
HAL Id: hal-02095571
https://hal.sorbonne-universite.fr/hal-02095571

Submitted on 10 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel Zebrafish Mono-α2,8-sialyltransferase (ST8Sia
VIII): An Evolutionary Perspective of α2,8-Sialylation

Lan-Yi Chang, Elin Teppa, Maxence Noel, Pierre-André Gilormini, Mathieu
Decloquement, Cedric Lion, Christophe Biot, Anne-Marie Mir, Virginie

Cogez, Philippe Delannoy, et al.

To cite this version:
Lan-Yi Chang, Elin Teppa, Maxence Noel, Pierre-André Gilormini, Mathieu Decloquement, et al..
Novel Zebrafish Mono-α2,8-sialyltransferase (ST8Sia VIII): An Evolutionary Perspective of α2,8-
Sialylation. International Journal of Molecular Sciences, 2019, 20 (3), pp.622. �10.3390/ijms20030622�.
�hal-02095571�

https://hal.sorbonne-universite.fr/hal-02095571
https://hal.archives-ouvertes.fr


 International Journal of 

Molecular Sciences

Article

Novel Zebrafish Mono-α2,8-sialyltransferase
(ST8Sia VIII): An Evolutionary Perspective of
α2,8-Sialylation

Lan-Yi Chang 1,2, Elin Teppa 3 , Maxence Noel 1, Pierre-André Gilormini 1 ,
Mathieu Decloquement 1, Cédric Lion 1, Christophe Biot 1, Anne-Marie Mir 1, Virginie Cogez 1,
Philippe Delannoy 1 , Kay Hooi Khoo 2, Daniel Petit 4, Yann Guérardel 1

and Anne Harduin-Lepers 1,*,†

1 Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle,
F-59000 Lille, France; lanyi.chang@gmail.com (L.-Y.C.); maxence.noel@univ-lille.fr (M.N.);
pierre-andre.gilormini@univ-lille.fr (P.-A.G.); mathieu.decloquement.etu@univ-lille.fr (M.D.);
cedric.lion@univ-lille.fr (C.L.); christophe.biot@univ-lille.fr (C.B.); am.mir@wanadoo.fr (A.-M.M.);
virginie.cogez@univ-lille.fr (V.C.); philippe.delannoy@univ-lille.fr (P.D.); yann.guerardel@univ-lille.fr (Y.G.)

2 Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; kkhoo@gate.sinica.edu.tw
3 Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative–UMR

7238, 4 Place Jussieu, 75005 Paris, France; elinteppa@gmail.com
4 Glycosylation et différenciation cellulaire, EA 7500, Laboratoire PEIRENE, Université de Limoges,

123 avenue Albert Thomas, 87060 Limoges CEDEX, France; daniel.petit@unilim.fr
* Correspondence: anne.harduin-lepers@univ-lille.fr; Tel.: +33-320-33-62-46; Fax: +33-320-43-65-55
† Current address: Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille,

Faculté des sciences et Technologies, 59655 Villeneuve d’Ascq, France

Received: 18 December 2018; Accepted: 28 January 2019; Published: 31 January 2019
����������
�������

Abstract: The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the
transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated
O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies
also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome.
Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during
zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ
hybridization experiments demonstrate that expression of this gene is always detectable during
zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly,
using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay
(MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on
glycoproteins or glycolipids as the human homologue does. Using comparative genomics and
molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has
disappeared in the ray-finned fish and that the homologue described in fish correspond to a new
subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes
and Sarcopterygii.

Keywords: mono-α2,8-sialyltransferases; diSia motifs; evolution; ST8Sia; functional genomics

1. Introduction

Sialic acids are acidic monosaccharides mostly found at the outermost level of glycolipids and
glycoproteins. Due to this terminal position and their nature, sialylated molecules are mediators
for ligand-receptor and cell-cell interactions among other functions [1–3]. Furthermore, the function
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of a number of glycoconjugates at the cell surface depends on sialoglycan structures encountered
(Neu5Ac, Neu5Gc, KDN), their modification (O-acetylation, N-acylation, O-methylation, O-sulfation),
their glycosidic linkage (α2,3, α2,6, α2,8 and α2-8/9) and their degree of polymerization (DP) [4].
DiSia (DP = 2) structures are abundant on brain glycolipids of vertebrates and less abundant in
glycoproteins [5], whereas oligoSia (2 < DP < 7) and polySia (DP >8) structures are prominent structural
features of a restricted number of mammalian proteins conferring particular physico-chemical
properties to these proteins and cell surfaces [6–8]. A few examples of di-sialylated proteins includes
diSia structures linked to GalNAc residues on O-glycans from bovine chromogranins [9] or linked
to N- and O-glycans in mouse B cells [10] and of human umbilical cord erythrocyte Band 3 [11] or
linked to blood glycoproteins including von Willebrand factor core 1 O-glycan [12], immunoglobulins,
MUC-1 [13], α2-macroglobulin and adipoQ from bovine serum [14,15].

In teleost fish, a broad variety of polySia chains have been described on the salmonid
egg polysialoglycoprotein (PSGP) [16,17] with potential implication in osmoregulation during
fertilization. In particular, zebrafish are characterized by a rich and diverse pattern
of sialylation of glycoproteins and glycolipids that is temporally and spatially regulated.
The N-glycome of the zebrafish embryo is characterized by the presence of both the canonical
Siaα2-6Galβ1-4GlcNAc and the species-specific Galβ1-4(Siaα2-3)Galβ1-4(Fucα1-3)GlcNAc epitopes,
whereas the O-glycome is dominated by the unusual Fucα1-3GalNAcβ1-4(Siaα2-3)Galβ1-3GalNAc
and the conventional Siaα2-3/6Galβ1-4GlcNAcβ1-6(Siaα2-3Galβ1-3)GalNAc glycan structures [18,19].
Most of these sialylated structures are comprised of variable amounts of either Neu5Ac
or Neu5Gc. Interestingly, fertilized eggs exhibit a stage-specific mucin-type O-glycan
Fucα1-3GalNAcβ1-4(Siaα2-8Siaα2-3)Galβ1-3GalNAc with distinctive Neu5Ac/Neu5Gc sialylation
pattern. Structural analysis clearly established that only Neu5Gc could be further elongated
with another Sia residue generating Neu5Gcα2-8Neu5Gc and Neu5Acα2-8Neu5Gc di-sialylated
motifs [18,20] suggesting high specificity of the enzymes involved in the synthesis of these zebrafish
α2,8-sialylated epitopes. This unusual di-sialylated structure disappeared 24 h post fertilization
(hpf) from the developing embryo. To summarize on the oligosialylation status of glycoconjugates
during zebrafish development, it was shown that expression of glycoprotein-associated diSia motifs
rapidly decreased following fertilization, whereas glycolipid-associated oligoSia (diSia and triSia)
structures followed a reverse trend with an onset of expression at 24 hpf. Curiously, this pattern
of oligosialylation did not correlate with the temporal expression of associated mono- oligo- and
poly-α2,8-sialyltransferases and what we knew of their enzymatic activity suggesting other regulatory
mechanisms [20]. In adult zebrafish tissues, oligosialylation was exclusively detected in brain
gangliosides, in agreement with the high expression level of all α2,8-sialyltransferases identified
in the zebrafish genome [21].

Biosynthesis and function of di-, oligo- and poly-sialylated glycoproteins during embryonic
development of vertebrates and in their adult tissues is not well known due to the number of
sialyltransferases involved that have not been well studied and enzymatically characterized, up to
now. Indeed, one of the major challenges that glycobiologists have to face is to determine the
enzymatic specificity of each newly identified vertebrate enzyme. Sialyltransferases belong to the GT
CAZy family 29 [22], a subset of glycosyltransferases that was already present in the Last Common
Ancestor of Eukaryotes (LECA) [23]. These biosynthetic enzymes are characterized by the presence
in their protein sequence of four conserved motifs called sialylmotifs (L, S, III and VS) implicated
in 3-D structure maintenance, substrate binding, and catalysis [24–28]. These sialylmotifs are also
useful for in silico identification of homologous sialyltransferases in the genomic and transcriptomic
databases and reconstruction of their evolutionary history [29–32]. Four families of sialyltransferases
known as ST3Gal, ST6Gal, ST6GalNAc and ST8Sia are distinguished according to their substrate
specificities and glycosidic linkage formed [31,33] and each family is characterized by family motifs
likely involved in linkage specificity and acceptor monosaccharide recognition [29,34]. We have
developed a general strategy to identify and assess phylogenetic distribution of sialyltransferases in
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more distantly related genomes and more importantly to infer sialyltransferase function [32]. Three
of the four sialyltransferase families were studied in the context of the whole genome duplication
(WGD) events that took place in the emerging vertebrates, e.g., two rounds of duplications at the base
of vertebrates and a third round at the base of teleost fish [35–38]. This led to the identification in the
fish genomes of a large set of novel β-galactoside α2,3/6-sialyltransferase-related sequences belonging
to the ST3Gal and ST6Gal families [37–39] that could explain the recently described innovations in the
fish sialome [18–21,40]. The human ST8Sia family is comprised of six subfamilies: ST8Sia I, ST8Sia V
and ST8Sia VI are mono-α2,8-sialyltransferases involved in di-sialylation of glycoconjugates, while
ST8Sia III are oligo-α2,8-sialyltransferases and ST8Sia II and ST8Sia IV are poly-α2,8-sialyltransferases
implicated in the polysialylation of glycoproteins [29] and the six human orthologues could be
identified in the zebrafish genome [31]. However, this last family appears to be much larger in
teleost fish, since we noted the presence of α2,8-sialyltransferase-related sequences defining new
subfamilies like the ST8Sia III-related (ST3Sia III-r) and the ST8Sia VII found in Cyprinidae and
Salmonidae fish. This ST8Sia VII subfamily has arisen 552 million years ago (MYA) after the first whole
genome duplication event (WGD-R1) and is also found in snakes and lizards, whereas the ST8Sia
III-r subfamily is found in a few fish orders like perciformes, tetraodontiformes and beloniformes,
and diverged from the ST8Sia III subfamily about 474 MYA following the second whole genome
duplication event (WGD-R2) [35].

Following recent structural studies of α2,8-sialylation patterns conducted during zebrafish
embryonic development [18,20] and in adult zebrafish tissues [21], we wondered whether the
α2,8-linked sialic acids found on the zebrafish di-sialylated O-glycans could be transferred by
the orthologue of the human ST8Sia VI identified in the zebrafish genome [31], since the human
enzyme was reported to be responsible for the biosynthesis of di-sialylated O-glycosylproteins
(Neu5Acα2,8Neu5Acα2,3Galβ1,4GalNAc-O-Ser). Interestingly, the human enzyme showed very low
activity or no activity towards gangliosides or sialylated N-glycosylproteins [41], whereas the mouse
ST8Sia VI showed slightly different specificity towards O-glycans and GM3 [42]. As a first step towards
bringing a functional basis to the distribution of the various diSia motifs described in the zebrafish
tissues, we analyzed the spatio-temporal profile of the zebrafish st8sia6-like gene during the zebrafish
embryogenesis. In an attempt to define its biochemical activity, we expressed a recombinant enzyme
and took advantage of chemoenzymatic glycan labeling strategies using unnatural CMP-activated
sialic acid reporters [43,44] and of the newly developed MicroPlate Sialyltransferase Assay (MPSA) [45]
to show that the enzyme was not active on sialylated fetuin. Towards understanding this unexpected
data, we assessed the evolutionary relationships of fish mono-α2,8-sialyltransferases (i.e., ST8Sia I,
ST8Sia V, ST8Sia VI and ST8Sia VII). Combining molecular phylogeny, sequence similarity network
and synteny/paralogy analyses, we showed that the human ST8Sia VI orthologue disappeared in
teleosts fish genomes, whereas another distinct mono-α2,8-sialyltransferase subfamily renamed ST8Sia
VIII was present in Teleost fishes and had disappeared in Chondrichtyes (sharks) and Sarcopterygii
(lobbed-finned fishes and tetrapods).

2. Results and Discussion

2.1. In Silico Identification and Sequence Analysis of Zebrafish ST8Sia Sequence

In an initial investigation to identify the zebrafish α2,8-sialyltransferases, the human ST8Sia VI
nucleotide sequence (AJ621583, [41]) used as a query to screen genomic databases [31] led to the
identification of a single zebrafish sequence (AJ715551) using the BLAST algorithm [46]. Exhaustive
searches in the transcriptomic database [47] did not yield evidence for another ST8Sia VI-related
sequence. The zebrafish gene sequence was located on the zebrafish chromosome 3, spanning
approximately 16 kb. It was shown to contain seven exons producing a 1080 bp transcript, and to
present a genomic organization comparable to the one described for the human ST8SIA6 gene [29,31,35].
Translation of the open reading frame predicted a polypeptide of 360 amino acids containing the
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four sialylmotifs (L, S, III and VS) characteristic of all the sialyltransferases of the GT#29 CAZy
family [23] and also the family-motifs “a” (NPSI) and “b” (GFWPF) (Figure 1) predicted for the
α2,8-sialyltransferases [29,34,35]. Hydropathy analysis of this protein indicated the presence of
a 19 amino acid hydrophobic sequence in the NH2-terminal region likely corresponding to the
transmembrane domain. Five potential N-glycosylation sites were also predicted in the zebrafish
ST8Sia VI-like sequence (Figure 1), which are not conserved in the human nor in the mouse ST8Sia VI
sequences as observed in multiple sequence alignment (data not shown). Intriguingly, the zebrafish
sequence showed a rather low degree of identity (37%) compared to its human orthologue (Table 1),
whereas the other zebrafish ST8Sia proteins showed a higher percentage of identity ranging from
59% to 78% to their human counterparts (Table 2). Furthermore, this zebrafish sequence had
comparable levels of similarity with the human ST8Sia V sequence. Altogether, these first sequence
analyses indicated that the zebrafish ST8Sia VI-like protein was likely evolutionarily related to these
mono-α2,8-sialyltransferases, although it may have undergone rapid evolution in the fish genome.
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Figure 1. Nucleotide and predicted amino acid sequences of the zebrafish ST8Sia VI-like (DreST8Sia
VI). Numbering of the cDNA begins with the initiation codon. The amino acid sequence is shown in
single-letter code. The putative 19 amino acid N-terminal transmembrane domain is underlined with a
grey line and the putative N-glycosylation sites (N-X-S/T) are circled. The sialylmotifs L, S, III and VS are
underlined with a single black line and the ST8Sia family motifs with a double black line. The broken line
in the nucleotide sequence indicates the exon/intron junctions.

Table 1. Sequence similarity analysis of the zebrafish ST8Sia VI-like. The zebrafish ST8Sia VI-like
sequence was compared to the 20 known human sialyltransferase sequences.

Homo sapiens Accession Number Danio rerio ST8Sia VI-like (AJ715551)

ST8Sia I D26360 33.3%
ST8Sia II U33551 29.7%
ST8Sia III AF004668 29.9%
ST8Sia IV L41680 27.7%
ST8Sia V U91641 35.8%
ST8Sia VI AJ621583 35.8%
ST3Gal I L29555 21.4%
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Table 1. Cont.

Homo sapiens Accession Number Danio rerio ST8Sia VI-like (AJ715551)

ST3Gal II X96667 23.7%
ST3Gal III L23768 20.3%
ST3Gal IV L23767 23.6%
ST3Gal V AB018356 24.8%
ST3Gal VI AF119391 22.1%
ST6Gal I X17247 19%
ST6Gal II AB059555 17.2%

ST6GalNAc I Y11339 16%
ST6GalNAc II AJ251053 23.6%
ST6GalNAc III AJ507291 16.9%
ST6GalNAc IV AJ271734 20%
ST6GalNAc V AJ507292 20.5%
ST6GalNAc VI AJ507293 19.4%

Table 2. Sequence similarity analysis of the ST8Sia orthologues. The human ST8Sia sequences were
compared to their zebrafish orthologues.

Sialyltransferase Homo sapiens Danio rerio Identity (%)

ST8Sia I D26360 AJ715535 58.7%
ST8Sia II U33551 AY055462 60.9%
ST8Sia III AF004668 AJ15541 77.9%
ST8Sia IV L41680 AJ715545 67.8%
ST8Sia V U91641 AJ715546 72.1%
ST8Sia VI AJ621583 AJ715551 35.8%

2.2. Spatio-Temporal Expression of the st8sia-Like Gene during Zebrafish Development

To determine the role of this st8sia-like gene in zebrafish, we next investigated the spatio-temporal
expression of the zebrafish gene during embryonic development. Quantitative RT-PCR (QPCR)
was used to analyze its expression in staged embryos. Our data shown in Figure 2A indicated an
increased pattern of temporal expression along zebrafish embryo development, whereas diSia motifs
on O-glycosylproteins decreased as previously mentioned [20]. We also examined the distribution of
the st8sia6-like transcripts during zebrafish embryonic and larval development using whole mount
in situ hybridization (ISH). A probe complementary to the st8sia6-like cDNA was designed, and ISH
was performed on whole zebrafish embryos from different developmental stages. The hybridization
sites were revealed by a chromogenic reaction with digoxigenin and the expression patterns were
analyzed. The transcripts were not detected in the gastrula (i.e., 5 hpf) and were first detected at
the early segmentation stage (i.e., 10 hpf; 1–4 somites stage), showing a general distribution of the
mRNA (Figure 2B). During middle segmentation stage (i.e., 17 hpf; 10–13 somite stages), the st8sia6-like
transcripts showed a general expression and were reinforced in the ventral portion of the spinal cord,
in somites and in primordial pharyngeal arches. In the pharyngula stage, at 24 hpf, we detected
general expression of the transcripts with higher staining in the myotomes, pharyngeal arches, heart
and hypaxial muscles. At 36 hpf, the st8sia6-like gene expression was restricted to the ventricular
part of the central nervous system (CNS), to pronephric ducts, to axial vasculature (caudal vein and
posterior cardinal vein), to hypothalamus and dorsal part of the hindbrain. At hatching stage (48 hpf),
expression of the st8sia6-like transcripts was detected in the dorsal region of rhombencephalon, in the
optic tectum, in the pectoral fin, as well as in dorsal part of telencephalon and diencephalon. At larval
stage (5 days), expression was detected in the dorsal rhombencephalon, in the ventricular part of
the midbrain and around the epiphysis. This pattern of expression of the zebrafish st8sia6-like gene
further suggested a role of this enzyme during zebrafish development, not only in the central nervous
system, but also in non-neuronal biological systems and at the whole animal level. Previous studies
have shown that the zebrafish mono-, oligo- and poly-α2,8-sialyltransferase genes exhibit distinct and
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overlapping pattern of expression in the developing central nervous system [48–52]. Indeed, a recent
study highlighted the importance of the zebrafish st8sia6-like gene as a Dlx5-transcriptional target
in the developing zebrafish olfactory/GnRH system that could confer anti-adhesive properties to
neuronal surfaces [53]. Interestingly, the zebrafish st8sia6-like gene is also expressed in non-neuronal
tissues like the pharyngeal arches and somites, similar to the previously described zebrafish st8sia3
gene [48] indicating a potential role of this enzyme during muscle development.Int. J. Mol. Sci. 2018, 19, x 6 of 21 
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Figure 2. Zebrafish st8sia6-like gene spatio-temporal expression during embryonic and larval
development. (A) Absolute quantification of the mRNA levels of the zebrafish st8sia6-like gene
was achieved by Q-PCR in ovary, and at 0, 6, 14, 24 and 36 hpf. PCR for two biological samples was
carried out in triplicate as described in the materials and methods section, and data are expressed
as means +/-SD. (B) The zebrafish st8sia6-like gene distribution was studied by whole mount in situ
hybridization with a digoxigenin-labeled Dre st8sia6-like antisense riboprobe. Developmental stage
is given as hpf and anterior is to the left: (a) gastrula stage (5 hpf); (b) early somitogenesis (10 hpf);
(c) mid-somitogenesis (15 hpf), (d,e) lateral and dorsal views at pharyngula stage (24 hpf), (f,g), lateral
and dorsal views at 36 hpf, (h,i) hatching time (48 hpf), (j,k), larva stage (120 hpf).

2.3. Expression of a Recombinant and Soluble Protein—Enzymatic Characterization

To facilitate functional analyses, a soluble form of the zebrafish enzyme, cytoplasmic and
transmembrane domains deleted, was constructed in the expression vector 3xFLAG-CMV9.
The truncated cDNA lacking the first 33 amino acid residues of the N-terminus region (∆33ST8Sia
VI-like) was transiently transfected in mammalian cells. As expected, the recombinant FLAG-tagged
protein could be detected in the culture medium and cell lysate of the transfected COS-7 cells by
Western blot using BioM2 anti-FLAG monoclonal antibody. Although the theoretical molecular mass
of the recombinant zebrafish enzyme was 42 kDa, we detected several protein isoforms ranging from
50 to 52 kDa, further suggesting the presence of post-translational modifications (Figure 3). Indeed,
we showed that these bands corresponded to N-glycosylated isoforms since peptide N-glycosidase
F (PNGase F) treatment induced a shift to the expected 42 kDa. However, it is interesting to note
that the relative expression and secretion levels of the zebrafish ∆33ST8Sia VI-like were quite low,
similar to the one described for the human ∆27ST8Sia VI [41,54]. It is now accepted that in vivo,
most glycosyltransferases assemble to form homodimers or heterooligomeric complexes with other
proteins and that these processes modulate their enzymatic activity [55,56]. Sequences flanking the
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transmembrane domain are often involved in these interactions and thus their removal or the absence
of essential co-factors may explain the encountered difficulties in protein folding and secretion.
Int. J. Mol. Sci. 2018, 19, x 7 of 21 
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As a first attempt to characterize the zebrafish ST8Sia VI-like biochemical function, we next
studied the enzymatic activity of the soluble enzyme produced in the cell culture medium of transiently
transfected cells using in vitro enzymatic assays, fetuin and labeled CMP-[14C]Neu5Ac, as previously
described for other sialyltransferases [44,57,58]. Native fetuin possesses three sialylated O-glycans
and three sialylated N-glycans [59,60], and served as a good acceptor substrate to characterize the
human ST8Sia VI enzymatic activity [41]. However, we only could detect extremely low levels
of transfer of [14C] sialic acid residues onto the sialylated-glycans of fetuin, preventing further
structural and DP analyses (data not shown). Failure to detect significant enzymatic activity prompted
us to use expression vectors with the complete fish ST8Sia VI-like cDNA sequence FLAG-tagged
or not, to transiently transfect COS-7 cells. Microsomal fractions containing the full length fish
enzyme were used in enzymatic assays, but again, no significant enzymatic activity could be
detected (data not shown). We therefore chose to apply the quick and sensitive MPSA developed
recently to assess the sialyltransferase activity of human recombinant ST3Gal I and ST6Gal I onto
glycoprotein acceptors [45]. In this assay, the acceptor glycoprotein is coated on the bottom of 96-well
plate and the crude sialyltransferase activity is assessed using CMP-SiaNAl, a high-energy donor
form of the unprotected alkyne-tagged sialic acid reporter SiaNAl that is readily used by these
two human sialyltransferases [43,44] followed by covalent ligation of an azido-probe via a Cu(I)
catalyzed azide-alkyne cycloaddition (CuAAC) [61,62]. Firstly, we optimized the MPSA for the human
recombinant ST8Sia VI and defined the optimum reaction conditions (i.e., temperature, incubation
time and proper substrates concentrations) for this ST8Sia enzyme. We carried out a time course assay
and observed the time-dependent SiaNAl transfer activity of the human ST8Sia VI onto fetuin reaching
a plateau at 4 h, whereas no SiaNAl transfer activity was detected for the zebrafish enzyme, or the
mock control (Figure 4A). Indeed, we observed a significant SiaNAl transfer activity of the human
ST8Sia VI onto native fetuin, bovine submaxillary gland mucin (BSM) and orosomucoid and almost no
transfer activity onto asialofetuin and asialoorosomucoid (Figure 4B), as previously described using
CMP-[14C]Neu5Ac [41]. These data showed that the MPSA approach could be used to determine
mono-α2,8-sialyltransferase activities onto various glycoprotein acceptors. However, no significant
SiaNAl transfer activity could be detected for the zebrafish enzyme, whatever the isoform of the
enzyme used or the acceptor substrate used (i.e., mammalian glycoproteins) (Figure 4B) or GD1a
ganglioside (data not shown). These data further suggested a loss of function of this enzyme or a
low affinity for the used mammalian acceptor substrates and a quite different enzymatic activity of
the zebrafish enzyme. Recent studies and the present data using the human ST8Sia VI have shown
that vertebrate sialyltransferases tolerate large modifications at the C-5 position [44,63] and so a
preference of the zebrafish enzyme for CMP-Neu5Gc over CMP-Neu5Ac is also less probable. There
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are only a handful of studies reporting enzymatic characterization of fish sialyltransferases, which all
suggest lower activities of the fish enzymes compared to their mammalian orthologue. For instance,
the zebrafish orthologue of the human ST8Sia IV, which is primarily involved in the polysialylation of
the N-CAM N-glycans also showed very low levels of transfer activity from CMP-Neu5Ac onto murine
N-CAM compared to the zebrafish ST8Sia II [49] favoring the idea of an acceptor substrate preference
for the two fish enzymes and an evolution of their enzymatic properties. Similarly, the rainbow trout
polysialyltransferases ST8Sia II and ST8Sia IV were shown to be involved the synthesis of PSA on both
human N-CAM N-glycans and on the lake trout PSPG O-glycans [50,64]. In addition, these studies
reported that even though the fish recombinant enzymes showed activity towards mammalian acceptor
substrates used in enzymatic assays like bovine fetuin or human N-CAM, they also demonstrated
lower enzymatic activity compared to their mammalian counterparts [64,65]. In any case, the nature of
acceptor substrate of the zebrafish ST8Sia VI-like enzyme still awaits identification.
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Figure 4. Enzymatic characterization of the ST8Sia VI enzymes using the MicroPlate Sialyltransferase
Assay (MPSA). (A) Time course of human and zebrafish ST8Sia activities onto bovine fetuin. Sialylation
reactions were conducted at 25 ◦C for various incubation times (2–16 h) and 100 µM CMP-SiaNAl
with either pFLAG-CMV-9/Dre ST8Sia VI-like or mock HEK293-transfected cells (27.5 µL) or 8 µg of
recombinant human ST8Sia VI, n = 2. (B) Human and zebrafish ST8Sia activities on various mammalian
glycoproteins using the MPSA. Sialylation reactions were conducted for 4 h at 27 ◦C using potential
acceptor substrates (fetuin, asialofetuin, orosomucoid, asialoorosomucoid and bovine submaxillary
mucin (BSM) and 100 µM CMP-SiaNAl with variable amounts (3, 10, 27.5 µL) of cell culture media
from pFLAG-CMV-9/Dre ST8Sia VI-like or mock HEK293-transfected cells or recombinant human
ST8Sia VI (1–8 µg). Data shown on the left side are those corresponding to the human enzyme and
those on the right side are those of the zebrafish enzyme, n = 2.

2.4. Molecular Phylogenetic and Phylogenomics Analyses Underscore Loss of the Teleost Fish st8sia6 Locus

It was then desirable to shed light into the evolutionary relationships of this zebrafish
ST8Sia sequence with other mono-α2,8-sialyltransferases. Towards this aim, we conducted a
combination of molecular phylogenetic (tree-based) and phylogenomic approaches. A total of 147
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predicted α2,8-sialyltransferases sequences comprised of 129 vertebrate mono-α2,8-sialyltransferases
(i.e., 17 ST8Sia I, 15 ST8Sia V, 63 ST8Sia VI and 34 ST8Sia VII) and 18 oligo-α2,8-sialyltransferases
(i.e., ST8Sia III) identified in silico were used in multiple sequence alignments and the construction of
phylogenetic trees. Figure 5 shows a phylogenetic tree obtained with the Neighbor-Joining (NJ) method
in MEGA7.0 [66], rooted by the oligo-α2,8-sialyltransferases ST8Sia III. It indicates the presence of six
groups of mono-α2,8-sialyltransferases. Intriguingly, the ST8Sia VI-related sequences split into two
distinct sub-groups, one comprising only Teleost fish ST8Sia VI-like sequences the other comprising
Chondrichthyes (sharks), basal ray-finned fishes like the gar Lepisosteus oculatus and Sarcopterygii
(lobe-finned fish and tetrapods) ST8Sia VI sequences. Molecular phylogenetic analysis conducted
by Maximum Likelihood or Minimum Evolution method also evidenced two disconnected groups
of ST8Sia VI-related sequences (Supplementary Figures). Furthermore, contrary to the ST8Sia VII
sequences, the fish ST8Sia VI-like sequences form a tight group with short branches suggesting that
these sequences could have evolved a new function distinct from the Chondrichthyes and Sarcopterygii
ST8Sia VI sequences.
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Figure 5. Unrooted Neighbor-Joining (NJ) phylogenetic tree showing the evolutionary
relationships between the zebrafish ST8Sia VI-like sequence and the other vertebrate mono- and
oligo-α2,8-sialyltransferases of the ST8Sia family. Amino acid sequences of 147 selected vertebrate
ST8Sia sequences (i.e., 17 ST8Sia I, 15 ST8Sia V, 63 ST8Sia VI-related and 34 ST8Sia VII and
18 oligo-α2,8-sialyltransferases (ST8Sia III) used as outgroup). Multiple sequence alignment was
conducted using MUSCLE in MEGA 7.0 and refined by hands. Phylogenetic trees were produced by
the NJ method in MEGA 7.0 [66,67].
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Sequence similarity networks [68] were also used as models to visualize evolutionary relationships
between the various mono-α2,8-sialyltransferases and our data confirmed the phylogenic analyses
(Figure 6). In the network, the most related sequences are grouped together in clusters. The greatest
degree of similarity was found between sequences of the ST8Sia V, ST8Sia VI and the Teleost fish
ST8Sia VI-like subfamilies, even at stringent cut-off values (1e-102). Interestingly, the tetrapod and
shark ST8Sia VI sequences appear to be closer to the vertebrate ST8Sia V than the fish ST8Sia VI-like
sequences. These last analyses casted doubt on the original nomenclature assigned to these fish ST8Sia
VI-like sequences [31,35] and further suggested the molecular diversification of fish ST8Sia VI-related
sequences among vertebrate mono-α2,8-sialyltransferases, and the possible occurrence of a novel st8sia
gene subfamily in teleosts, therefore tentatively renamed ST8Sia VIII in Figure 6.
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represented as nodes colored according to the subfamily to which they belong. The lines between two
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thresholds are used to visualize the interconnectivity evolution, ordered.

To assess this possibility, we also analyzed the genomic context for each gene locus and studied
synteny and paralogy around the two st8sia genes (st8sia6 and st8sia8) and adjacent gene loci in
various vertebrate genomes, in the context of the two rounds of whole genome duplications (WGD-R1
and R2) that occurred at the base of vertebrates [69]. We observed conserved synteny around the
st8sia6 gene locus in the tetrapod genomes (human (Homo sapiens), mouse (Mus musculus) and chicken
(Gallus gallus)) and in the fish genomes, although the st8sia6 gene locus was lost in the spotted
gar (Lepisosteus oculatus), zebrafish (Danio rerio) or medaka (Oryzias latipes) genome (Figure 7A).
Of particular interest, the zebrafish st8sia8 gene locus was identified in another conserved and distinct
syntenic region found on L. oculatus LG15 and zebrafish chromosome 3. Neighboring genes CACNB2B,
ARL8, PLXDC2, NEBL/LASP indicated in green in Figure 7A surrounding both st8sia6 and st8sia8 gene
loci in the vertebrate genomes are paralogous, further indicating that the two st8sia genes share a
common ancestor. Both loci are found on two different spotted gar linkage groups (LG9 and LG15)
leading us to the conclusion that their common ancestor duplicated after the WGD-R2 (~500 MYA)
and before the teleost genome duplication (TGD, ~360 MYA) event [70].
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Figure 7. Evolutionary history of the st8sia6 and st8sia8 gene loci. (A) Syntenic relationships of the
st8sia6 and st8sia8 gene loci in vertebrates. Chromosomal locations of the st8sia6 and st8sia8 and
neighboring gene loci were determined in the human (Homo sapiens, Hsa), the mouse (Mus musculus,
Mmu), the chicken (Gallus gallus, Gga), the spotted gar (Lepisosteus oculatus, Locu), the zebrafish
(Danio rerio, Dre) and the medaka (Oryzias latipes, Ola) genomes. Putative orthologues were determined
with information from the NCBI and ENSEMBL servers and visualized using the Genomicus 93.01 web
site [73]. Paralogous genes in the vertebrate genomes are indicated in green, the st8sia6 and the fish
st8sia6-like (i.e., st8sia8) gene loci are indicated in red or in grey when lost in the considered genome.
(B) Reconstruction of ancestral genome to assess ST8Sia VIII subfamily origin. A schematic phylogenetic
tree is shown on the left side to illustrate evolution of the chordate genome using the N-model [71,74]
for the reconstruction of the prevertebrate ancestor (VAC, N-model) and the P-model [72] for the
reconstruction of the prechordate ancestor (CLG, P-model). On the right side is a schematic illustration
of the data obtained using the known genomic location of st8sia genes in O. latipes (OLA), in G. gallus
(GGA) and in H. sapiens (HSA). Crosses indicate gene losses, Tel Anc indicates pre-3R teleost ancestor
and Gn Anc indicates post-2R Gnathostome ancestor. (C) Schematic diagram illustrating the st8sia6/7/8
gene locus evolution after the two whole genome duplication (WGD) rounds. The ancestral gene
st8sia 6/7/8 indicated by a black box gave two duplicates, the ancestral st8sia6/8 and st8sia7 genes after
the WGD-R1, 552 MYA [35]. Four duplicated genes have arisen after the WGD-R2 event and st8sia6,
st8sia8, st8sia7 were maintained in vertebrate genomes. The st8sia6 gene was lost in the Actinopterygii
(ray-finned fish) genome and maintained in Sarcopterygii (lobe-finned fish and tetrapods), whereas the
st8sia8 was lost in Sarcopterygii and maintained in Actinopterygii. A disrupted line frames the st8sia7
green box to indicate that this gene is not found in all teleost or bird species. Grey boxes indicate that
the gene was lost in the branch.

As another line of evidence, we further explored the relationships among these st8sia-related gene
families taking advantage of the vertebrate [71] and chordate [72] ancestral genome reconstruction
concept, previously described for the vertebrate ST3GAL genes [38]. As schematized in Figure 7B,
2R-duplicated genes are found on one of the 10 vertebrate ancestral chromosomes (VAC) in the pre-2R
genome and designated a–j in the N-model [71]. Similarly, these genes are on one of the nine chordate
linkage groups (CLG) in the pre-2R genome and named 1–9 in the P-model [72]. After the two WGD
events, they are found on four linkage groups with shared synteny (e.g., Gnathostome ancestor (GNA)
proto-chromosomes A0, A1, A2 and A3 in the N-model and chordate proto-chromosomes 1a, 1b, 1c and
1d in the P-model). Conserved synteny was established for st8sia6 and st8sia6-like and surrounding
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gene loci and the blocks associated to these genes corresponded to GNA protochromosomes E1 and E2.
Since the st8sia7 gene locus was absent in the human, chicken and medaka genomes, we retrieved
the corresponding block of synteny using a few neighboring genes like eno3, ctc1 and atp1b2a widely
distributed from fish to mammals. This genome reconstruction approach confirmed the scenario of
a common origin of the st8sia6 and fish st8sia6-like genes from a common ancestor after WGD-R2
illustrated in Figure 7C. Therefore, this new ray-finned fish mono-α2,8-sialyltransferase subfamily
was definitively renamed ST8Sia VIII (st8sia8 gene) according to the newly proposed sialyltransferase
nomenclature [32]. In summary, the evolutionary relationships between the ST8Sia subfamilies were
better resolved using the synteny/paralogy and paleogenomics approach than by the phylogeny
methods only, which gave poorly resolved topologies.

3. Materials and Methods

3.1. Materials

The CMP-[14C]-Neu5Ac (10.7 GBq.mmol−1), ECL advance kit and First Strand cDNA Synthesis
kit were from Amersham Pharmacia Biotech (Little Chalfont, UK). Enzymes Taq pol were
from QBiogen. The Nucleospin RNA II kit was from Macherey-Nagel (Düren, Germany).
Oligonucleotides were synthesized and purified by Eurogentec (Seraing, Belgium) and dNTP
were from Promega Biosciences (Son Luis Obispo, CA, USA). DyNazyme Ext DNA polymerase
was from Ozyme (Saint-Quentin-en-Yvelines, France). Dulbecco’s modified Eagle’s medium
(DMEM) containing 4.5 g.l−1 glucose without glutamine was from BioWhittaker Europe. TC100
medium, minimal essential medium (MEM), L-glutamine, antibiotics, Geneticin G418, fetal calf
serum used in cell culture, lipofectAMINE PLUS reagent and TOPO TA-cloning kit were from
Invitrogen life technologies (Cergy-Pontoise, France); DMEM and Ultra MEM were from Lonza
(Basel, Switzerland). Fetal bovine serum was from D. Deutscher (Issy-les-Moulineaux, France).
N-Glycosidase F and anti-digoxigenin fluorescein Fab fragments were from Roche (Meylan, France).
Hispeed Plasmid Midi kit was from Qiagen (Courtaboeuf, France). N-acetyl neuraminic acid
(Neu5Ac), α1-acid glycoprotein, fetuin, 3xFLAG-CMV-9, 1,2-diamino-4,5methylenedioxybenzene
dihydrochloride (DMB), arylgycosides and Triton CF-54 were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Glyco® Sialidase S, Glyco® Sialidase C and Glyco® Sialidase A™ were from
Glyko INC. (Novato, CA, USA). Polymerase chain reaction 8-well strip tubes, optical caps and 2X
Brilliant® SYBR® Green Q-PCR master mix were from Stratagene (La Jolla, CA, USA). We synthesized
2-[4-({bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino}methyl)-1H-1,2,3-triazol-1-yl]acetic acid
(BTTAA) in our laboratory as previously described [75]. NMR experiments were carried out on
a Brüker Avance II 400 MHz NMR spectrometer equipped with a 5 mm BBO (31P, 13C) or a 5 mm TBI
probe (1H). Deuterated solvents were purchased from Eurisotop. Chemical shifts were referenced
to tetramethylsilane (1H, 13C) and phosphoric acid (31P) and are reported as part per million (ppm).
Scalar J coupling constants are reported in hertz (Hz).

3.2. In Silico Identification and Analysis of ST8Sia Sequences in Databases

A BLAST search approach was used to retrieve the vertebrate st8sia6 nucleotide sequences
with significant homology to the previously described mammalian sequences (human ST8Sia VI
AJ621583 [41] and mouse ST8Sia VI AB059554 [42], from the genomic and TSA divisions of the
GenBank®/EBI databases at the National Center for Biotechnology Information (NCBI) [31,35].
The amino acid sequence analysis was performed using the software of Expert Protein Analysis System
(ExPASy; Swiss Institute of Bioinformatics, Switzerland; website (https://www.expasy.org/, accessed
on: 30 January 2019). Hydropathy analyses and determination of potential N-glycosylation sites were
performed using the servers TM-Pred Prediction of Transmembrane Regions and orientation (https:
//embnet.vital-it.ch/software/TMPRED_form.html, accessed on: 30 January 2019) and the NetNGlyc
1.0 Internet program (http://www.cbs.dtu.dk/services/NetNGlyc/, accessed on: 30 January 2019) of

https://www.expasy.org/
https://embnet.vital-it.ch/software/TMPRED_form.html
https://embnet.vital-it.ch/software/TMPRED_form.html
http://www.cbs.dtu.dk/services/NetNGlyc/


Int. J. Mol. Sci. 2019, 20, 622 13 of 21

ExPaSy. Sequence alignments were performed using the clustalW algorithms at the PRABI website
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html, accessed
on: 30 January 2019). Phylogeny was determined aligning the known vertebrate ST8Sia sequences
with MUSCLE in MEGA7.0 [66].

3.3. Phylogenetic Analysis and Sequence Similarity Network

The multiple sequence alignment of 147 selected vertebrate ST8Sia sequences (i.e., 17 ST8Sia I,
15 ST8Sia V, 63 ST8Sia VI and 34 ST8Sia VII and 18 oligo-α2,8-sialyltransferases (ST8Sia III) used as
outgroup) was conducted using MUSCLE and Clustal Omega algorithms included in MEGA7.0 software
and refined by hand (see Supplementary Data 1 and 2). Phylogenetic trees were produced by the
Neighbor-Joining (NJ), Maximum Likelihood and Minimum Evolution method in MEGA 7.0 [66,67].

Sequence similarity network was constructed using formatdb from the standalone BLAST software
and a custom BLAST database was created using the same set of sequences used for the phylogenetic
analysis. A graphical overview of interrelationships among and between sets of proteins was provided
at different E value thresholds as previously described [38]. The network was visualized using
Cytoscape [76] where the node represents ST8Sia sequences and edges are defined between any pair of
nodes with an E value less than the threshold (1e-95, 1e-100, 1e-102). Nodes were colored according to
the subfamily to which the sequence belongs.

3.4. Synteny Analysis, Paralogon Detection and Ancestral Genome Reconstruction

Synteny between the st8sia gene loci and vicinal genes in vertebrate genomes was assessed by
manual chromosome walking and reciprocal BLAST searches. Detection of paralogous blocks was
achieved and visualized using the Genomicus site (version 92.01) http://www.genomicus.biologie.
ens.fr/genomicus-92.01/cgi-bin/search.pl, last accessed August 2018 [73]. When the st8sia gene of
interest was absent in a genome, we used genes physically close as a seed to identify syntenic segments.
Ancestral genome reconstruction was used in conjunction with phylogenetic and synteny analysis
to rapidly assess the dynamic of st8sia genes evolutionary relationships, taking into account the
reconstruction of proto-chromosomes of ancestral vertebrates [71,74] and of chordate [72] as previously
reported [38,77].

3.5. RNA Extraction, cDNA Synthesis and RT-PCR

Total RNA was extracted from various zebrafish adult tissues and embryos (0, 6, 14, 24 and
36 hpf) using the Qiagen RNeasy kit, and cellular RNA was quantified by spectrophotometry
using the NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).
The integrity and purity of the extracted RNA was also analyzed by means of gel electrophoresis
on a bioanalyzer (Experion, Bio-Rad Laboratories, Inc, Marnes-la-Coquette, France). For subsequent
PCR amplifications, first-strand cDNA was synthesized from total RNA using the First Strand
cDNA Synthesis kit according to the manufacturer’s protocol in a final volume of 33 µL. A specific
zebrafish st8sia6-like fragment of 333 bp was obtained after RT-PCR of RNAs isolated from various
adult and embryonic tissues using 35 nM of sense (5’-TGTCTATGATGGCGAAAG-3′) and antisense
(5′-TGACCGTATGAATGAAGG- 3′) primers, 100 µM of dNTP and 0.5 unit of DNA Taq polymerase
using the following conditions: 96 ◦C for 2 min, 38 cycles of 45 sec at 95 ◦C, 50 sec at 50 ◦C and 1 min
at 72 ◦C, and 10 min at 72 ◦C. Expression of the Dreβ-actin gene was followed in the same RT-PCR
conditions as a control of cDNA synthesis and purity. For that purpose, Dreβ-actin sense primer
(5′132GTTGGTATGGGACAGAAAGA3′) and antisense primer (5′509GGCGTAACCCTCGTAGAT3′)
were designed in two different exons of the zebrafish β-actin gene (Accession number AF025305) and
synthesized by Eurogentec. The RT-PCR products were subjected to 2% agarose gel electrophoresis
and amplification of cDNA resulted in a 378 bp fragment.

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html
http://www.genomicus.biologie.ens.fr/genomicus-92.01/cgi-bin/search.pl
http://www.genomicus.biologie.ens.fr/genomicus-92.01/cgi-bin/search.pl
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3.6. Isolation of A Zebrafish st8sia6 cDNA and Construction of an Expression Vector

To obtain a cDNA encoding the full-length protein, RT-PCR was performed using 1 µg of
the phage kidney oligo d(T) primed cDNA library kindly provided by L. Zon (Boston Children
Hospital, Boston, MA, USA). A first cDNA amplification was performed by PCR using a sense (5′−246

AGAGCGGCAGCATCTG 3′) and an antisense (5′1492 CATTTCCCACCAGCCTCGT 3′) zebrafish
st8sia6 specific oligonucleotide primers, at 95 ◦C for 2 min, followed by 38 cycles (96 ◦C for 45 sec, 53 ◦C
for 1 min and 72 ◦C for 90 sec), and an extension step of 10 min at 72 ◦C. The RT-amplified fragments
(1183 bp) were subcloned into PCR2.1 TOPO TA cloning vector. For subsequent plasmid constructions,
restriction digestion and DNA sequencing (GATC Biotech, Germany) confirmed the insert junctions.
Several expression vectors were prepared for subsequent transient transfection in animal COS-7or
HEK293 cells. A cDNA encoding the full length form of Dre ST8Sia VI-like enzyme was obtained
by PCR amplification using the previous construct as DNA template, the sense primer containing
the restriction site EcoRI (5′-GACCGTGTGAATTCGTGGATGCGGGTTATGAG-3′) and the antisense
primer containing the restriction site KpnI (5′-TCCCACCAGGTACCTGTTTCATCTATGAGCGG-3′).
Reactions were run for 2 min at 96 ◦C followed by 35 cycles (94◦C for 45 sec and 1 min at 72 ◦C)
and an extension step of 10 min at 72◦C. The resulting PCR fragment was subcloned into the
pCR2.1 vector of TOPO TA-cloning kit, was cut out by digestion with EcoRI and KpnI, and inserted
into the EcoRI and KpnI sites of the 3xFLAG-CMV-10 expression vector. The resulting plasmid
encoded a fusion protein with the FLAG sequence and the full length form of the ST8Sia VI-like
sequence. This full length cDNA was also inserted into a pRC-CMV vector encoding the full
length form of the ST8Sia VI-like sequence with no tag. A cDNA encoding a truncated form of
Dre ST8Sia VI-like lacking the first 32 amino acids of the open reading frame was also obtained by PCR
amplification using the same DNA template, the sense primer containing the restriction site EcoRI
(5′-CATCTCCAAGAATTCTGTAATCCCTCATCCTGC-3′) and the antisense primer containing the
restriction site KpnI (5′-TCCCACCAGGTACCTGTTTCATCTATGAGCGG-3′). Reactions were run for
2 min at 95 ◦C followed by 38 cycles (96 ◦C for 45 s, 47 ◦C for 1 min and 90 s at 72 ◦C) and an extension
step of 10 min at 72 ◦C. The resulting 1015 bp fragment was subcloned into the pCR2.1 vector of TOPO
TA-cloning kit, was cut out by digestion with EcoRI and KpnI, and inserted into the EcoRI and KpnI
sites of the 3xFLAG-CMV-9 expression vector. The resulting plasmid encoded a fusion protein with
a signal peptide sequence, the FLAG sequence, and a truncated form (∆33ST8Sia VI-like) lacking its
cytoplasmic and transmembrane domain.

3.7. Animals, Cell Culture and Transient Expression of a Soluble form of Dre ST8Sia VIII

The zebrafish, D. rerio, were maintained in aquaria at 28 ◦C as described previously [78] and the
day-night cycle was controlled with an automated timer (14 h light/10 h dark). Experiments were
performed using random matings of AB animals and all experimental procedures adhered to the CNRS
(Centre National de la Recherche Scientifique). Embryos were collected, raised and staged in embryos
medium until they reached the desired developmental stage determined following previously defined
criteria [79].

COS-7 (ATCC CRL-1651) or HEK293 (ATCC CRL-1573) cells were grown in DMEM medium
supplemented with 10% FCS, L-glutamine 20 mM, Penicillin, Streptomycin at 37 ◦C under 5% CO2.
Confluent cells (70%) were transiently transfected using 5 µg of purified 3xFLAG-CMV-9 ST8Sia
VI-like or 3xFLAG-CMV-9 in 100-mm diameter dishes using Lipofectamine PLUS reagent, following
the manufacturer’s instructions. The transfected cells and culture media were harvested 48 h after
transfection, and the recombinant ST8Sia VI-like enzyme expressed both in the cell culture medium
and within the transfected cells were used as crude enzyme source for enzymatic activity assays.
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N-(4-pentynoyl)neuraminic acid (SiaNAl) was synthesized from commercial D-mannosamine
hydrochloride as previously described [80]. Cytidine-5′-monophospho-N-(4-pentynoyl)neuraminic
acid (CMP-SiaNAl) and Cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) were
freshly prepared prior to use according to our reported chemo-enzymatic procedure. Synthesis
of CMP-SiaNAl was carried out as previously described [43]. In brief, the relevant sialic acid
(1 eq.) and cytidine 5′-triphosphate disodium salt (10.6 mg, 0.02 mmol, 1 eq.) were dissolved
into 650 µL of Tris-HCl buffer (100 mM, pH 8.5) containing 20 mM MgCl2 in a 5 mm NMR tube.
When necessary, the pH of the solution was readjusted to 8.5 using aqueous ammonia prior to
adding the enzymes. We then added to the mixture 0.3 U of CMP-Sialic acid synthetase from
Neisseria meningitidis group B (Sigma Aldrich, EC 2.7.7.43), and 0.5 U of inorganic pyrophospatase
from Saccharomyces cerevisiae, (Sigma Aldrich, EC 3.6.1.1). The sample was inserted in a Brüker Avance
II 400 MHz NMR spectrometer equipped with a 5 mm BBO probe set for the 31P nucleus resonance
frequency and temperature-regulated at 37 ◦C, and the reaction was monitored by 1D 31P NMR. Upon
completion, the solution was cooled down to 4 ◦C and directly diluted to the right concentration for
subsequent sialylation assays with no further purification. CMP-SiaNAl was characterized by 1H, 13C
and 31P NMR. NMR 1H (400 MHz, D2O): δ = 7.51 (d, J = 7.6, 1H), 5.72 (d, J = 7.6, 1H), 5.58 (d, J = 3.9,
1H), 4.00–3.87 (m, 4H), 3.85 (d, J = 5.5, 1H), 3.76 (d, J = 10.4, 1H), 3.74–3.66 (m, 1H), 3.61 (d, J = 10.3, 1H),
3.56 (dd, J = 10.2, 3.0, 1H), 3.51 (d, J = 12.2, 1H), 3.26 (dd, J = 14.2, 7.1, 1H), 3.20 (dd, J = 10.8, 6.0, 1H),
2.22–2.03 (m, 5H), 1.99 (s, 1H), 1.26 (ddd, J = 13.0, 11.7, 5.8, 1H). 13C (101 MHz, D2O): δ = 175.24, 174.38,
165.92, 157.54, 141.42, 99.90, 96.53, 88.98, 83.22, 82.31, 73.94, 71.65, 70.31, 69.18, 69.01, 68.78, 66.57, 64.75,
62.90, 51.63, 40.98, 34.65, 14.56. 31P (162 MHz, D2O): δ = −4.63.

3.9. Enzymatic Characterization of Sialyltransferase

Sialyltransferase assays were performed in 100 mM cacodylate buffer, pH 6.2 containing 10 mM
MnCl2, 0.2% Triton CF-54, 40 µM CMP-[14C]Neu5Ac (1.94 KBq) and one of the acceptor substrates
(2 mg.mL−1 for glycoproteins) and 23 µL of the enzyme source in a total volume of 50 µL as previously
described [41]. The recombinant CHO-derived human ∆27ST8Sia VI (R & D systems Europe Ldt,
France) was used as a control as previously described [41]. Unless stated otherwise, the reactions
were performed at 27 ◦C for 4 h. For glycoproteins, the reactions were stopped by adding 2.5X
SDS/sample buffer and the reaction products were separated on SDS-PAGE. After transfer onto a
nitrocellulose membrane (Biotrace, Pall corporation, Ann Arbor, MI, USA), the radioactive products
were detected and quantified by radio-imaging using a Personal Molecular Imager FX (Bio-Rad, France).
Sialyltransferase assays were also performed using the MPSA described recently [45]. Briefly, 400 ng of
glycoprotein acceptor in 100 µL of sodium bicarbonate buffer (20 mM pH 9,6) or glycolipids mixture
were coated in 96-well plate wells (F8 MaxiSorp Loose Nunc-Immuno Module ThermoScientific)
overnight at 4 ◦C. After three washes with 150 µL of PBST-0.05% (Phosphate Buffer Saline-Tween)
saturation was carried out for 1 h at room temperature using 100 µL of oxidized BSA at 0.05%
dissolved in sodium bicarbonate buffer. After incubating for 3 h with the enzymatic source, 1 mM
CMP-SiaNAl and cacodylate buffer in a total volume of 50 µL, the wells were washed with PBST-0.05%
and 100 µL of a CuAAC labeling solution containing 300 µM of CuSO4, 600 µM of BTTAA, 2.5 mM
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of sodium ascorbate and 250 µM of azido-biotin in PBS was then added. After 1 h incubation at
37 ◦C, washes were made with PBST-0.05% and wells were incubated with 100 µL of anti-biotin
antibody HRP-conjugated diluted to 1/25,000 in PBST-0.05% for 1 h at 37 ◦C. After washes, 100 µL
of TMB (3,3′,5,5′-tetramethylbenzidine) was added and incubated 20 min at room temperature in
the dark. Finally, absorbance was quantified at 620 nm using spectrophotometer (SpectroStar Nano;
BMG Labtech).

3.10. Real Time PCR

Real-time PCR and subsequent data analysis were performed using the Mx4000 Multiplex
quantitative PCR System (Stratagene) equipped with version 3.0 software. Each 25 µL PCR reaction
contained 12.5 µL of the 2X Brilliant SYBR® Green Q-PCR mix, 150 nM of each primer (sense
(5′-TGTCTATGATGGCGAAAG-3′) and antisense (5′-TGACCGTATGAATGAAGG- 3′) primers) and
2 µL of cDNA diluted to 1/20 (100 ng). DNA amplifications were performed in triplicates from two
biological samples with the following thermal cycling profile: initial denaturation at 95 ◦C for 10 min,
45 cycles of amplification (denaturation 95 ◦C for 30 sec, annealing at 50 ◦C for 1 min and extension
at 72 ◦C for 30 s) and a final extension at 72 ◦C for 5 min and this was followed by a melting step
consisting of heating from 50 to 95 ◦C at an increment of 1 ◦C per 30 sec to check the specificity of
the amplified product. The fluorescence monitoring occurred at the end of each cycle. The reactions
were quantified by selecting the amplification cycle when the PCR product of interest was detected
(threshold cycle, Ct). Calibration curves were generated by 10-fold serial dilution of HindIII linearized
TOPO plasmids containing the amplified regions of the targeted gene.

3.11. In Situ Hybridization

Antisense DIG labeled RNA probe synthesis and whole-mount in situ hybridization were
performed according to [81]. The fully detailed protocol is accessible at http://zfin.org/zf_info/
zfbook/chapt9/9.82.html. Briefly, for synthesis of antisense ST8Sia VI riboprobe, the zebrafish ST8Sia
VI-like-containing PCR II-TOPO plasmid was linearized by digestion with XbaI. Digoxigenin-labeled
antisense riboprobe was synthesized by in vitro transcription using T7 polymerase (Promega).
For double labeling with NBT/BCIP and Fast Red (Roche), the hybridized embryos were first
incubated with pre-absorbed anti-digoxigenin antibody (2–3 h; Roche), followed by staining with
NBT/BCIP. The staining reaction was stopped by two 5-min washes in PBST, 10 min with 0.1 M
Glycine-hydrochloric acid (pH = 2.2) with 0.1% Tween 20 and four 5-min washes in PBST. The washed
embryos were incubated with the pre-absorbed anti-fluorescein antibody (Roche), washed and stained
with Fast Red-staining solution (two tablets dissolved in 4 mL of 0.1 M Tris-HCL, pH 8.2, with 0.1%
Tween 20). Stained embryos were rinsed in PBST and post-staining fixed in 4% PFA before subject to
imaging. Images of the stained embryos were acquired with a Leica MZ FLIII Stereomicroscope and a
magnifier cooled CCD camera. Specificity was assessed using antisense and other irrelevant probes
(data not shown).

4. Conclusion

In this study, we have identified and characterized a new zebrafish α2,8-sialyltransferase sequence
in Danio rerio. Although this enzyme needs to be better kinetically characterized, we showed that
it has almost no transfer activity on sialylated fetuin. Furthermore, our molecular phylogeny data
demonstrate that this sequence is not the fish orthologue of the mammalian ST8Sia VI described
previously [41,42]. This sequence belongs to a new teleost mono-α2,8-sialyltransferase subfamily
resulting from the second whole genome duplication event. This newly described subfamily renamed
ST8Sia VIII was maintained in ray-finned fish and disappeared in Chondrichthyes and Sarcopterygii,
whereas the ST8Sia VI subfamily disappeared in ray-finned fish and was maintained in Chondrichthyes
and Sarcopterygii.

http://zfin.org/zf_info/zfbook/chapt9/9.82.html
http://zfin.org/zf_info/zfbook/chapt9/9.82.html


Int. J. Mol. Sci. 2019, 20, 622 17 of 21

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/622/s1.

Author Contributions: Conceptualization, K.H.K., Y.G. and A.H.-L.; Data curation, A.H.-L.; Funding acquisition,
Y.G. and A.H.-L.; Investigation and Methodology, L.-Y.C., E.T., M.N., P.-A.G., M.D., C.L., C.B., A.-M.M., V.C., D.P.
and A.H.-L.; Supervision, K.H.K., Y.G. and A.H.-L.; Writing—original draft, A.H.-L.; Writing—review & editing,
L.-Y.C., P.D., D.P., E.T, Y.G. and A.H.-L.

Funding: This research was funded by the Agence Nationale de la Recherche (ANR), grant number
ANR-2010-BLAN-120401 (project GALFISH)

Acknowledgments: The authors are very grateful to Drs Dominique Leprince and Leon Zon for the kind gift of
the zebrafish kidney cDNA library, to Christine Thisse and Bernard Thisse for the in situ hybridization studies,
to Beatrice Catieau for her excellent assistance, to Jean-Claude D’halluin for his help using a Personal Molecular
Imager FX (Bio-Rad, France). The authors acknowledge the financial support of the CNRS, the University of
Lille (FST), JST/CNRS. The authors acknowledge the Research Federation FRABio (Univ. Lille, CNRS, FR3688,
Biochimie Structurale et Fonctionnelle des assemblages Biomoléculaires) for providing the scientific and technical
environment conducive to achieving this work and the Ministère de l’enseignement supérieur, de la Recherche et
de l’innovation for providing research fellowships to M.N. and P.-A.G.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Refined sialyltransferase nomenclature is according to Petit et al. [32]. The nucleotide sequence of Dre ST8Sia
VIII has been initially submitted to the GenBankR database under the name ST8Sia VI and the accession
number AJ711551.

adipoQ adiponectin
BSM bovine submaxillary mucin
BTTAA 2-[4-({bis[(1-tert-butyl-1H-1,2,3-

triazol-4-yl)methyl]amino}methyl)-1H-1,2,3-triazol-1-yl]acetic acid
CMP cytidine monophosphate
CuAAC Cu(I) catalyzed azide-alkyne cycloaddition
diSia disialic acid
DMB 1,2-diamino-4,5-methylenedioxybenzene
DMEM Dulbecco’s modified Eagle’s medium
DP degree of polymerization
Dre Danio rerio
FBS fetal bovine serum
FCS fetal calf serum
Hpf hours post fertilization
ISH in situ hybridization
LECA Last Common Ancestor of Eukaryotes
MEM minimal essential medium
MPSA Microplate sialyltransferase assay
Neu5Ac N-acetylneuraminic acid
Neu5Gc N-glycolylneuraminic acid
oligoSia oligosialic acid
OSM ovine submaxillary mucin
polySia or PSA polysialic acid
PSGP salmonid egg polysialoglycoprotein
SiaNAl N-(4-pentynoyl)neuraminic acid
ST8Sia α2,8-sialyltransferase
WGD whole genome duplication
Kdn 2-keto-3-deoxynononic acid
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