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We investigate Sarnak's conjecture on the Möbius function in the special case when the test function is the indicator of the set of integers for which a real additive function assumes a given value.

Introduction and statements of results

According to a general pseudo-randomness principle related to a famous conjecture of Chowla [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF] and recently considered by Sarnak [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF], the Möbius function µ does not correlate with any function ⇠ of low complexity. In other words,

(1•1) X n6x µ(n)⇠(n) = o ✓ X n6x |⇠(n)| ◆ (x ! 1).
There are many ways of constructing functions of low complexity. Sarnak and others use return times of sampling sequences of a dynamical system, which leads to a natural measure of the complexity. Here we propose to follow another path by selecting the test-function as the indicator of the set of those integers where a real additive function assumes a given value. It is known since Halász [5] that

(1•2) Q(x; f ) := sup m2R X n6x f (n)=m 1 ⌧ x p 1 + E(x)
where we have put

E(x) := X p6x f (p)6 =0 1 p •
Here and in the sequel, the letter p denotes a prime number. The estimate (1•2) is known to be optimal in this generality since the two sides achieve the same order of magnitude when f (n) is equal to the total number of prime factors of n, counted with or without multiplicity.

As a first investigation of the above described problem, we would like to show that

Q(x; f, µ) := sup m2R � � � � � X n6x f (n)=m µ(n) � � � � �
is generically smaller than the right-hand side of (1•2). Of course we have to avoid the case when f (p) is constant, for then µ(n) does not oscillate on the set of squarefree integers n with f (n) = m. Therefore we seek an estimate which coincides with (1•2) when f (p) is close to a constant and which has smaller order of magnitude otherwise.

When f (p) is restricted to assume the values 0 or 1 only, we thus expect a significant improvement over (1•2) when Then, with the above notation and c = (2⇡ -4)/(3⇡ -2) ⇡ 0.30751, we have

(1•3) F (x) := X p6x 1 -f (p) p is large. Indeed,
(1•4) Q(x; f, µ) ⌧ x{1 + F (x)}e -cF (x) p 1 + E(x) •
For simplicity, let us retain in the sequel the hypothesis f (p) 2 {0, 1}. (1) Under the assumption that F (x), as defined in (1•3) above, grows sufficiently slowly, we may prove an estimate that is valid for each m in a large range around the mean, and so may be stated in the exact frame of Sarnak's conjecture.

Let us denote by N m (x; f ) the number of squarefree integers not exceeding x such that f (n) = m. It follows from results of Halász [START_REF] Halász | On the distribution of additive and the mean values of multiplicative arithmetic functions[END_REF], [START_REF] Halász | Remarks to my paper "On the distribution of additive and the mean values of multiplicative arithmetic functions[END_REF], and Sárközy [START_REF] Sárközy | Remarks on a paper of G. Halász[END_REF] that, given any  2]0, 1[, we have

(1•5) N m (x; f ) ⇣ x E(x) m m! e -E(x) � E(x) 6 m 6 E(x)/ � .
Moreover, Halász announced (see [START_REF] Elliott | Probabilistic number theory : central limit theorems[END_REF], p. 312) the possibility to obtain, in the same range for m, an asymptotic formula for N m (x; f ), a result which actually follows, as shown in [START_REF] Tenenbaum | Moyennes e↵ectives de fonctions multiplicatives complexes[END_REF], from a general e↵ective mean value estimate for multiplicative functions established in the same work-see below. This supports the hope to obtain an asymptotic formula for

N m (x; f, µ) := X n6x f (n)=m µ(n)
which directly compares to (1•5). In view of (1•1), we may assume with no loss of generality that f is strongly additive. We obtain the following result. Here and in the sequel we let log k denote the k-fold iterated logarithm. Theorem 1.2. Let  2]0, 1[ and let f denote a strongly additive function such that f (p) 2 {0, 1} for all primes p. Assume furthermore that

F (x) := X p6x 1 -f (p) p ⌧ log 3 x (x ! 1) (1•6) X exp{(log x)/(log 2 x) D }<p6y {1 -f (p)} log p p ⌧ (log y) (log 2 x) c 0 � x 1/(log 2 x) D < y 6 x � (1•7)
where D and c 0 are positive constants. Provided D is sufficiently large and uniformly in the range E(x) 6 m 6 E(x)/, we have

(1•8) N m (x; f, µ) = (-1) m N m (x; f ) ⇢ λ f e -2F (x) + O ✓ 1 (log 2 x) b ◆� , with (1•9) λ f := Y f (p)=0 1 -1/p 1 + 1/p e 2/p , b := 1 2 min{1, c 0 /(4 -)}.
To fix ideas, note that a strongly additive function f such that f (p) 2 {0, 1} satisfies hypotheses (1•6) and (1•7) as soon as

X p6y {1 -f (p)} log p ⌧ y (log 2 y) max(1,c 0 ) •
The proof of Theorem 1.2 rests on the following recent result of the second author [START_REF] Tenenbaum | Moyennes e↵ectives de fonctions multiplicatives complexes[END_REF] (theorem 1.4), for the statement of which we introduce further notation. We let M(A, B) designate the class of those complex-valued multiplicative functions g such that

(1•10) max p |g(p)| 6 A, X p, ⌫>2 |g(p ⌫ )| log p ⌫ p ⌫ 6 B,
and, for b 2 R, we write

(1•11) β 0 = β 0 (b, A) := 1 - sin(2⇡b/A) 2⇡b/A •
Moreover, given a complex-valued function g, we put w g := 1 if g is real, w g := 1 2 otherwise, and write

M (x; g) := X n6x g(n), Z(x, g) := X p6x g(p) p • Theorem 1.3 ([10]). Let a 2]0, 1 4 ], b 2 [a, 1 2 [, h := (1 -b)/b, A > 2b, B > 0, β := β 0 (b, A), x > 2, 1/ p log x < " 6 1 2
, and let the multiplicative functions g, r, such that r 2 M(x; 2A, B), |g| 6 r, satisfy the conditions X p6x r(p) -<e g(p) p 6 1 2 βb log(1/"), (1•12)

X

x " <p6y {r(p) -<e g(p)} h log p p ⌧ " δh log y (x " < y 6 x), (1•13) with δ 2 [a, 1 3 βb], and (1•14) min

x " <p6x r(p) > 4b.

We then have 

(1•15) M (x; g) = M (x; r) Y p P p ⌫ 6x g(p ⌫ )/p ⌫ P p ⌫ 6x r(p ⌫ )/p ⌫ + O ✓ x " w g δ e Z(x;r)-cZ(x;|g|-g)

Proof of Theorem 1.1

As noted by Halász [START_REF] Halász | On the distribution of additive functions[END_REF], we may assume that f is integer-valued. (Note, however, that a slight modification of his construction is needed to ensure that changing the range of f does not create new coincidences.) With this reduction, we plainly have

Q(x; f, µ) 6 Z 1/2 -1/2 |M (x; #)| d# with M (x; #) := X n6x µ(n)e 2⇡i#f (n) .
From Corollary III.4.12 in [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF], we get, uniformly for

# 2 R, T > 1, x > 1, (2•1) M (x; #) ⌧ x{1 + m(x; #, T )} e m(x;#,T ) + x T ,
where we have put m(x; #, T ) := min

|⌧ |6T X p6x 1 + cos(2⇡#f (p) -⌧ log p) p •
We select T := log x, so that the second term on the right of (2•1) is negligible compared to the upper bound in (1•4). Let h # defined by

h # (t) := 1 + min{cos(t), cos(2⇡# -t)} (t 2 R),
so that

s # := 1 2⇡ Z ⇡ -⇡ h # (t) dt = 1 - 2 ⇡ � � sin � ⇡#) � � (# 2 [-1 2 , 1 2 ]),
and, for suitable

⌧ 2 [-T, T ], m(x; #, T ) > X p6x h # (⌧ log p) p •
The right-hand side may be estimated via partial summation as made explicit in lemma III.4.13 of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]. For any w 2

[2, x] and # 2 [-1 2 , 1 2 ], we have (2•2) X w<p6x h # (⌧ log p) p = s # log ⇣ log x log w ⌘ + O ✓ 1 w log x + 1 + |⌧ | e p log w ◆ . If 1 6 |⌧ | 6 T , we select w := (log 2 x) 2 to obtain m(x; #, T ) > s # log 2 x + O(log 3 x).
Next, set

log v := (log x) exp ⇢ - 2 cos 2 (⇡#)E(x) + 2F (x) 2 + s # � . If 1/ log v < |⌧ | 6 1, we put w := v in (2•2) and get X v<p6x h # (⌧ log p) p > 2s # cos 2 (⇡#) 2 + s # E(x) + 2s # 2 + s # F (x) + O(1).
And finally, if |⌧ | 6 1/ log v, we have trivially

X p6v 1 + cos(2⇡#f (p) -⌧ log p) p = X p6v 1 + cos(2⇡#f (p)) p + O(1) = (1 + cos(2⇡#)) X p6v f (p)=1 1 p + 2 X p6v f (p)=0 1 p + O(1) > 2 cos 2 (⇡#)E(x) + 2F (x) -2 log ⇣ log x log v ⌘ + O(1) > 2s # cos 2 (⇡#) 2 + s # E(x) + 2s # 2 + s # F (x) + O(1).
Therefore, we get in all cases

(2•3) m(x; #, T ) > 2s # cos 2 (⇡#) 2 + s # E(x) + 2s # 2 + s # F (x) + O(1) > c cos 2 (⇡#)E(x) + cF (x) + O(1).
Integrating over # immediately yields the result stated. u t

Proof of Theorem 1.2

Let us introduce the multiplicative function g(n n) . From (2•3), we see that, with c as in the statement of Theorem 1.1,

) := µ(n)z f (n) with z := -%e 2⇡i# , |#| 6 1 2 ,  6 % 6 1/. Put r(n) := µ(n) 2 % f (
X p6x r(p) -<e (g(p)/p i⌧ ) p > c% sin 2 (⇡#)E(x) + c%F (x) + O(1) (|⌧ | 6 T := log x).
We may therefore apply Corollary 2.1 of [START_REF] Tenenbaum | Moyennes e↵ectives de fonctions multiplicatives complexes[END_REF] to get

(3•1) M (x; g) ⌧ M (x; r) ⇢ e -c%E(x) sin 2 (⇡#)-c%F (x) log 2 x + 1 (log x)  � .
With the aim of applying Cauchy's formula to detect N m (x; f, µ), we next seek an estimate for M (x; g) when # is small, namely

|#| 6 # 0 := K s log 3 x log 2 x ,
where K is a large constant-actually any K > 1/ p 4c will do. We have

X p6x r(p) -<e g(p) p = %(1 -cos 2⇡#)E(x) + 2%F (x) 6 2%⇡ 2 # 2 + 2%F (x),
hence condition (1•12) is plainly fulfilled with " := |#| 2/δ + (log 2 x) -c 0 /(hδ) provided δ is chosen sufficiently small in terms of b,  and K. Next, for x " < y 6 x, we have X

x " <p6y {r(p) -<e g(p)} h log p p ⌧ %# 2h log y + % X

x " <p6y f (p)=0 log p p ⌧  � " δh + (log 2 x) -c 0 log y, so hypothesis (1•13) is also verified. Since (1•14) holds trivially on selecting b := /4, and hence h = 4/ -1, we conclude that (1•15) is valid. We obtain, with c := b, 

(3•2) M (x; g) = M (x; r) Y p6x f (p)=1 1 -z/p 1 + %/p Y p6x f (p)=0 1 -1/p 1 + 1/p + O ✓ x" δ/2 e Z(x;r)-cZ(x;r-g) log x ◆ .

◆

  where c := b/A. The implicit constant in (1•15) depends at most upon A, B, a, and b.

Now, appealing forZ 1 / 2 - 1 / 2 e

 1212 instance to theorem 1.1 of[START_REF] Tenenbaum | Fonctions multiplicatives, sommes d'exponentielles, et loi des grands nombres[END_REF], we observe that M (x; r) ⇣ xe Z(x;r) log x and so we may rewrite (3•2) asM (x; g) = M (x; r) ⇢ λ f e -(z+%)E(x)-2F (x) + O ✓ ⇣ |#| + (log 2 x) -c 0 h/2 ⌘ e -c 1 # 2 E(x)-c 1 F (x)◆� , valid for |#| 6 # 0 and some constant c 1 > 0. Integrating on the circle |z| = % := m/E(x) and taking (3•1) into account, we readily obtain in the stated range for m,(3•3) N m (x; f, µ) = (-1) m -2i⇡#m % -m M (x; g) d# = (-1) m λ f M (x; r) E(x) m m! e m ⇢ e -2F (x) + O ✓ e -c 2 F (x) (log 2 x) b ◆� ,with c 2 := min(c 1 , c). Since, by a straightforward variant of corollary 2.4 of [10](2) , N m (x; f ) = M (x; required conclusion.

  in this simple case we obtain the following estimate.

	Theorem 1.1. Let f denote a real additive arithmetic function such that f (p) 2 {0, 1} for all p.
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All our results could be straightforwardly adapted to case when f (p) is restricted to a fixed, finite set, or even to a set of moderate size depending on x.

Applied to !(n; E) instead of ⌦(n; E) with the notation of[START_REF] Tenenbaum | Moyennes e↵ectives de fonctions multiplicatives complexes[END_REF].