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Abstract
Cystic fibrosis is a disease caused by defective function of a chloride channel coupled to a blockade of autophagic flux.
It has been proposed to use synthetic chloride transporters as pharmacological agents to compensate insufficient
chloride fluxes. Here, we report that such chloride anionophores block autophagic flux in spite of the fact that they
activate the pro-autophagic transcription factor EB (TFEB) coupled to the inhibition of the autophagy-suppressive
mTORC1 kinase activity. Two synthetic chloride transporters (SQ1 and SQ2) caused a partially TFEB-dependent
relocation of the autophagic marker LC3 to the Golgi apparatus. Inhibition of TFEB activation using a calcium chelator
or calcineurin inhibitors reduced the formation of LC3 puncta in cells, yet did not affect the cytotoxic action of SQ1
and SQ2 that could be observed after prolonged incubation. In conclusion, the squaramide-based synthetic chloride
transporters studied in this work (which can also dissipate pH gradients) are probably not appropriate for the
treatment of cystic fibrosis yet might be used for other indications such as cancer.

Introduction
Cystic fibrosis is the most frequent monogenetic lethal

disease affecting humans1,2. This pathology is caused by
loss-of-function mutation in the cystic fibrosis trans-
membrane conductance regulator (CFTR), a chloride
transporter3,4. Importantly, CFTR mutations do not only
compromise chloride flux (resulting in increased chloride
concentrations in sweat and alterations in the composi-
tion of mucus with subsequent bronchial infections) but
also affect autophagic flux in respiratory epithelial cells

and macrophages5–10. The perturbation of autophagy may
be disease-relevant because autophagy induction by
pharmacological inhibitors of E1A-associated protein
p300 (where E1A= adenovirus early region 1A), best
known as EP300, and transglutaminase-2 can favor the
function of certain CFTR mutants (and in particular the
del508 mutant protein)11–14 and reduce lung inflamma-
tion in patients15–17.
Intrigued by these observations, we wondered whether

direct perturbations of chloride homeostasis by means of
synthetic chloride transporters (or anionophores) such as
the squaramide-based compound SQ1 and the analogous
SQ218,19 might affect the autophagic process. SQ1 and
SQ2 incorporate into the plasma membrane (and perhaps
other cellular membranes), thus causing chloride influx
into cells and dissipating chloride gradients in intracel-
lular compartments, and neutralizing lysosomal pH in the
process19. Although this ultimately causes cell death
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(and SQ1 has indeed been developed as a first-in-class
anticancer agent), SQ1 and SQ2 can modulate autophagy
before cells die19, offering a window of opportunity for
investigating their impact on the system.
Here, we report that squaramide-based synthetic chloride

transporters dramatically inhibit autophagic flux although
they activate a pro-autophagic transcription factor. More-
over, these chloride anionophores trigger the relocation of
an autophagic marker (LC3) towards the Golgi apparatus.

Materials and methods
Cell culture and transfection
Human Osteosarcoma U2OS cells were cultured at

37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium
(DMEM; Life Technologies) supplemented with 100mM
2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid
(HEPES) buffer, 10% heat-inactivated fetal bovine serum
(FBS) (Life Technologies) and 1% penicillin/streptomycin
(Life Technologies).
GFP-LC3 stable cell lines were generated by transducing

U2OS WT, U2OS ATG5−/−, TFEB−/−, CFBE Delta-F508
with pre-packaged viral particles expressing recombinant
GFP-LC3 (LentiBrite GFP-LC3B Lentiviral Biosensor;
Millipore, 17–10193). U2OS cells stably expressing GFP-
TFEB were transfected with the pEGFP-N1-TFEB plasmid
using the FuGENE® HD transfection reagent protocol.
The pEGFP-N1-TFEB plasmid was a gift from Shawn
Ferguson (Addgene plasmid # 38119). Subsequently,
stable expressing cells were selected by means of appro-
priate selection antibiotics and clones were obtained by
single cell sorting using a FACS DIVA (Becton Dickinson,
Franklin Lakes, NJ, USA). U2OS GALT-GFP LC3-RFP
cells were constructed with the protocol as published in
our pervious paper20 with a plasmid coding for GALT1
(β1,4-galactosyltransferase 1)-GFP, and then transfected
with lentiviral particles coding for RFP-LC3 from Merck
Millipore(17–10143). PC12 GFP-Q74 cells are generous
gift from David Rubinsztein’s lab from Cambridge21.

Chemicals and antibodies
The squaramide compound SQ1, its analogue SQ2, and

the control compound SQ3 (with no chloride transport
activity) were previously described18,19. The following
chemicals and antibodies were used in this study: Torin 1,
bafilomycin A1, BAPTA AM, Cyclosporin A (Tocris
Bioscience, Bristol, UK), Cycloheximide, Cyclosporin H,
N-Acetyl-L-cysteine, L-Glutathione reduced (Sigma-
Aldrich) oleate from Larodan (Solna, Sweden).
Anti-beta actin (Abcam 8226, Cambridge, UK), LC3

(#3868), mTOR (#2983), Phospho-mTOR (Ser2448)
(#5536), LAMP1 (#9091), p70 S6 Kinase (#9202),
Phospho-p70 S6 Kinase (Thr389) (#9205), SQSTM1/p62
(#7695) antibody were all purchased from Cell Signaling

Technology, IF antibody Alexa Fluor® 647 anti-human
CD107a (LAMP-1) Antibody from BioLegend.

Cytofluorometry measurement of cell death
Cell viability was evaluated by co-staining the cells, during

30min at 37 °C, with 40 nM 3,3′dihexiloxalocarbocyanine
iodide (DiOC6(3)), Molecular Probes/Invitrogen), a mito-
chondrial transmembrane potential sensitive dye, and 2 μM
DAPI (all from Molecular Probes-Life Technologies,
Carlsbad, CA, USA). Cytofluorometric acquisitions were
carried out on a Milteny cytofluorometer (MACSQuant®
Analyzer 10), and statistical analyses were performed by
using the FlowJo software (LLC, Oregon, USA).

Cytofluorometry measurement of ROS generation
The generation of ROS was monitored with hydro-

ethidine (HE) (at a final concentration of 5 μM; stock
10 mM in DMSO; excitation wave length of 488 nM,
emission 620 nM; Molecular Probe. Briefly, cells were
collected after treatment with the testing compounds
followed by co-staining, during 30 min at 37 °C, with
HE. Cytofluorometric acquisitions were carried out on
a Milteny cytofluorometer (MACSQuant® Analyzer
10), and statistical analyses were performed by using
the FlowJo software (LLC, Oregon, USA).

High content image acquisition
Cells were seeded in tissue culture-treated 384-well

μClear imaging plates (Greiner BioOne, Frickenhausen,
Germany) and incubated under standard tissue culture
conditions during 24 h at 37 °C. Then, cells were treated
with the indicated compounds and after 6 or 24 h of
incubation, cells were fixed with 4% formaldehyde solution
containing 1 μM Hoechst 33342 overnight at 4 °C. The
fixative was changed to PBS, and the plates were subjected
to automated image analysis. For automated fluorescence
microscopy, a robot-assisted Molecular Devices IXM XL
BioImager (Molecular Devices, Sunnyvale, CA, USA)
equipped with Sola light sources (Lumencor, Beaverton,
OR, USA), adequate excitation and emission filters (Sem-
rock, Rochester, NY, USA), and a 16-bit monochromes
sCMOS PCO.edge 5.5 camera (PCO, Kelheim, Germany)
and a ×20 PlanAPO objective (Nikon, Tokyo, Japan) was
used to acquire nine view fields/well, followed by image
processing with the custom module editor of the MetaX-
press software (Molecular Devices). For the latter, the
images were segmented and analyzed for GFP, RFP gran-
ularity or global fluorescence intensity (depending on the
dyes) by comparing the standard deviation of the mean
fluorescence intensity of groups of adjacent pixels within
the cytoplasm of each cell to the mean fluorescence
intensity in the same ROI using the MetaXpress software
(Molecular Devices).
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Immunoblotting
Immunoblotting was performed following standard

procedures. Cells were harvested and the obtained pellet
was resuspended in RIPA buffer (89900; Thermo Fisher
Scientific) supplemented with phosphatase and protease
inhibitors (88669; Thermo Fisher Scientific) followed by
sonication and protein content quantification by DCTM
Protein Assay kit (5000112; Bio-Rad, Hercules, CA, USA).
Then, 10 μg of protein were separated on NuPAGE Novex
Bis-Tris 4–12% pre-cast gels (Invitrogen-Life Technolo-
gies, Carlsbad, CA, USA) and transferred to Immobilon
polyvinylidene difluoride membranes (Merck-Millipore,
Darmstadt, Germany). Unspecific binding was reduced by
incubating the membranes for 1 h in 0.05% Tween 20 (v/v
in TBS) supplemented with 5% w/v bovine serum albumin
(Euromedex, Souffelweyersheim, France). Following,
proteins were probed with antibodies specific for actin,
LC3, mTOR, Phospho-mTOR (Ser2448), LAMP1, p70 S6
Kinase or SQSTM1/p62. Primary antibodies were
revealed with species-specific immunoglobulin G con-
jugated to horseradish peroxidase (Southern Biotech,
Birmingham, AL, USA), followed by chemiluminescence
analysis with the SuperSignal West Pico reagent by means
of an ImageQuant 4000 (GE Healthcare, Little Chalfont,
UK).

Statistical analyses
Data are reported as means ± SD of n > 3 replicates and

experiments were repeated at least twice yielding similar
results. Data were analyzed using Prism (GraphPad Soft-
ware, Inc., La Jolla, CA, USA), and statistical significance
was assessed by means of two-tailed Student’s t-test or
ANOVA tests, as appropriate. Unless otherwise specified,
data are reported as mean ± SEM. Statistical significance
was analyzed using the Student’s-test. Differences in
treated and control cells were considered to be significant
if *p < 0.05, **p < 0.01, ***p < 0.001.

Results
SQ1 and SQ2 induce autophagic LC3+ puncta in U2OS cells
Our laboratory has made extensive use of U2OS bio-

sensor cell lines to measure cellular stress responses
including autophagy12,22–28. We first determined the
kinetics of potential cytotoxic effects of the synthetic
chloride channels SQ1 and SQ2 on these cells to study
autophagy in conditions in which U2OS cells fully con-
serve their viability. These measurements led to the
conclusion that the SQ1 and SQ2 have cytostatic effects
that become significant at 12 h of incubation and dimin-
ishes the number of cells below the control value, indi-
cating cytotoxicity, from 18 h. However, at 6 h neither
cytostatic nor cytotoxic effects were detectable (Fig. 1b).
Hence, all subsequent experiments were done in this time
frame (6 h). SQ1 and SQ2 both induced the lipidation of

microtubule-associated proteins 1A/1B light chain 3B
(hereafter referred to as LC3 II), as detectable by an
increase in the electrophoretic mobility of LC3 (Fig. 1c).
Moreover, both synthetic chloride anionophores (but not
the control compound SQ3, which shares structural fea-
tures with SQ2, yet lacks chloride transporter activity19)
inhibited the kinase activity of mechanistic target of
rapamycin complex-1 (mTORC1), as indicated by a
reduced phosphorylation of ribosomal protein S6 kinase
beta-1 (S6K1, best known as p70S6K) (Fig. 1c). Com-
mensurate with these effects, SQ1 and SQ2 (but not SQ3)
stimulated the aggregation of green fluorescent protein
(GFP)-LC3 fusion protein in cytoplasmic dots (Fig. 1d).
This effect was found both in the absence and in the
presence of bafilomycin A1 (BafA1), an inhibitor of the
lysosomal vATPase (Fig. 1e). However, SQ1 and SQ2 did
not induce autophagic flux, as indicated by two inde-
pendent series of experiments. First, in the presence of
SQ1 and SQ2, the abundance of the autophagic substrate
sequestosome 1 (STQM1, best known as p62) in U2OS
cells did not decrease (as this was observed with the
positive control, torin, an inhibitor of mTORC1 and
mTORC2) but increased (Fig. 1f, g). This increase prob-
ably reflects the impairment of lysosomal function due to
the decrease of the activity of the pH-sensitive hydrolases.
This loss of lysosomal function is due to abnormal pH
increase in lysosomes when intracellular chloride con-
centration is dysregulated. Second, in the neuronal PC12
cell line engineered to express a doxycyclin-inducible
autophagic cargo (namely a GFP fused to exon 1 of a
pathogenic huntingtin protein variant that contains 74
glutamine repeats, Q74)29, SQ1 and SQ2 increased the
level of the cargo, contrasting with the effects of torin or
rapamycin that both caused its elimination (Fig. 2).
In sum, SQ1 and SQ2 stimulate LC3 lipidation, its

redistribution towards puncta, yet do not stimulate
autophagic flux, confirming previous observations made
in HeLa cells19.

Golgi localization of LC3 after SQ1/SQ2 treatment
The GFP-LC3 puncta induced by SQ1 or SQ2 were

larger than those induced by torin and tended to coalesce
at one pole of the nucleus (Fig. 1). We therefore suspected
that such puncta might aggregate at or close to the Golgi
apparatus. To examine this hypothesis, we took advantage
of a U2OS biosensor cell line expressing a red fluorescent
protein (RFP)-LC3 fusion protein as a reporter of LC3
localization, as well as a GFP-galactose-1-phosphate uri-
dylyltransferase (GALT) fusion protein as a reporter of
Golgi location20,22,24,30,31. After treatment with SQ1 or
SQ2, we found a remarkable overlap of both fluorescent
signals indicating the translocation of LC3 to the Golgi, a
phenotype that closely resembled the one induced by
oleate20,25 but differed from that induced by torin (Fig. 3).
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Fig. 1 (See legend on next page.)
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To further investigate this phenomenon, we pretreated
the cells for 1 h with brefeldin A (BFA), an inhibitor of
GBF1 (brefeldin A-resistance guanine nucleotide
exchange factor 1) that disrupts the Golgi apparatus
causing its dispersion into ministacks all over the cyto-
plasm32–34. Preincubation with BFA reduced the coloca-
lization of GFP-GALT and RFP-LC3, confirming the idea
that LC3 coalesces at the Golgi, yet did not prevent the
SQ1/SQ2-induced formation of RFP-LC3 dots, suggest-
ing that the Golgi is not required for this phenomenon to
occur (Fig. 4).

Contribution of TFEB to LC3 relocation
Since SQ1 and SQ2 inhibit mTORC1, and this inhibi-

tion has been involved in the activation of the pro-
autophagic transcription factor EB (TFEB)35–39, we
investigated whether these synthetic chloride transporters
would cause the translocation of a GFP-TFEB reporter
protein from the cytoplasm to the nucleus. Indeed, SQ1
and SQ2 (but not SQ3) were able to stimulate TFEB
activation (Fig. 5a, b). TFEB is known to stimulate

lysosomal biogenesis, and both SQ1 and SQ2 caused the
overexpression of lysosomal-associated membrane pro-
tein 1 (LAMP-1) in U2OS cells (Fig. S1). Moreover,
knockout of TFEB partially reduced the formation of
LC3B puncta induced by SQ1 or SQ2, an inhibition that
was far less prominent than that found for the knockout
of ATG5 (Fig. 5c, d). Quantitation of GFP-LC3 puncta
that co-stain with an antibody recognizing LAMP1
revealed that SQ1 and SQ2 did not inhibit the fusion
between lysosomes and autophagosomes (Fig. S3e). These
observations suggest that SQ compounds inhibit autop-
hagic flux at a step downstream of the autophagosome-
lysosome fusion, presumably because SQ1 and SQ2 dis-
sipate the (normally acidic) pH gradient on the lysosomal
membrane19.
Intrigued by these observations, we decided to investi-

gate the role of TFEB in the induction of LC3B puncta by
inhibiting calcineurin, the phosphatase that depho-
sphorylates TFEB for its activation after mTORC1 inhi-
bition35,40,41. For this, we either used the calcium chelator
2,2′-(ethylenedioxy)dianiline-N,N,N,N-tetraacetic acid

(see figure on previous page)
Fig. 1 Chemical structure of SQ1 and SQ2 and their effect on autophagic parameters. a Structure of squaramide-based synthetic chloride
transporters SQ1, SQ2, and SQ3. b Kinetic studies of Torin 300 nM, SQ1, SQ2, and SQ3 at 10 μM on U2OS human osteosarcoma cells from 2–24 h.
Cell numbers were determined by means of fluorescence microscopy upon Hoechst staining. The graph depicts the average cell number for each
treatment per site of acquisition in a 384 well plate. c Immunoblot analysis of LC3 lipidation, protein expression level of mTOR, p70S6K and their
phosphorylated forms(Thr389) after 6-hour treatments. d, e Representative images and statistical analysis of U2OS GFP-LC3 cells after treatment with
Torin 300 nM or SQ1, SQ2, and SQ3 at 10 μM during 6 h having bafilomycin A1(100 nM) presented in the last 2 h of treatment. f, g Representative
images and statistical analysis of U2OS submitted to p62 immunofluorescence staining after 6 h of treatment with torin (300 nM) or SQ1, SQ2, and
SQ3 (10 μM). The bar chart indicated the global fluorescence intensity of p62 per cell, followed by p62 immunofluorescence staining. Data are
expressed as means ± SEM of at least three independent experiments (***/&&&/###p < 0.0001, compared to untreated cells, Co)

Fig. 2 Effects of SQ1 and SQ2 on autophagic flux. a Scheme of the design of the experiment. b Representative images of PC12 GFP-Q74 cell after
treatment with rapamycin (Rapa, 10 μM), torin 300 nM and SQ1, SQ2, SQ3 respectively at 10 μM for 6 h. c Data are expressed as means ± SD of one
representative experiment and represent the global GFP fluorescent intensity per cell. (*p < 0.05, ***p < 0.0001, compared to untreated cells, Co)
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(BAPTA) that can be targeted into cells a cell-permeant
acetoxymethyl ester derivative (BAPTA-AM) or, more
specifically, enzymatic inhibitors of calcineurin such as
cyclosporine A (CsA) and its non-immunosuppressive
control compound cyclosporin H (CsH). Moreover, we
used cycloheximide (CHX) as a general inhibitor of pro-
tein translation. Cells were preincubated for 1 h with these
reagents and then were treated with SQ1 or SQ2. Of note,
BAPTA-AM, CsA, and CsH strongly inhibited the for-
mation of GFP-LC3 puncta (Fig. 6b, c). CsA and CsH
failed to inhibit the formation of reactive oxygen species
(ROS) induced by SQ1 and SQ2 (as measurable by
quantifying the conversion of non-fluorescent hydro-
ethidine into fluorescent ethidium), which however could
be quenched by using the antioxidant N-acetyl cysteine
(NAC) (Fig. S2). NAC was also capable of inhibiting LC3
puncta formation (Fig. 6b, c). Importantly, none of the
inhibitors of GFP-LC3 puncta (i.e., BAPTA-AM, CHX,

CsA, CsH, NAC) nor full inhibition of the autophagic
process (in ATG5 KO cells) (Fig. S3C) were able to sig-
nificantly reduce cell killing by SQ1 or SQ2, as measured
at 24 h of incubation. Hence, the formation of GFP-LC3
puncta and later cell death can be uncoupled from each
other.
Furthermore, to evaluate the possibility that CsA and

TFEB act on different steps of the cellular alterations
induced by SQ1 and SQ2, we compared the SQ1 and SQ2
effects on the formation of GFP-LC3 dots between U2OS
WT and U2OS TFEB KO cells in the presence or absence
CsA. The CsA-mediated inhibition SQ1 and SQ2-elicited
GFP-LC3 dots was maintained in TFEB KO cells. This
argues in favor of the possibility that TFEB and CsA
modulate the effects of SQ1 and SQ2 in a differential
fashion (Fig. S3a, b).
Finally, we treated a cystic fibrosis bronchial epithelial

(CFBE) cell line harboring the most frequent CFTR

Fig. 3 SQ1and SQ2 induced Golgi localization of LC3. Representative images and statistical analysis of U2OS cells expressing GFP-GALT RFP-LC3
cells treated with torin (300 nM), oleate (500 μM), SQ1, SQ2 or SQ3 (10 μM) for 6 h. Quantitative analysis represents the number and area of GALT1+

Golgi structures per cell and the colocalization of LC3+ and GALT1+ structures. Data are expressed as means ± SD of one representative experiment
(***p < 0.0001, compared to untreated cells, Co). Representatie images are showin in panel a and quantitative comparisions are detailled in panel b
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mutation (delF508) for 24 h with SQ1 or SQ2 in the
absence or presence of bafilomycin A1. The results indi-
cate that SQ1 or SQ2 induced the formation of GFP-LC3
dots and that this effect was not further enhanced by
bafilomycin A1 (Fig. S3F), confirming that SQ1 or SQ2
inhibit autophagic flux in a disease-relevant cellular
model.

Discussion
SQ1 and SQ2 have previously been shown to stimu-

late the lipidation of LC319. Here, we confirm this
finding and link it to the relocation of LC3 to discrete
structure in the cytoplasm, which occurs in a strictly
ATG5-dependent fashion. We found that SQ1 and SQ2

inhibit mTORC1, a phenomenon that is linked to the
activation of TFEB (and other similar transcripition
factors)19. Indeed, SQ1 and SQ2 promote the translo-
cation of TFEB from the cytoplasm to the nucleus, and
TFEB is partially required for the aggregation of LC3 in
discrete cytoplasmic puncta. Although TFEB activation
should stimulate autophagic flux, we found that SQ1
and SQ2 were unable to do so. Rather both SQ1 and
SQ2 caused the accumulation of autophagic cargo in
two different cell types, in human osteosarcoma U2OS
cells (in which SQSTM1 became more abundant) and in
rat neuronal PC12 cells (in which a mutant Huntingtin
Q74 construct accumulated). SQ1 and SQ2 are syn-
thetic chloride transporters that dissipate the lysosomal

Fig. 4 Brefeldin A reduced SQ1 and SQ2 induced translocation of LC3 to the Golgi. a, b Representative images of U2OS GFP-GALT RFP-LC3 cells
treated with the compounds for 6 h (oleate 500 μM, SQ1, SQ2 at 10 μM) without (a) or after pretreatment with brefeldinA (10 μg/ml) for 1 h (b).
c–e Statistical analysis of RFP-LC3 puncta counts per cell, GFP-GALT marked Golgi surface per cell and the localization of LC3 and GALT (***p < 0.0001,
compared to untreated control cells, Co)
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pH gradient, a phenomenon that previously has been
suggested to account for the inhibition of autophagic
flux19. Thus, although both agents activate a pro-
autophagic transcription factor they ultimately fail to
stimulate autophagic flux.
Several strategies designed to inhibit the calcineurin-

mediated activation of TFEB, namely intracellular calcium
chelation or direct calcineurin inhibition by CsA largely
prevented autophagy induction by SQ1 or SQ2, con-
firming the importance of this pathway for the observed
phenotype. However, inhibition of protein neo-synthesis
or the calcineurin pathway was unable to prevent SQ1
and SQ2-induced cell death in conditions in which such
an inhibition fully suppressed the formation of LC3
puncta. We conclude from these results that the genera-
tion of such puncta apparently is not required for the
cytotoxic action of synthetic chloride transporters, which
must rely on other damage pathways to kill cells.
Surprisingly, SQ1 and SQ2 caused the relocation of LC3

into discrete perinuclear structures, usually presenting as
one single cap in immediate vicinity of the nucleus. These
structures turned out to co-localize with the Golgi

apparatus. We previously found a similar Golgi-specific
coalescence of LC3 in cells treated with unsaturated
fatty acids (such as oleate)20,42, the photosensitizer reda-
porfin22,43, and the cytolytic peptide derivative LTX-401,
which itself has a strong tropism for the Golgi25. Thus,
structurally rather distinct compounds can induce a
similar coalescence of LC3 in or at the Golgi apparatus.
For all these compounds (SQ1, SQ2, oleate, redaporfin,
LTX401), the Golgi-disrupting agent BFA prevented the
relocalization of LC3 to perinuclear caps. The mechan-
isms explaining this organelle-specific pattern of LC3
redistribution remain to be elucidated.
Synthetic chloride transporters have been developed as

hypothetical remedies against cystic fibrosis44–49. Indeed,
at least theoretically, such ionophores might be used as
substitutes to compensate for the defective function of
CFTR44,50. As shown in this paper, consistent with pre-
cedent reports19,51, chloride ionophores that can dissipate
pH gradients, such as the compounds studied here that
have been shown to be capable of transporting both
chloride and protons across lipid bilayers, block autop-
hagic flux in a peculiar manner, arguing against their

Fig. 5 Contribution of TFEB and ATG5 in LC3 relocation induced by the SQs. a, b Representative images of U2OS cells stably expressing GFP-
TFEB fusion protein, treated with torin 300 nM, SQ1, SQ2, and SQ3 at 10 μM during 6 h. Data are expressed as means ± SEM of at least three
independent experiments and demonstrate the average ratio between GFP-TFEB florescence intensity in the nucleus vs. cytoplasm. (*p < 0.05, **p <
0.01, ***p < 0.0001, compared to untreated cells, Co). c, d Representative images and statistics of U2OS GFP-LC3 cells, and the ATG5 KO and TFEB KO
counterparts after 6 h of treatment with the mentioned compounds. Bars depicts the absolute number of GFP-LC3+ dots per cell. Data are expressed
as means ± SEM of at least three independent experiments (*p < 0.05, ***p < 0.0001, compared to untreated cells, Co)
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Fig. 6 (See legend on next page.)
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therapeutic utility. Indeed, it appears to be advantageous
to restore autophagic turnover in cystic fibrosis12,15,17,
implying that autophagy inhibition would ultimately
worsen the disease. These types of transporter should be
exploited for therapeutic use against other diseases, for
instance cancer, in which their cytotoxic potential might
be advantageous. The development of chloride transpor-
ters which do not dissipate pH gradients is ongoing in
Sydney52.
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