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Alice Castaldo3, Marco Silano5, Gian Luigi Marseglia6, Luigina Romani7, Nikolai A. Barlev8, Mauro Piacentini4,
Valeria Raia3, Guido Kroemer9,10,11,12,13,14,15 and Luigi Maiuri1,2

Abstract
Under physiological conditions, a finely tuned system of cellular adaptation allows the intestinal mucosa to maintain
the gut barrier function while avoiding excessive immune responses to non-self-antigens from dietary origin or from
commensal microbes. This homeostatic function is compromised in cystic fibrosis (CF) due to loss-of-function
mutations in the CF transmembrane conductance regulator (CFTR). Recently, we reported that mice bearing defective
CFTR are abnormally susceptible to a celiac disease-like enteropathy, in thus far that oral challenge with the gluten
derivative gliadin elicits an inflammatory response. However, the mechanisms through which CFTR malfunction drives
such an exaggerated response to dietary protein remains elusive. Here we demonstrate that the proteostasis
regulator/transglutaminase 2 (TGM2) inhibitor cysteamine restores reduced Beclin 1 (BECN1) protein levels in mice
bearing cysteamine-rescuable F508del-CFTR mutant, either in homozygosis or in compound heterozygosis with a null
allele, but not in knock-out CFTR mice. When cysteamine restored BECN1 expression, autophagy was increased and
gliadin-induced inflammation was reduced. The beneficial effects of cysteamine on F508del-CFTR mice were lost
when these mice were backcrossed into a Becn1 haploinsufficient/autophagy-deficient background. Conversely, the
transfection-enforced expression of BECN1 in human intestinal epithelial Caco-2 cells mitigated the pro-inflammatory
cellular stress response elicited by the gliadin-derived P31–43 peptide. In conclusion, our data provide the proof-of-
concept that autophagy stimulation may mitigate the intestinal malfunction of CF patients.

Introduction
Cystic fibrosis (CF) is the most frequent monogenic

lethal disease affecting more than 85,000 subjects world-
wide1–4. CF is caused by loss-of-function mutations in the
gene coding for the cystic fibrosis transmembrane con-
ductance regulator (CFTR)5,6, a protein with 1480 amino

acid residues that belongs to the ABC transport family
and functions as a cyclic AMP-regulated anion channel.
CFTR is expressed in, and is relevant to the function of,
many tissues, including airways, small and large intestine,
pancreas, biliary tree, male reproductive tract and sweat
glands3,7, but it is also expressed in central nervous sys-
tem, leukocytes, smooth muscle and cartilage of the large
airways7. Approximately 2000 mutations have been
identified in the CFTR gene and are categorized in 6
classes according to their impact on the synthesis (class I),
processing (class II), gating (class III), conductance (class
IV), quantity (class V) and recycling (class VI) of the
CFTR protein8–11. Among, these mutations, the clinically
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most important one is the F508del-CFTR mutation (class
II), which accounts for 70–90% of CFTR cases.
CF is best known for its respiratory phenotype, as the

abnormal anion transport results in increased mucin
polymer cross-links and mucus viscosity12–14, leading to
accumulation of thick, sticky mucus in the lung. These
events cause chronic inflammation, persistent and
untreatable bacterial colonization and recurrent chest
infections, mostly by Pseudomonas aeruginosa, Staphylo-
coccus aureus, and Burkholderia cepacia15. Chronic
infection and inflammation ultimately lead to progressive
lung disease with bronchiectasis and tissue destruction,
culminating in respiratory insufficiency15. Defective CFTR
function also frequently leads to intestinal problems16,17,
including intestinal obstruction as well as an exaggerated
immune response to dietary antigens18–20. Indeed, a
constitutive inflammation at both airway and intestinal
mucosa, is a feature of CF17,19,20. Moreover, CF patients
often show serum antibodies against dietary antigens18,20.
Beyond its function as an ion channel16, CFTR orches-

trates proteostasis at respiratory and intestinal epithelial
surfaces, thus regulating adaptation to cell-autonomous
or external stress21–24. CFTR malfunction causes a mala-
daptive epithelial stress response with increased genera-
tion of reactive oxygen species (ROS) which oxidize and
activate tissue transglutaminase (TGM2)25,26. Activated
TGM2 targets several substrates, among which Beclin 1
(BECN1), a major pro-autophagic protein that acts as an
allosteric activator of phosphatidylinositol 3-kinase cata-
lytic subunit type 3 (PIK3C3)21–23. Transamidation of
BECN1 by TGM2 dislodges the BECN1 interactome away
from the endoplasmic reticulum (ER), resulting in the
functional sequestration of PIK3C3 into intracellular
aggregates. This causes inhibition of autophagy, accumu-
lation of the autophagic substrate sequestosome 1
(SQSTM1) and reduced availability of the PIK3C3 product
phosphatidyl-inositol-3-phosphate (PtdIns3P) at early
endosomes that impairs endosomal maturation and traf-
ficking21,22. Mismanaged proteostasis in epithelial cells
consequent to CFTR malfunction also leads to TGM2-
mediated crosslinking of the anti-inflammatory peroxi-
some-proliferator-activated-receptor-γ (PPARγ), as well as
increased nuclear translocation of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) owing to
TGM2 targeting of NF-κB inhibitor alpha (NFKBIA)
within histone-deacetylase 6 (HDAC6)+/vimentin+ intra-
cellular aggresomes21,23,25,26. NF-κB activation results in
increased levels of pro-inflammatory cytokines, among
which interleukin (IL)-17A, IL-21 and IL-15, a master
cytokine involved in gut homeostasis18,23,27–29 as well as
IL-1β18.
Importantly, CFTR malfunction, TG2 activation and

autophagy deficiency are engaged in a self-amplifying
feed-forward loop. For this reason, inhibition of TGM2 by

cysteamine is sufficient to restore autophagy and to favor
the expression of functional CFTR at the epithelial sur-
face. Indeed, treatment of neonatal mice bearing the
F508del-CFTR mutation with cysteamine can prevent
intestinal obstruction30. Moreover, cysteamine efficiently
restores CFTR function and reduces lung inflammation in
patients carrying at least one class II CFTR mutation30,31.
A combination of two proteostasis regulators, cysteamine
and the autophagy inducer epigallocatechin gallate
(EGCG), was particularly efficient in restoring the
expression and function of the mutant F508del-CFTR
protein11,31.
CF patients exhibit a three-fold increase in the pre-

valence of celiac disease (CD)18,32,33 an extremely frequent
permanent intolerance to gluten/gliadin proteins that
occurs in a proportion of susceptible individuals bearing
the human leukocyte antigen (HLA) DQ2/DQ834–36.
Accordingly, CFTR defective mice exhibit an increased
susceptibility to the enteropathogenic effects of gliadin, a
common dietary protein present in gluten from wheat,
rye, and barley18. Gliadin inhibited the function of CFTR
in human enterocytes and mouse models of CD through a
direct molecular interaction involving a specific gliadin-
derived peptide (P31–43) with the nucleotide-binding
domain-1 (NBD1) of CFTR18. Indeed, the effects of glia-
din on enterocyte proteostasis are reminiscent of those
observed in CFTR defective mice. Given the pivotal role of
BECN1 and autophagy in orchestrating proteostasis in CF
epithelia, we investigated whether the increased respon-
siveness to gliadin in CF mice may be due to defective
autophagy and whether re-establishing BECN1 levels and
autophagy by means of cysteamine would protect the CF
intestine against the detrimental effects of gliadin.

Results
Cysteamine restores CFTR function in CftrF508del mice after
gliadin challenge
Cysteamine is reportedly effective in rescuing CFTR at

the intestinal epithelial surface of mice homozygous for
the F508del-CFTR mutation30,31. To investigate whether
rescuing CFTR function by means of cysteamine would
abrogate the pathogenic response to gliadin, we orally
administered cysteamine for 5 consecutive days (60 µg/kg
in 100 µl saline/day) to knock-in mice harboring the most
common loss-of-function F508del-CFTR mutation
(Cftrtm1EUR, F508del, FVB/129, CftrF508del/F508del), CFTR
knock-out mice (B6.129P2-KOCftrtm1UNC, Cftr−/−),
knock-in mice harbouring one F508del-CFTR allele in
combination with one null-CFTR allele (CftrF508del/−) or
their wild-type (WT) littermates (FVB/129 or B6.129P2).
After or without cysteamine pre-treatment (60 µg/kg in
100 µl saline/day), mice were orally challenged with glia-
din (5 mg/daily for 1 week and then 5 mg/daily thrice a
week for 3 weeks) or vehicle for the following 4 weeks
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(n= 10 per group of treatment), according to established
procedures18.
Since gliadin is capable of impairing CFTR function in

gliadin-sensitive CFTR-sufficient mice18, we first assessed
whether the cysteamine-mediated rescue of F508del-
CFTR function would persist after gliadin administration.
To this aim, the small intestine from CftrF508del/F508del

mice exposed to cysteamine and/or gliadin (n= 10
per group of treatment) were mounted in Ussing cham-
bers and CFTR function was assessed as the forskolin
(Fsk)-induced increase of chloride current (Isc (μA/cm2)).
In CftrF508del/F508del and CftrF508del/− mice, the 5-day pre-
treatment with cysteamine enhanced intestinal CFTR
function, as expected31. This CFTR rescuing ability of
cysteamine was not compromised by gliadin challenge
(Fig. 1a, b). Of note, cysteamine restored CFTR function in
gliadin-treated or vehicle-treated CftrF508del/F508del and
CftrF508del/− mice, whereas it failed to do so in Cftr−/−

mice (Fig. 1c), in line with the idea that the positive
effect of cysteamine requires the presence of ‘rescuable’
F508del-CFTR protein.

Cysteamine protects CftrF508del mice from the effects of
gliadin in vivo
Next, we investigated whether cysteamine would

control the increased mucosal immune response
that occurred in gliadin exposed CftrF508del/F508del mice.
To this aim, we measured the levels of proinflammatory
cytokines in small intestine homogenates from mice
fed with gliadin for 4 weeks in the presence or absence
of cysteamine. Cysteamine was effective in preventing
the increased production of IL-17A and IFN-γ induced
by gliadin (p < 0.01 and p < 0.001) (Fig. 2a, b). In addi-
tion, cysteamine controlled the production of IL-15,
a master pro-inflammatory cytokine pivotal for
driving the gliadin-induced enteropathy37–41 (Fig. 2c).
Indeed, IL-15 is constitutively upregulated in mouse CF
intestine and is significantly induced by oral gliadin
challenge18. Again, the anti-inflammatory effect of
cysteamine against gliadin-induced cytokine producton
was observed in CftrF508del/F508del, CftrF508del/− but not
in Cftr−/− mice (Supplementary Figure 1), supporting
the hypothesis that cysteamine controls the gliadin-

Fig. 1 Cysteamine restores CFTR function in CftrF508del mice after gliadin challenge. a CftrF508del/F508del b CftrF508del/−, and c Cftr−/− mice orally
treated with vehicle or cysteamine (60 µg/kg in 100 µl saline/day for 5 days) and then challenged with gliadin for consecutive 4 weeks (5 mg/daily for
1 week and then 5 mg/daily thrice a week for 3 weeks) in the presence or absence of cysteamine (60 µg/kg in 100 µl saline/day) (n= 10 mice per
group of treatment). The CFTR-dependent Cl− secretion was measured by forskolin-induced (Fsk) increase of the chloride current (Isc (μA/cm2) in
small intestines mounted in Ussing chambers; quantification of the peak CFTR Inhibitor 172 (CFTRinh172)-sensitive Isc (ΔIsc). ***p < 0.001 versus
cysteamine (ANOVA, Bonferroni post hoc test)
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Fig. 2 Cysteamine protects CftrF508del mice from the effects of gliadin in vivo. a IL-17A, b IFN-γ, and c IL-15 mRNA (left) and protein (right) levels
in small intestine homogenates from CftrF508del/F508del or their CftrWT littermates treated with vehicle or cysteamine (60 µg/kg in 100 µl saline/day for
5 days) and then challenged with gliadin for consecutive 4 weeks (5 mg/daily for 1 week and then 5 mg/daily thrice a week for 3 weeks) in the
presence or absence of cysteamine (60 µg/kg in 100 µl saline/day) (n= 10 per group). Means ± SD of pooled samples assayed in triplicates. ##p < 0.01
or ### p < 0.001 CftrWT versus CftrF508del/F508del; §p < 0.05 or §§p < 0.01 or §§§p < 0.001 versus cysteamine treatment; **p < 0.01, ***p < 0.001 versus
gliadin challenge; °p < 0.05 or °°p < 0.01 or °°°p < 0.001 versus cysteamine+ gliadin (ANOVA, Bonferroni post hoc test)
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induced inflammation through restoring F508del-CFTR
function.

Cysteamine protects CftrF508del mice in vivo from the
increased responsiveness to gliadin through restoring
BECN1 and autophagy
We previously reported that the inhibition of TGM2 with

the subsequent restoration of BECN1 protein levels and
autophagy are pivotal for allowing cysteamine to rescue
F508del-CFTR at the epithelial surface11,18,21,31. For this
reason, we investigated whether the protective effects of
cysteamine against gliadin induced immune activation
would be linked to its capacity to restore autophagy. To this
aim, CftrF508del/F508del mice were backcrossed into a Becn1
haploinsufficient background (to generate CftrF508del/F508del/
Becn1+/− mice)31, and gliadin was orally administered upon
optional pretreatment with cysteamine. Cysteamine was
unable to restore the function of the intestinal CFTR
(determined in Ussing chambers) from CftrF508del/F508del/
Becn1+/− mice, either before or after gliadin challenge
(Fig. 3a). Gliadin triggered an inflammatory response in
CftrF508del/F508del/Becn1+/− mice, similarly to that observed
in CftrF508del/F508del mice (Fig. 3b–d). Of note, cysteamine
failed to mitigate the gliadin-elicited production of IL-15,
IL-17A, and IFN-γ in CftrF508del/F508del/Becn1+/− mice
(Fig. 3b–d). In conclusion, it appears that the haploinsuffi-
ciency of Becn1 (genotype: Becn1+/−) abrogates the anti-
inflammatory effects of cysteamine that is normally seen in
CftrF508del/F508del mice.

Restoring BECN1 protects intestinal epithelial cells from
the detrimental effects of gliadin
To complete our demonstration that BECN1 and

autophagy are crucial for the inflammatory effects of
gliadin in intestinal epithelial cells, we resorted to human
intestinal epithelial Caco-2 cells, which are reportedly
sensitive to gliadin or gliadin-derived peptides40. When
confluent Caco-2 cells were challenged for 3 h with a
peptic-tryptic digest of gliadin from bread wheat (PT
gliadin; 500 μg/ml)40,41 or the gliadin-derived peptide
LGQQQPFPPQQPY (P31–43), CFTR function is inhib-
ited18. Moreover, gliadin treatment of Caco-2 cells caused
a reduction in BECN1 protein levels, as compared to
unchallenged controls (Fig. 4a). Next, we transfected
Caco-2 cells with HA-Beclin 1 and challenged them for
3 h with gliadin or P31–43. Of note, the enforced
expression of BECN1 (which enhances the generation of
autophagosomes and autophagy21), prevented signs of
gliadin-induced inflammation, as it avoided the upregu-
lation of TGM2, the activating phosphorylation of
ERK 1/2 and the downregulation of PPARγ that were
induced by gliadin (Fig. 4b, c). These results suggest that
BECN1 plays an active role in mitigating the gliadin-
induced inflammatory response of intestinal epithelial cells.

Discussion
The proteostasis network is a system of cellular adaptation

to endogenous or environmental stress. Mismanaged pro-
teostasis contributes to a number of diseases arising as a
result of inherited or stress-induced defects in protein con-
formation42. Autophagy is a major player of the proteostasis
network as it regulates the turnover of large protein aggre-
gates and even entire organelles. In addition, several com-
ponents of the autophagy machinery dynamically interact
with multiple signalling pathways to ensure intracellular
homeostasis43–45. CF is the quintessential example of a dis-
ease characterized by major alterations of the proteostasis
network11,21,23,46. Defective CFTR function highly compro-
mises the capacity of cells to adequately respond to endo-
genous stress signals as well as to external challenges arising
within the respiratory and gastrointestinal tracts11.
The intestine from CF patients is exposed to a parti-

cularly high antigenic load due to the frequent insuffi-
ciency of the exocrine pancreas17. Moreover, the local
overactivation of the innate immune system compromises
the handling of dietary molecules, thus favouring inade-
quate cellular and humoral immune responses to food
components. Accordingly, CF patients often exhibit
increased levels of antibodies against alimentary antigens,
including anti-gliadin IgA antibodies, shifts in the intest-
inal microbiota, elevated fecal calprotectin levels and
increased intestinal permeability17,20,47. Moreover, the
prevalence of autoantibodies against TGM2 is four times
higher than in the general population, even in the absence
of histological evidence of intestinal lesions18,32,33. Indeed,
when CFTR is disabled, the intracellular milieu undergoes
major pathogenic changes. CFTR inhibition results in a
ROS-mediated increase in the abundance and activity of
TGM225,26 with consequent functional sequestration of
BECN1 complex and inhibition of autophagy21–23. Thus,
CFTR inhibition, TGM2 activation and BECN1 inactiva-
tion act in concert to compromise proteostasis in the
small intestine of CF mice, driving constitutive pro-
inflammatory reactions that involves the activation of the
NF-κB pathway and the NLRP3 inflammasome.
Here we demonstrate that functional BECN1 and

autophagy are required to prevent the increased sus-
ceptibility of CF intestine to the gluten component
gliadin. Indeed, the proteostasis regulator cysteamine
was capable of reducing the pro-inflammatory effects of
gliadin in mice bearing the most common F508del-
CFTR mutant, either in homozygosity or in compound
heterozygosity. Apparently, cysteamine abrogates the
susceptibility of mice to oral gliadin challenge by
acting as TGM2 inhibitor, thus preventing the
BECN1 sequestration and autophagy impairement that
normally result from CFTR inhibition. However,
cysteamine fails to prevent gliadin-induced inflamma-
tion in CFTR KO mice, meaning that its effects are
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Fig. 3 (See legend on next page.)
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mediated by its ability to rescue CFTR function, as
reported23,31. Importantly, the beneficial effects of
cysteamine on F508del-CFTR mice are lost when these
mice are backcrossed in an autophagy-deficient (Becn1
haploinsufficient mice) background, indicating that the
restoration of BECN1 levels and autophagy are indeed
required to avoid the enteropathic effects of gliadin.
In aggregate, stimulating autophagy might represent a

novel option to prevent intestinal manifestations of CF. In
favor of this notion, it appears that enforced expression of
BECN1 in gliadin-sensitive human intestinal epithelial
cells18,40, effectively opposes the capability of the gliadin-
derived P31–43 peptide18,40,41 to induce an epithelial
stress response. In this perspective, and in line with the
evidence that the best option to stimulate autophagy is to
interfere with the function of its endogenous inhibitors48,
it might be attempted to neutralize BECN1 inhibitory
proteins. Druggable endogenous BECN1 antagonist
include proteins from the BCL2 family (which can be
targeted with so-called BH3 mimetics including ABT737,
navitoclax, and venetoclax)49, the mechanistic target of
rapamycin complex-1 (mTORC1) (which are inhibited by
rapamycin, everolimus or tacrolimus)48, as well as the
acetyltransferase EP300 (which is inhibited by aspirin,
epigallocatechine gallate, or spermidine)31,46,50,51. More-
over, there is the option to directly inhibit TGM2 by
cysteamine31,52 and to combine cysteamine with other
autophagy stimulators such as EGCG31.
In conclusion, our data highlight the implication of

CFTR in the suppression of diet-induced inflammation.
CFTR may be viewed as a major stress sensor that alerts
the autophagy machinery when a potentially harmful
perturbation risks to perturb mucosal homeostasis. Once
activated, autophagy then orchestrates the proper hand-
ling of luminal triggers by the intestinal mucosa. Phar-
macological autophagy enhancement may be harnessed to
prevent intestinal inflammation and to improve the
nutritional status of CF patients.

Materials and methods
Cells and treatments
Human colon adenocarcinoma-derived Caco-2 were

obtained from the ATCC. Cells were maintained in T25

flask in Modified Eagle Medium (MEM) supplemented
with 10% fetal bovine serum (FBS), 2 mM Glutamine+
1% Non-Essential-Amino-Acids (NEAA) and the anti-
biotics penicillin/streptomycin (100 units/ml) (all reagents
from Lonza)18. Cells were treated with 20 µg/ml of α-
gliadin peptide P31–43 for 3 h synthesized by Inbios
(Napoli, Italy). Cells were also treated with Pepsin-
trypsin-gliadin (PT-gliadin) (500 μg/ml)40,41,53. Caco-2
cells were also transfected with HA-beclin 1 and then
treated with α-gliadin peptide P31–43 for 3 h.

Plasmids and transfection
The pcDNA3-HA–beclin 1 expression vector (a gift

from N. Mizushima) was used for transfection experi-
ments. Cells were transfected with pcDNA3-HA–beclin 1
by means of Lipofectamine 2000 (Invitrogen) in accor-
dance with the manufacturer’s instructions.

Mice and treatments
CF mice homozygous for the F508del-CFTR in the

FVB/129 outbred background (Cftrtm1EUR, F508del,
FVB/129, abbreviated CftrF508del/F508del) were obtained
from Bob Scholte, Erasmus Medical CenterRotterdam,
The Netherlands, CF coordinated action program EU
FP6LSHMCT-2005-018932.50. Transgenic KO Cftr mice
(B6.129P2-KOCftrtm1UNC, abbreviated Cftr−/−), were
purchased from The Jackson Laboratory (Bar Harbor, ME,
USA). The heterozygous CftrF508del/+ males were back-
crossed with heterozygous Cftr+/− females to obtain
F508del/null CFTR heterozygous mice (abbreviated
CftrF508del/−).
Female CftrF508del/+ mice were backcrossed to the

C57BL/6J background Becn1+/– male mice (generous gift
from Beth Levine, Center for Autophagy Research,
Department of Internal Medicine, UT Southwestern
Medical Center, Dallas, USA and Francesco Cecconi,
University of Tor Vergata, Rome, Italy) to obtain at the
first generation Becn1 haplo-insufficient F508del hetero-
zygous mice (abbreviated CftrF508del/+/Becn1+/−). These
CftrF508del/+/Becn1+/− mice were crossbred to obtain
Becn1 haplo-insufficient F508del homozygous mice
(abbreviated CftrF508del/F508del/Becn1+/−). The newly
generated CftrF508del/− and the CftrF508del/F508del/Becn1+/–

(see figure on previous page)
Fig. 3 Cysteamine protects CftrF508del mice in vivo from the increased responsiveness to gliadin through restoring BECN1 and autophagy.
a CftrF508del/F508del/Becn1+/− mice treated with cysteamine (60 µg/kg in 100 µl saline/day for 5 days) and then challenged with gliadin for consecutive
4 weeks (5 mg/daily for 1 week and then 5 mg/daily thrice a week for 3 weeks) in the presence or absence of cysteamine (60 µg/kg in 100 µl saline/
day) (n= 10 mice per group of treatment). Assessment of CFTR-dependent Cl− secretion measured by forskolin-induced (Fsk) increase of the chloride
current (Isc (μA/cm2) in small intestines mounted in Ussing chambers; quantification of the peak CFTR Inhibitor 172 (CFTRinh172)-sensitive Isc (ΔIsc).
b IL-17A, c IFN-γ, and d IL-15 mRNA levels in small intestine homogenates from CftrF508del/F508del/Becn1+/− (left) or Becn1+/− (right) mice treated with
vehicle or cysteamine (60 µg/kg in 100 µl saline/day for 5 days) and then challenged with gliadin for consecutive 4 weeks (5 mg/daily for 1 week and
then 5 mg/daily thrice a week for 3 weeks) in the presence or absence of cysteamine (60 µg/kg in 100 µl saline/day) (n= 10 per group of treatment).
Means ± SD of pooled samples assayed in triplicates. ***p < 0.001 versus gliadin challenge; (ANOVA, Bonferroni post hoc test)
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were housed at the San Raffaele Scientific Institute SOPF
animal house (Milan, Italy).
Mice were challenged with vehicle alone or cysteamine

(60 µg/kg in 100 µl saline/day) for 5 days. Mice were also
challenged via gavage for 4 weeks with vehicle alone or

gliadin (Sigma-Aldrich, G3375) (5mg/daily for one
week and then 5mg/daily thrice a week for 3 weeks)18

in the presence or absence of cysteamine (60 µg/kg in
100 µl saline/day) challenge, (n= 10 mice per group of
treatment).

Fig. 4 Restoring BECN1 protects intestinal epithelial cells from the detrimental effects of gliadin peptides. a Caco-2 cells treated with gliadin-
derived P31–43 peptide or with vehicle for 3 h. Immunoblot with anti-Beclin 1 or anti-β-actin (left), as loading control, in whole lysates and relative
densitometric analysis (right) of immunoblot. Means ± SD of pooled samples assayed in triplicates; **p < 0.01 versus P31–43 (Student’s t test).
b, c Caco-2 cells transfected with HA-Beclin 1 and then challenged for 3 h with P31–43. b Immunoblot of TGM2, phospho-ERK 1/2 (phERK 1/2) and
with anti-HA tag for transfection control. Densitometric analysis of protein levels relative to β-actin (right). Means ± SD of pooled samples assayed in
triplicates; **p < 0.01 versus P31–43, °°°p < 0.001 versus HA-Beclin1+ P31–43 (ANOVA, Bonferroni post hoc test). c Immunoblot of PPARγ (left)
and densitometric analysis of protein levels relative to β-actin (right). Means ± SD of pooled samples assayed in triplicates; ***p < 0.001 versus P31–43,
°°°p < 0.001 versus HA-Beclin1+ P31–43 (ANOVA, Bonferroni post hoc test)
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Mice were anesthetized with Avertine (tribromoethanol,
250mg/kg, Sigma Aldrich, Milan, Italy, T48402) and then
killed and small intestines were collected. These studies
and procedures were approved by the local Ethics Com-
mittee for Animal Welfare (IACUC No 849, 713) in
compliance with European Community regulations for
animal use in research (2010/63 UE).

Ussing chamber
Chambers for mounting mouse tissue biopsies were

obtained from Physiologic Instruments (model P2300,
San Diego, CA, USA). Chamber solution was buffered by
bubbling with identical Ringer solution on both sides and
were maintained at 37 °C, vigorously stirred, and gassed
with 95%O2/5%CO2. Tissues were short circuited using
Ag/AgCl agar electrodes. A basolateral-to-apical chloride
gradient was established by replacing NaCl with Na-
gluconate in the apical (luminal) compartment to create a
driving force for CFTR-dependent Cl− secretion. To
measure stimulated Isc, the changed sodium gluconate
solution, after stabilization, was supplied with 100 µM
amiloride. Agonists (forskolin) were added to the bathing
solutions as indicated (for a minimum 5min of observa-
tion under each condition) to activate CFTR channels
present at the apical surface of the epithelium (either cell
surface or lumen side of the tissue) and CFTRInh-172

(10 µM) was added to the mucosal bathing solution to
block CFTR-dependent Isc. Short-circuit current
(expressed as Isc (μA/cm2)) and resistance were acquired
or calculated using the VCC-600 transepithelial clamp
from Physiologic Instruments and the Acquire
&Analyze2∙3 software for data acquisition (Physiologic
Instruments), as previously described18,54.

Real-time and reverse transcription analysis
The analysis was performed as previously descri-

bed18,21,30,31,55. Total RNA was extracted with the RNeasy
Mini Kit (Qiagen, 74104) from mouse intestin homo-
genates. The mRNA was reverse transcribed with One-
transcript plus cDNA sintesis kit (abm good). The
sequences of mouse primers were:18

IL-15: forward 5′-ACCAGCCTACAGGAGGCC-3′
reverse 5′- TGAGCAGCAGGTGGAGGTAC-3′
IL-17: forward 5′-ACCGCAATGAAGACCCTGAT-3′
reverse 5′- TCCCTCCGCATTGACACA-3′
INF-ϒ: forward5′-AGAGGATGGTTTGCATCTGGGT
CA-3′
reverse5′- ACAACGCTATGCAGCTTGTTCGTG-3′
Expression levels of genes were normalized to β-actin

(primer design HK-sy-mo600) levels in the same samples.

Immunoblot
The whole lysate of cell lines and mice intestine

homogenates were obtained from treated and untreated

cells as described21–26,55. Equal amounts of protein were
resolved by SDS-PAGE gel and blotted with antibodies
against: PPARγ (Santa Cruz Biotechnology, sc7273) 1:500,
BECN1 (Abcam, ab58878) 1:1000, HA (BD Bioscience)
1:5000, TG2 (CUB7402 Neomarker) 1:1000, phospho-
ERK1/2 (phERK1/2, Cell Signaling Technology, #91101)
1:1000, Normalization was performed by probing the
membrane with anti-β-actin (Cell Signaling, #4970)
1:1000.

ELISA
ELISA analysis was performed on tissue samples using

standard ELISA kits (R&D Systems) for IL-15, IL-17A,
INF-γ, according to the manufacturer’s instructions.
Samples were read in triplicate at 450 nm in a Microplate
Reader (BioRad, Milan, Italy) using Microplate Manager
5.2.1 software. Values were normalized to protein con-
centration evaluated by Bradford analysis.

Statistical analysis
GraphPad Prism software 6.01 (GraphPad Software)

was used for analysis. Data are expressed as means ± SD.
Statistical significance was calculated by ANOVA (Bon-
ferroni’s post hoc test) for multiple comparisons and by
Student’s t-test for single comparisons. We considered all
P values 0.05 to be significant. The in vivo groups con-
sisted of ten mice/group. The data reported are either
representative of at least three experiments.
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