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General context - The evolution operator U(t)

𝐔 𝐭′, 𝐭 = 𝐎𝐄 −𝐢 𝐇 𝐭′, 𝐭 = 𝑻 𝐞𝐱𝐩 −𝐢න
 

 ′

𝐇 𝝉 𝐝𝝉 

Dyson time-ordering operator

𝐔 𝝉𝒄 = 𝒆𝒙𝒑 −𝒊𝝉𝑪 ෍

𝒏=𝟎

∞

𝑯 𝒏 
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Outline

■ Basic results of algebraic graph theory

■ Path-Sum applied to Ordered Exponential (OE)

■ Applications:

► Circularly polarized excitation

► Linearly polarized excitation, Bloch-Siegert (BS) effect

► N spins: homonuclear dipolar Hamiltonian, 𝑯𝑫
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Basic results of algebraic graph theory

G = ( Vertex set, Edge set )

AG = 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 𝑎32 0
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self-loop

directed edge

entry: weight on a directed edge

Adjacency finite matrix AG

ex.: walk W1 ← 2 (from V2 to V1) of length 4
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Basic results of algebraic graph theory

the powers of the Adjacency matrix AG on a graph G generate

ALL weighted WALKS W on G

N. Biggs, in: Algebraic Graph Theory (1993)

AG = 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 𝑎32 0
= 

⋯
⋮ ⋱ ⋮

⋯
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W of length 2 from V2 to V1 (1 ← 2)
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Path-Sum

◊ simple path P (self avoiding walk): W whose V are all distinct  

◊ simple cycle C (self avoiding polygon): W whose endpoints are identical and intermediate

V are all distinct and different from the endpoints

« Fundamental Theorem of Arithmetic » on G (P.-L. Giscard, 2012)

► W factor uniquely into prime elements, i.e. simple paths and simple cycles

► if G is finite the number of primes is finite

► resummation of all W involves a finite number of operations: sum on simple 

paths and continuous fraction of simple cycles with vertex removal
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Power series of AG

(AG)
k

= 
⋯

⋮ ⋱ ⋮
⋯

(AG)
k
 a
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ex.: 𝐞𝐱𝐩  G = σ k =𝟎
∞  

𝒏!
AG

k



Power series of AG

𝑭 𝐀G 𝝎𝜶= σ k =𝟎
∞ 𝒄k σ WG, 𝜶𝝎; k

 𝝎𝒉𝒌
…×  𝒉 𝒉 

×  𝒉 𝜶

power series of AG all weighted walks W from Va to V of length k

(AG)
k

= 
⋯

⋮ ⋱ ⋮
⋯

(AG)
k
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ex.: 𝐞𝐱𝐩  G = σ k =𝟎
∞  

𝒏!
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Power series of AG

𝑭 𝐀G 𝝎𝜶= σ k =𝟎
∞ 𝒄k σ WG, 𝜶𝝎; k
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…×  𝒉 𝒉 

×  𝒉 𝜶

power series of AG all weighted walks W from Va to V of length k

Path-Sum

(AG)
k
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⋯

⋮ ⋱ ⋮
⋯

(AG)
k
 a
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ex.: 𝐞𝐱𝐩  G = σ k =𝟎
∞  

𝒏!
AG
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► W factor uniquely into prime elements, i.e. simple paths and simple cycles

► if G is finite the number of primes is finite

► resummation of all W involves a finite number of operations: sum on simple 

paths and continuous fraction of simple cycles with vertex removal



Power series of AG

𝑭 𝐀G 𝝎𝜶= σ k =𝟎
∞ 𝒄k σ WG, 𝜶𝝎; k

 𝝎𝒉𝒌
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power series of AG all weighted walks W from Va to V of length k

Path-Sum

(AG)
k

= 
⋯

⋮ ⋱ ⋮
⋯

(AG)
k
 a
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sum on the finite set of 

simple paths P of length l

edge weight effective V weight

sum over the finite set of simple cycles C
(continued fraction of finite breadth)

ex.: 𝐞𝐱𝐩  G = σ k =𝟎
∞  

𝒏!
AG

k



Ordered exponential (OE) (P.-L. Giscard, 2015)

AG(t) = 
⋯

⋮ ⋱ ⋮
⋯

𝑠   𝑡 𝑠a

AG
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Va

Weight   ← a=        a

V 
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Path-Sum

OE[A](t’,t) = 𝑠 O     𝑡 , 𝑡 𝑠a

Path-Sum

S ALL weighted walks ← on AG

but using  −product

instead of ×

OE[AG](t’,t) = 𝑠 O   G  𝑡 , 𝑡 𝑠a



An example: 2 × 2 matrix

A(t) = 
𝑎11 𝑡 𝑎12 𝑡 
𝑎21 𝑡 𝑎22 𝑡 

OE[A](t’,t) = 
𝑡׬
𝑡′
𝐺𝐾2,11 𝑡′, 𝜏 𝑑𝜏 𝑂𝐸12 𝑡

′, 𝑡 

𝑂𝐸21 𝑡
′, 𝑡 ׬𝑡

𝑡′
𝐺𝐾2,22 𝑡′, 𝜏 𝑑𝜏

K2

1

2Path-Sum

► entry → solving an equation with analytical tools

► finite number of operations → unconditional convergence 

► non perturbative formulation of OE

► scalability 13
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« Fundamental Theorem of Arithmetic » on G (P.-L. Giscard, 2012)

► W factor uniquely into prime elements, i.e. simple paths and simple cycles

► if G is finite the number of primes is finite

► resummation of all W involves a finite number of operations: sum on simple 

paths and continuous fraction of simple cycles with vertex removal

An example: 2 × 2 matrix

A(t) = 
𝑎11 𝑡 𝑎12 𝑡 
𝑎21 𝑡 𝑎22 𝑡 

OE[A](t’,t) = 
𝑡׬
𝑡′
𝐺𝐾2,11 𝑡′, 𝜏 𝑑𝜏 𝑂𝐸12 𝑡

′, 𝑡 

𝑂𝐸21 𝑡
′, 𝑡 ׬𝑡

𝑡′
𝐺𝐾2,22 𝑡′, 𝜏 𝑑𝜏

K2

1

2Path-Sum
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An example: 2 × 2 matrix

[  −    ⋯ ] − = ෍

𝒏≥𝟎

   ⋯  𝒏 Neumann series (analytical)                                                         

linear Volterra (2nd kind) (numerical)                                                         

𝒇  𝒈 = න
 

 ′

𝒇  ′, 𝝉 𝒈 𝝉,  𝒅𝝉

OE[A](t’,t) = 
 ׬
 ′
𝑮𝑲 ,   ′, 𝝉 𝒅𝝉 𝑶𝑬    

′,   

𝑶𝑬    
′,  ׬  

 ′
𝑮𝑲 ,   ′, 𝝉 𝒅𝝉
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An example: 2 × 2 matrix

[  −    ⋯ ] − = ෍

𝒏≥𝟎

   ⋯  𝒏 Neumann series (analytical)                                                         

linear Volterra (2nd kind) (numerical)                                                         

𝒇  𝒈 = න
 

 ′

𝒇  ′, 𝝉 𝒈 𝝉,  𝒅𝝉

OE[A](t’,t) = 
 ׬
 ′
𝑮𝑲 ,   ′, 𝝉 𝒅𝝉 𝑶𝑬    

′,   

𝑶𝑬    
′,  ׬  

 ′
𝑮𝑲 ,   ′, 𝝉 𝒅𝝉

► END of the continued fraction !

► finite sum on C

► END !

► finite sum on simple P
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 𝒊𝒋   

► END of the continued fraction !

► finite sum on C

► END !

► finite sum on simple P

► END of the continued fraction !

► finite sum on C

► END !

► finite sum on simple P

K2

sum on simple 

cycles

sum on simple 

paths



Summary (partial)

► … take a finite matrix AG (t) associated to G (Hermitian or not, periodic

or not…)

►each entry of AG
k

is given is given by a finite number of operations by

using Path-Sum (with × product)

►each entry of OE[AG ](t’,t)] is given is given by a finite number of

operations by using Path-Sum (with  −product and [  −    ⋯ ] −  
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Summary (partial)
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► … take a finite matrix AG (t) associated to G (Hermitian or not, periodic

or not…)

►each entry of AG
k

is given is given by a finite number of operations by

using Path-Sum (with × product)

►each entry of OE[AG ](t’,t)] is given is given by a finite number of

operations by using Path-Sum (with  −product and [  −    ⋯ ] −  

◘ the matrix nature of the problem is fully replaced when working on entries

◘ or, one can keep it partially… → PARTITIONS (scalability)

◘ the convergence of the Neumann series (analytical) is superexponential

◘ a convenient (numerical) approach: linear Volterra equations (2nd kind)



Outline

■ Basic results of algebraic graph theory

■ Path-Sum applied to the ordered exponential (OE)

■ Applications:

► Circularly polarized excitation

► Linearly polarized excitation, Bloch-Siegert (BS) effect

► N spins homonuclear dipolar Hamiltonian, 𝑯𝑫
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Applications - Circularly polarized excitation (test model)

H 𝑡 =
1

2
𝜔0𝛔𝐳 +

𝛽[𝛔𝐱 cos 𝜔𝑡 + 𝛔𝐲 sin 𝜔𝑡 ]

H(t) = 

𝐺𝐾2,11 𝑡 =

𝑂𝐸[− H] 𝑡 11=

Path-Sum

Neumann series

 −𝐢  𝐞  𝐞

OE entry

𝑂𝐸[− H] 𝑡 

Gauss hypergeometric

U 𝑡 = exp −
1

2
 𝜔𝑡𝛔𝐳 exp − 𝑡

1

2
𝜔0 − 𝜔 𝛔𝐳 + 𝛽𝛔𝐱  

20

[  −    ⋯ ] − 



Applications - Linearly polarized excitation, Bloch-Siegert (BS) effect

H 𝑡 =
1

2
𝜔0𝛔𝐳 +

2𝛽 𝛔𝐱 cos 𝜔𝑡
H(t) = 

𝜔0

2
2𝛽cos 𝜔𝑡 

2𝛽cos 𝜔𝑡 −
𝜔0

2

𝝎 = 𝝎𝟎 𝐨 𝛚 ≠ 𝝎𝟎P(t) transition probability

Τ𝜷 𝝎 = Τ  𝟎 Τ𝜷 𝝎 = Τ  Τ𝜷 𝝎 =  𝟎

► analytical expression with few orders of the Neumann series

21
P.L. Giscard, C. Bonhomme, to be submitted
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Applications - N spin systems, homonuclear dipolar Hamiltonian, 𝑯𝑫

t = 0

H1

H2
H3

H4

↑

↑ ↑
↑

pure state
…H42↑

(CH3)12(OH)6Sn12

42 protons

« rigid » CH3

MAS 10 kHz

rotor period 0.1 ms

Coll.: F. Ribot, France

analytical expression

P.L. Giscard, C. Bonhomme, to be submitted
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t = 0
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« rigid » CH3
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rotor period 0.1 ms
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Coll.: F. Ribot, France
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Applications - N spin systems, homonuclear dipolar Hamiltonian, 𝑯𝑫



Post doctoral position available in Paris: on NMR instrumentation & DNP

► a new approach

► analytical expression for U(t)

► unconditional convergence

► non perturbative formulation

► scalable to large spin systems

► other theory/applications to come…
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To go further – Path-Sum vs other methods

26

► main goal → get an exact form for U(t)

► FLOQUET ZASSENHAUS MAGNUS PATH-SUM

FER/TROTTER-SUZUKI

► usually: on H(t) → choice in

► PATH-SUM is exact and PARTITIONS allow to choose the dimension of

the of the working space from H(t) to U(t)



To go further – Scale invariance

27

Take a partition of a spin system in a set of (smaller, independent)

sub-systems

sub-system n°1

sub-system n°2

sub-system n°3

Magnus or Floquet or Fer or …

Magnus or Floquet or Fer or …

Magnus or Floquet or Fer or …

the exact evolution of the entire spin system as functions of the 

evolutions of the isolated sub-systems is given by Path-Sum

(though non contiguous blocks in H(t) matrix!)



To go further – WHY does Path-Sum work?

28

► the EXACT result is given by a FINITE number of terms

► the matrix nature of the problem is fully replaced when working on entries

► or, one can keep it partially… → PARTITIONS

► hard work → [  −    ⋯ ] − 

► hopefully: the Neumann series give the analytical solution at any order with

unconditional convergence (not to be “found” … just apply a "recipe")

► the convergence of the Neumann series is superexponential

► a convenient numerical approach: linear Volterra equations (2nd kind)

ex.: the best obtainable solution for the general 2 × 2 matrix (closed form

for the confluent Heun’s special functions) (see Q. Xie, 2018)



To go further – Exponential explosions

29

► 1st explosion: related to the size of H(t) with many-body systems (Q nature)

► 2nd explosion: related to the time needed to isolate the primes (G nature)

Lanczos-Path-Sum (numerical) fixes the 2nd explosion:

Idea behind: initial H(t) → time dependent tridiagonal matrix

expectations: to reach excellent convergence with the breadth of the

continued fraction and why not ?... "Circumvent" the 1st explosion

P.-L. Giscard et al., 2019, in preparation



To go further – Complexity theory

30

► for finite G : the decomposition of W in primes (e.g. simple paths &

cycles) for the ◘ (nested) operation exists and is unique

► to determine the existence of a prime of length L is NP-complete (no(?)

algorithm with polynomial complexity)

► to count them is #P-complete (the same but for counting problems)

► to count them for a fixed length L is #W[1]-complete (same as #P-complete but

with parameters, such as L, taken into account)

► BUT: for sparse G : counting becomes polynomial in the max degree

of G !

see:  P. L. Giscard et al., Algorithmica, 2019



To go further – Mathematical conditions on A(t) for Path-Sum to be valid -1

31

► fundamentally: Resolvent[A(t)]
 𝐩 𝐨𝐝𝐮𝐜𝐭 =

𝐝

𝐝𝐭
𝐎𝐄 𝐀 𝐭 → Path-Sum

► each entry of A(t) must be bounded on [0,t], a bounded interval of time

► if the entries are not bounded, Path-Sum still work … but perhaps the

Neumann series will not converge

► continuity is not necessary

► if continuity: Volterra equations are much easier to handle

► A(t) can be Hermitian or not, periodic or not … and entries can be:

matrices, quaternions, octonions, division rings…



To go further – Mathematical conditions on A(t) for Path-Sum to be valid -2

32

► finite A(t): sufficient condition for finite breadth of the continued fraction

► NOT a necessary condition: ex. a finite number of simples cycles in an infinite matrix

► in some cases, Path-Sum can still be applied on infinite matrices: strong symmetry, e.g.

invariance by translation (soluble non-linear Volterra equations)

In other words:

■ infinity of cycles … but self-similar like in a fractal

■ the corresponding continued fraction is of finite breadth



To go further – Taylor… or Neumann series?

33

► take one entry: f t = OE[A t ]𝐢𝐣

► Taylor series: expansion in 𝑡𝑛 i.e. 𝑓 𝑡 = σ𝑛=0
∞ 𝑓 𝑛  0 

𝑛!
𝑡𝑛

ex.:
1

1−𝑡
= σ𝑛=0

∞ 𝑡𝑛 = 1 + 𝑡 + 𝑡2 + ⋯+ 𝑡𝑛 + ⋯ with r = 1 (radius of CV)

► Neumann series: uses the  −product, i.e. 𝑓 𝑡 = σ𝑛=0
∞ 𝒇 𝒏

each order contains functions represented by intinite Taylor series

r = ∞ (!) with uniform & superexponential CV



To go further – N spins starting with a pure state

34

► starting with a pure state with 1 up-spin (total: N, any geometry)

Path-sum contains all N-order correlations

→ if 𝝎𝒓𝒐 = 𝟎

all terms of the Neumann series are explicitly known

→ if 𝝎𝒓𝒐 ≠ 𝟎

still analytical up to the CV of the series to the solution

► starting with a pure state with 4 or 5 up-spin is still tractable

(i.e. no exponential explosion)



To go further – Pure state vs partial polarization

35

► Pure state: if k up-spins over N and k << N → space of states dim. ≈ 𝑵𝒌

(suppression of the exponential explosion)

► Partial polarization: a cut-off is needed → if │
𝑖𝑛𝑡𝑖,𝑗

𝑖𝑛𝑡𝑉
≤

1

𝒄𝒖 −𝒐𝒇𝒇
│ then

 𝑛𝑡𝑖,𝑗= 0

cut-off ∶ « high » for chains but decreases for more « dense » spin systems

next target: to extend Path-Sum to mixed states via a decomposition on

pure states



To go further – Path-Sum vs Floquet theory for Bloch-Siegert effect
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𝝎 = 𝝎𝟎 𝐨 𝛚 ≠ 𝝎𝟎P(t) transition probability

Τ𝜷 𝝎 = Τ  𝟎 Τ𝜷 𝝎 = Τ  Τ𝜷 𝝎 =  𝟎

P.L. Giscard, C. Bonhomme, to be submitted
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t = 0

H1

H2
H3

H4…
↑

↑ ↑
↑

H10…↑

pure state

…H30…↑

N = 30

N = 10
t(ms)

t(ms)
t(ms)

<
b

a
c

k
 t

o
 1

p
ro

b
.>

<
b

a
c

k
 t

o
 1

p
ro

b
.>

<
b

a
c
k
 t

o
 1

p
ro

b
.>

𝝎𝒓𝒐 = 𝟎

To go further – N spin chains and 𝑯𝑫

P.L. Giscard, C. Bonhomme, to be submitted
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To go further – Liouvillian space, Feynman paths and diagrams

► extension of Path-Sum in the Liouvillian space is possible using the

adjoint operator of H(t)

« With application to quantum mechanics, path integrals suffer most

grievously from a serious defect. They do not permit a discussion of spin

operators or other such operators in a simple and lucid way » (R.P. Feynman)

► Path-sum can be used starting from the Lagrangian with action as weight on

a given W

► Path-sum can be used starting from the Hamiltonian with energy as weight

on a given W

► Feynman diagrams: W of G in the state space (but continuous)

► Path-sum performs a formal re-summation of an infinite number of W,

i.e. Feynman diagrams !


