) , (A4)

where A, = 6,(f) — 0,(t)is an instantaneous phase difference. The above recursions (with dimensionless
prefactors of the sine and of the noise terms) allow us to define the values of 8, (¢t + 6f) and 6,(¢ 4 6t) through the
values of A;and the values of the noise terms 7, ,(¢) at the previous moment of time. This permits us to
sequentially generate individual realizations of the phases 0, (f) and 0,(¢) of arbitrary duration ¢. The noises 7, (¢)
and 7),(?) in equation (A4) are dimensionless Gaussian random variables, uncorrelated for distinct values of ,
with zero mean and variances Uiz = 1, such that the pdfis given explicitly by P (7, ,) = exp( —7712)2 / 2) / NPz
This choice ensures that for ¢ = 0 the phases 6,(#) and 6,(f) undergo standard diffusive motion on the unit circle
with diffusion coefficients T and Te(fzf), respectively.

Adopting 6t = 10~° s (which is sufficiently short such that for a typical beating frequency of v ~ 47 Hz (see
[14]) each flagella makes a full beat within roughly 2.13 x 10* intervals ), we generate two individual
realizations of noises, thereby building up individual realizations of the trajectories 6, (f) and 0,() which consist
of n = 10° steps. As a consequence, within the full observation time (here S = 15) each flagella makes, on
average, 47 full beats. These trajectories are depicted in figure 1.

In order to determine numerically the introduced time-averaged current jq (6}, ¢,) (equation (13)) for
individual realizations of 8;(¢) and 0,(¢), we first appropriately discretize the expression on the rhs of
equation (13) and replace the time-derivative 6, (t) (or 6,(t)) by the finite difference given by equation (A4).
Then, we use the trajectories provided in figure 1. The results of such a procedure are presented in figure 2(c)
together with the ensemble-average of j(6;, 6,) (equation (5)) as obtained from the solution of the Fokker—
Planck equation. The order parameter Qg, as introduced in equation (14), is determined numerically in a
similar way.
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