A New Approach of Ordered Exponential in NMR: the Path-Sum

C. Bonhomme ${ }^{1}$, P.-L. Giscard ${ }^{2}$
${ }^{1}$ Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, Paris, France
${ }^{2}$ Laboratoire Joseph Liouville, Université du Littoral Côte d'Opale, Calais, France
christian.bonhomme@upmc.fr

60th Experimental Nuclear Magnetic Resonance Conference April 7-12, 2019

General context - The evolution operator $\mathbf{U}(\mathrm{t})$

Dyson time-ordering operator

$$
\begin{gathered}
\mathbf{U}\left(\mathbf{t}^{\prime}, \mathbf{t}\right)=\mathbf{O E}\left[-\mathbf{i} \mathbf{H}\left(\mathbf{t}^{\prime}, \mathbf{t}\right)\right]=\boldsymbol{T} \boldsymbol{\operatorname { e x p }}\left(-\mathbf{i} \int_{\boldsymbol{t}}^{\boldsymbol{t}^{\prime}} \mathbf{H}(\boldsymbol{\tau}) \mathbf{d} \boldsymbol{\tau}\right) \\
\mathbf{U}\left(\boldsymbol{\tau}_{\boldsymbol{c}}\right)=\boldsymbol{\operatorname { e x p }}\left(-\boldsymbol{i} \boldsymbol{\tau}_{\boldsymbol{C}} \sum_{n=\mathbf{0}}^{\infty} \frac{\boldsymbol{H}^{(n)}}{}\right) \quad \overline{\hat{H}}={ }^{(0)} \hat{H}-\frac{1}{2} \sum_{n \neq 0} \frac{[(-n) \hat{H},(n) \hat{H}]}{n \omega_{m}}+\frac{1}{2} \sum_{n \neq 0} \frac{\left[{ }^{(n)} \hat{H},(0) \hat{H}\right],((-n) \hat{H}]}{\left(n \omega_{m}\right)^{2}} \\
\text { Magnus } \quad \\
\text { Floquet } \quad+\frac{1}{3} \sum_{k, n \neq 0} \frac{[(n) \hat{H},[\hat{H},(-n-k) \hat{H}]]}{k n \omega_{m}^{2}}+\cdots
\end{gathered}
$$

G. Floquet, Ann. Sci. Ecole Norm. Sup., 1883
F.J. Dyson, Phys. Rev., 1949
W. Magnus, Pure Appl. Math., 1954
F. Fer, Bull. Classe Sci. Acad. Roy. Bel., 1958
J.H. Shirley, Phys. Rev., 1965
U. Haeberlen, J.S. Waugh, Phys. Rev., 1968
M.M. Maricq, Phys. Rev., 1982
S. Vega, E.T. Olejniczak, R.G. Griffin, J. Chem. Phys., 1984
I. Scholz, B.H. Meier, M. Ernst, J. Chem. Phys., 2007
M. Leskes, P.K. Madhu, S. Vega, Progress in NMR Spect., 2010
M. Goldman, P. J. Grandinetti, A. Llor et al., J. Chem. Phys. 1992
E.S. Mananga, Solid State NMR, 2013
K. Takegoshi, N. Miyazawa, K. Sharma, P. K. Madhu, J. Chem. Phys., 2015

Outline

■ Basic results of algebraic graph theory

■ Path-Sum applied to Ordered Exponential (OE)

$$
\mathrm{OE}[\mathrm{~A}]\left(t^{\prime}, t\right)=\left(\begin{array}{cc}
\int_{t}^{t^{\prime}} & G_{K_{2}, 11}\left(t^{\prime}, \tau\right) d \tau \\
& O E_{12}\left(t^{\prime}, t\right) \\
O E_{21}\left(t^{\prime}, t\right) & \int_{t}^{t^{\prime}} G_{K_{2}, 22}\left(t^{\prime}, \tau\right) d \tau
\end{array}\right)
$$

- Applications:
- Circularly polarized excitation
- Linearly polarized excitation, Bloch-Siegert (BS) effect
-N spins: homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Basic results of algebraic graph theory

$\mathcal{G}=($ Vertex set, \mathcal{E} dge set $)$

ex.: walk $\boldsymbol{W}_{1 \leftarrow 2}\left(\right.$ from V_{2} to $\left.V_{1}\right)$ of length 4

$$
\mathbf{A}_{\underline{q}}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & a_{32} & 0
\end{array}\right)
$$

entry: weight on a directed edge

Basic results of algebraic graph theory

the powers of the Adjacency matrix $\mathbf{A}_{\underline{q}}$ on a graph $\mathscr{G}_{\boldsymbol{g}}$ generate ALL weighted WALKS \mathbb{W} on \mathscr{G}

$\mathbf{A}_{\underline{q}}^{\mathbf{2}}=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & 0\end{array}\right)^{\mathbf{2}}=\left(\begin{array}{ccc} \\ \vdots & \ddots & \vdots \\ \cdots\end{array} a_{12}+a_{12} \times a_{22}+a_{13} \times a_{32}\right.$

N. Biggs, in: Algebraic Graph Theory (1993)

Basic results of algebraic graph theory

the powers of the Adjacency matrix $\mathbf{A}_{\boldsymbol{q}}$ on a graph $\boldsymbol{G}_{\boldsymbol{g}}$ generate

 ALL weighted WALKS \mathbb{W} on \mathscr{G}
N. Biggs, in: Algebraic Graph Theory (1993)

Path-Sum

\diamond simple path \boldsymbol{P} (self avoiding walk): \boldsymbol{W} whose \mathcal{V} are all distinct
\diamond simple cycle \mathcal{C} (self avoiding polygon): \mathcal{W} whose endpoints are identical and intermediate
V are all distinct and different from the endpoints

«Fundamental Theorem of Arithmetic» on g (P.-L. Giscard, 2012)
$>$ wactor uniquely into prime elements, i.e. simple paths and simple cycles
$>$ if \boldsymbol{g} is finite the number of primes is finite
$>$ resummation of all winvolves a finite number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal

Power series of A_{g}
ex.: $\exp \left[\mathbf{A}_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} \mathbf{A}_{\S}{ }^{k}$

$$
\left(A_{g}\right)^{k}=\binom{\left(\mathrm{A}_{\sigma}\right)_{\alpha \alpha}^{k}}{\cdots}
$$

Power series of A_{g}

$\operatorname{ex}:: \exp \left[\mathbf{A}_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} \mathbf{A}_{\underline{g}}^{k}$

$$
\left(\mathbf{A}_{q}\right)^{k}=\left(\begin{array}{c}
\cdots \\
\vdots\left(\mathbf{A}_{c}\right)_{\omega \alpha}^{k} \\
\cdots
\end{array}\right)
$$

$\boldsymbol{F}(\mathbf{A})_{\omega \alpha}=\sum_{\boldsymbol{k}=0}^{\infty} \boldsymbol{c}_{\boldsymbol{k}} \sum_{\mathcal{w}_{\mathcal{G}, \alpha \omega ; \boldsymbol{k}}} \boldsymbol{a}_{\omega \boldsymbol{h}_{\boldsymbol{k}}} \ldots \times \boldsymbol{a}_{\boldsymbol{h}_{3} \boldsymbol{h}_{\mathbf{2}}} \times \boldsymbol{a}_{\boldsymbol{h}_{2} \alpha}$
power series of $\mathbf{A}_{\boldsymbol{q}}$
all weighted walks \boldsymbol{W} from \boldsymbol{V}_{α} to \boldsymbol{V}_{ω} of length $\boldsymbol{\ell}$
ex.: $\exp \left[\mathbf{A}_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} \mathbf{A}_{\boldsymbol{g}}^{k}$

$$
\left(\mathbf{A}_{q}\right)^{k}=\left(\begin{array}{c}
\cdots \\
\vdots\left(\mathbf{A}_{q}\right)_{\omega \alpha}^{k} \\
\cdots
\end{array}\right)
$$

$\boldsymbol{F}(\mathbf{A})_{\omega \alpha}=\sum_{\boldsymbol{k}=0}^{\infty} \boldsymbol{c}_{\boldsymbol{k}} \sum_{\mathcal{W}_{\underline{G}, \alpha \omega ; \boldsymbol{k}}} \boldsymbol{a}_{\omega \boldsymbol{h}_{\boldsymbol{k}}} \ldots \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{3}} \boldsymbol{h}_{\mathbf{2}}} \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{2}} \alpha}$ power series of $\mathbf{A}_{\boldsymbol{q}}$ all weighted walks \boldsymbol{W} from \boldsymbol{V}_{α} to \boldsymbol{V}_{ω} of length $\boldsymbol{\ell}$

Path-Sum

«Fundamental Theorem of Arithmetic» on g (P.-L. Giscard, 2012)
$>$ wactor uniquely into prime elements, i.e. simple paths and simple cycles
$>$ if \boldsymbol{g} is finite the number of primes is finite

- resummation of all winvolves a finite number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal
$\operatorname{ex} .: \exp \left[A_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} A_{g}^{k}$

$$
\left(\mathbf{A}_{q}\right)^{k}=\left(\begin{array}{c}
\cdots \\
\vdots\left(\mathbf{A}_{q}\right)_{\omega \alpha}^{k} \\
\cdots
\end{array}\right)
$$

$\boldsymbol{F}\left(\mathbf{A}_{\underline{g}}\right)_{\omega \alpha}=\sum_{\boldsymbol{k}=0}^{\infty} \boldsymbol{c}_{\boldsymbol{k}} \sum_{\mathcal{w}_{\underline{g}, \alpha \omega ; \boldsymbol{k}}} \boldsymbol{a}_{\omega \boldsymbol{h}_{\boldsymbol{k}}} \ldots \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{3}} \boldsymbol{h}_{\mathbf{2}}} \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{2}} \alpha}$ power series of $\mathbf{A}_{\boldsymbol{q}} \quad$ all weighted walks \boldsymbol{W} from \boldsymbol{V}_{α} to \boldsymbol{V}_{ω} of length $\boldsymbol{\kappa}$

Path-Sum

$$
\boldsymbol{F}(\mathbf{A} \boldsymbol{g})_{\omega \alpha}=\sum_{\mathcal{P} \boldsymbol{g}_{, \alpha \omega ; \ell}} f\left(\boldsymbol{a}_{\omega \omega}\right) \times \boldsymbol{a}_{\omega \mu_{\ell} \ldots f} \boldsymbol{f}\left(\boldsymbol{a}_{\boldsymbol{\mu}_{2} \mu_{2}}\right) \boldsymbol{a}_{\boldsymbol{\mu}_{2} \alpha} \times \boldsymbol{f}\left(\boldsymbol{a}_{\alpha \alpha}\right)
$$

sum over the finite set of simple cycles \mathcal{C} (continued fraction of finite breadth)
$\mathbf{A}_{\boldsymbol{g}}(t)=\left(\begin{array}{c}\cdots \\ \left\langle s_{\omega}\right| \mathbf{A}(t)\left|s_{\alpha}\right\rangle \\ \ldots\end{array}\right)$

$$
\mathbf{O E}\left[\mathbf{A}_{\boldsymbol{G}}\right]\left(t^{\prime}, t\right)=\left(\begin{array}{c}
\cdots \\
\left\langle s_{\circlearrowleft}\right| \mathrm{OE}\left[\mathrm{~A}_{g}\right]\left(t^{\prime}, t\right) \mid s_{0} \\
\cdots
\end{array}\right)
$$

Σ ALL weighted walks $\omega \leftarrow \alpha$ on A_{q} but using -product
$(f * g)=\int_{t}^{t^{\prime}} f\left(t^{\prime}, \tau\right) g(\tau, t) d \tau$
instead of \times

$$
\begin{gathered}
\mathbf{A}(t)=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right) \\
\text { Path-Sum } \\
\mathbf{O E}[\mathbf{A}]\left(t^{\prime}, t\right)=\left(\begin{array}{cc}
\int_{t}^{t^{\prime}} G_{K_{2}, 11}\left(t^{\prime}, \tau\right) d \tau & O E_{12}\left(t^{\prime}, t\right) \\
O E_{21}\left(t^{\prime}, t\right) & \int_{t}^{t^{\prime}} G_{K_{2}, 22}\left(t^{\prime}, \tau\right) d \tau
\end{array}\right)
\end{gathered}
$$

- entry \rightarrow solving an equation with analytical tools
$-\underline{\text { finite }}$ number of operations \rightarrow unconditional convergence
- non perturbative formulation of OE
$>$ scalability

$$
\mathbf{A}(t)=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right)
$$

$\mathbf{O E}[\mathbf{A}]\left(t^{\prime}, t\right)=\left(\begin{array}{cc}\int_{t}^{t^{\prime}} G_{K_{2}, 11}\left(t^{\prime}, \tau\right) d \tau & O E_{12}\left(t^{\prime}, t\right) \\ O E_{21}\left(t^{\prime}, t\right) & \int_{t}^{t^{\prime}} G_{K_{2}, 22}\left(t^{\prime}, \tau\right) d \tau\end{array}\right)$

« Fundamental Theorem of Arithmetic » on q
 (P.-L. Giscard, 2012)

$>$ wactor uniquely into prime elements, i.e. simple paths and simple cycles

- if g is finite the number of primes is finite
- resummation of all winvolves a finite number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal

An example: 2×2 matrix

$$
\begin{array}{lll}
(f * g)=\int_{t}^{t^{\prime}} f\left(t^{\prime}, \tau\right) g(\tau, t) d \tau \quad \boldsymbol{a}_{i j}(t) & \left.\boldsymbol{O E}_{21}\left(\boldsymbol{t}^{\prime}, \boldsymbol{t}\right) \quad \int_{t}^{t} \boldsymbol{G}_{K_{2}, 2 \mathbf{2}}\left(t^{\prime}, \boldsymbol{\tau}\right) \boldsymbol{d} \tau\right) \\
{\left[\mathbb{1}_{*}-(* * * \cdots)\right]^{*-1}=\sum_{n \geq 0}(* * * \cdots)^{* n}} & \begin{array}{ll}
* & \text { Neumann series (analytical) } \\
\text { linear Volterra (2nd } k i n d) \text { (numerical) }
\end{array}
\end{array}
$$

An example: $\mathbf{2 \times 2}$ matrix

 $\left[1_{*}-(* * * \cdots)\right]^{*-1}=\sum_{n \geq 0}(* * * \cdots)^{* n}$

Neumann series (analytical)
linear Volterra (2 ${ }^{\text {nd }}$ kind) (numerical)

sum on simple

 cycles$$
G_{K_{2}, 11}={ }_{j}^{1}\left[1_{*}-a_{11}-a_{12} * G_{K_{2} \backslash\{1\}, 22} * a_{21}\right]^{*-1}
$$

π_{2}

$$
G_{K_{2} \backslash\{1\}, 22}=\left[1_{*}-a_{22}\right]^{*-1}
$$

- END of the continued fraction !
- END!
- finite sum on simple \boldsymbol{P}
- finite sum on \mathcal{C}

Summary (partial)

- ... take a finite matrix $\mathbf{A}_{\mathfrak{G}}(\mathbf{t})$ associated to \mathfrak{G} (Hermitian or not, periodic or not...)
- each entry of $\mathbf{A}_{g}{ }^{k}$ is given is given by a finite number of operations by using Path-Sum (with \times product)
- each entry of $\left.\operatorname{OE}\left[\mathrm{A}_{q}\right]\left(t^{\prime}, t\right)\right]$ is given is given by a finite number of operations by using Path-Sum (with $*$ - product and $\left[1_{*}-(* * * \cdots)\right]^{*-1}$)

Summary (partial)

- ... take a finite matrix $\mathbf{A}_{\underline{g}}(t)$ associated to \mathfrak{g} (Hermitian or not, periodic or not...)
- each entry of $\mathbf{A}_{g}{ }^{k}$ is given is given by a finite number of operations by using Path-Sum (with \times product)
- each entry of $\left.\operatorname{OE}\left[\mathrm{A}_{\mathfrak{q}}\right]\left(t^{\prime}, t\right)\right]$ is given is given by a finite number of operations by using Path-Sum (with $*$ - product and $\left.\left[1_{*}-(* * * \cdots)\right]^{*-1}\right)$
- the matrix nature of the problem is fully replaced when working on entries
- or, one can keep it partially $\ldots \rightarrow$ PARTITIONS (scalability)
- the convergence of the Neumann series (analytical) is superexponential
- a convenient (numerical) approach: linear Volterra equations (2 $\mathbf{2}^{\text {nd }} \boldsymbol{k i n d}$)

■ Basic results of algebraic graph theory

■ Path-Sum applied to the ordered exponential (OE)

- Applications:
- Circularly polarized excitation
- Linearly polarized excitation, Bloch-Siegert (BS) effect
- N spins homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Applications - Circularly polarized excitation (test model)

$$
\begin{gathered}
\mathbf{H}(t)=\left(\begin{array}{cc}
\frac{\omega_{0}}{2} & \beta e^{-i \omega t} \\
\beta e^{i \omega t} & -\frac{\omega_{0}}{2}
\end{array}\right),\left[\mathbf{H}\left(\mathrm{t}^{\prime}\right), \mathbf{H}(\mathrm{t})\right] \neq 0 \\
\begin{array}{c}
\mathbf{H}(t)=\frac{1}{2} \omega_{0} \boldsymbol{\sigma}_{\mathbf{z}}+ \\
\beta\left[\boldsymbol{\sigma}_{\mathbf{x}} \cos (\omega t)+\boldsymbol{\sigma}_{\mathbf{y}} \sin (\omega t)\right]
\end{array} \quad\left[\mathbb{1}_{*}-(* * * \cdots)\right]^{*-1} \\
G_{K_{2}, 11}(t)=\left(\begin{array}{c}
\left.1_{*}-\frac{\omega_{0}}{2 i}+\frac{i \beta^{2}}{\Delta}\left(e^{-i \Delta\left(t^{\prime}-t\right)}-1\right)\right)^{*-1} \\
\text { OE entry } \\
\text { Neumann series }
\end{array}\right. \\
O E[-i \mathbf{H}](t)_{11}=1+\sum_{n=0}^{\infty} \frac{\left(-i t \beta^{2} / \Delta \Delta^{n+1}\right.}{(n+1)!} \sum_{k=0}^{n+1}\binom{n+1}{k}\left(\frac{\Delta \omega_{0}}{2 \beta^{2}}-1\right)^{k}{ }_{2 F_{1}}\left(-k,-k+n+1 ;-n-1 ; \frac{\Delta^{2}}{\frac{\Delta \omega_{2}}{2}-\beta^{2}}\right)
\end{gathered}
$$

Gauss hypergeometric

$$
\begin{aligned}
& \text { OE[-iH](t) } \\
& \left(\begin{array}{ll}
e^{-\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right)}\left(\cos (\alpha t / 2)+\frac{i}{\alpha}\left(\Delta-\frac{\omega_{0}}{2}\right) \sin (\alpha t / 2)\right) \\
\left.-\frac{2 i \beta}{\alpha} e^{\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right.}\right) & \sin (\alpha t / 2)
\end{array} e^{\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right)}-\frac{2 i \beta}{\alpha} e^{-\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right)} \sin (\alpha t / 2)\right. \\
& \left.\mathbf{(\operatorname { c o s } (\alpha t / 2) - \frac { i } { \alpha } (\Delta - \frac { \omega _ { 0 } } { 2 }) \operatorname { s i n } (\alpha t / 2))}\right) \\
& \mathbf{U}(t)=\exp \left(-\frac{1}{2} i \omega t \boldsymbol{\sigma}_{\mathbf{z}}\right) \exp \left(-i t\left(\frac{1}{2}\left(\omega_{0}-\omega\right) \boldsymbol{\sigma}_{\mathbf{z}}+\beta \boldsymbol{\sigma}_{\mathbf{x}}\right)\right)
\end{aligned}
$$

Applications - Linearly polarized excitation, Bloch-Siegert (BS) effect

$$
\begin{gathered}
\mathbf{H}(t)=\frac{1}{2} \omega_{0} \boldsymbol{\sigma}_{\mathbf{z}}+ \\
2 \beta \boldsymbol{\sigma}_{\mathbf{x}} \cos (\omega t)
\end{gathered}
$$

$$
\mathbf{H}(t)=\left(\begin{array}{cc}
\frac{\omega_{0}}{2} & 2 \beta \cos (\omega t) \\
2 \beta \cos (\omega t) & -\frac{\omega_{0}}{2}
\end{array}\right)
$$

$P(t)$ transition probability

$$
\omega=\omega_{0} \text { or } \omega \neq \omega_{0}
$$

$\beta / \omega=1 / 10$

$\beta / \omega=3 / 2$

$\beta / \omega=10$

- analytical expression with few orders of the Neumann series
P.L. Giscard, C. Bonhomme, to be submitted

Applications - \mathbf{N} spin systems, homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Applications - N spin systems, homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Applications - N spin systems, homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Conclusions and acknowledgments

Path-Sum

(very) warm thanks to P.-L. Giscard

Ass. Pr. in Calais, France
Liouville laboratory
Algebraic Combinatorials
giscard@univ-littoral.fr

- unconditional convergence
- non perturbative formulation
- scalable to large spin systems
- other theory/applications to come...

Post doctoral position available in Paris: on NMR instrumentation \& DNP

To go further - Path-Sum vs other methods

- main goal \rightarrow get an exact form for $\boldsymbol{U}(\boldsymbol{t})$

MAGNUS

PATH-SUM

- PATH-SUM is exact and PARTITIONS allow to choose the dimension of the of the working space from $\boldsymbol{H}(\boldsymbol{t})$ to $\boldsymbol{U}(\boldsymbol{t})$

To go further - Scale invariance
Take a partition of a spin system in a set of (smaller, independent) sub-systems

sub-system $\mathrm{n}^{\circ} 2$

Magnus or Floquet or Fer or ...
Magnus or Floquet or Fer or ...

$$
\text { sub-system } n^{\circ} 3
$$

Magnus or Floquet or Fer or ...
the exact evolution of the entire spin system as functions of the evolutions of the isolated sub-systems is given by Path-Sum (though non contiguous blocks in $\mathrm{H}(\mathrm{t})$ matrix!)

To go further - WHY does Path-Sum work?

- the EXACT result is given by a FINITE number of terms
- the matrix nature of the problem is fully replaced when working on entries
- or, one can keep it partially..\rightarrow PARTITIONS
- hard work \rightarrow [$\left.\mathbb{1}_{*}-(* * * \cdots)\right]$

- hopefully: the Neumann series give the analytical solution at any order with unconditional convergence (not to be "found" ... just apply a "recipe")
- the convergence of the Neumann series is superexponential
- a convenient numerical approach: linear Volterra equations (2 $2^{\text {nd }} \boldsymbol{k i n d}$)

$$
D_{x}^{2} u+\left[\frac{\gamma}{x}+\frac{\delta}{x-1}+\frac{\epsilon}{x-a}\right] D_{x} u+\left[\frac{\alpha \beta x-q}{x(x-1)(x-a)}\right] u=0
$$

ex.: the best obtainable solution for the general 2×2 matrix (closed form for the confluent Heun's special functions) (see Q. Xie, 2018)

To go further - Exponential explosions
$\rightarrow 1^{\text {st }}$ explosion: related to the size of $H(t)$ with many-body systems (Q nature)
$-2^{\text {nd }}$ explosion: related to the time needed to isolate the primes (\mathscr{g} nature)

Lanczos-Path-Sum (numerical) fixes the $\mathbf{2}^{\text {nd }}$ explosion:
Idea behind: initial $\mathrm{H}(\mathrm{t}) \rightarrow$ time dependent tridiagonal matrix
expectations: to reach excellent convergence with the breadth of the continued fraction and why not ?... "Circumvent" the $1^{\text {st }}$ explosion
P.-L. Giscard et al., 2019, in preparation

- for finite \mathfrak{g} : the decomposition of \mathbb{W} in primes (e.g. simple paths \& cycles) for the - (nested) operation exists and is unique
- to determine the existence of a prime of length L is NP-complete (no(?) algorithm with polynomial complexity)
- to count them is \#P-complete (the same but for counting problems)
- to count them for a fixed length Lis \#W[1]-complete (same as \#P-complete but with parameters, such as L, taken into account)
- BUT: for sparse \mathfrak{g} : counting becomes polynomial in the max degree of $\mathfrak{g}!$
see: P. L. Giscard et al., Algorithmica, 2019
\rightarrow fundamentally: $\boldsymbol{R}_{\text {esolvent }}[A(t)]_{*}$ product $=\frac{d}{d t} \mathbf{O E}[A(t)] \rightarrow$ Path-Sum
- each entry of $\mathrm{A}(\mathrm{t})$ must be bounded on $[0, \mathrm{t}]$, a bounded interval of time
- if the entries are not bounded, Path-Sum still work ... but perhaps the Neumann series will not converge
- continuity is not necessary
- if continuity: Volterra equations are much easier to handle
- $A(t)$ can be Hermitian or not, periodic or not ... and entries can be: matrices, quaternions, octonions, division rings...
- finite $\mathrm{A}(\mathrm{t})$: sufficient condition for finite breadth of the continued fraction
- NOT a necessary condition: ex. a finite number of simples cycles in an infinite matrix
- in some cases, Path-Sum can still be applied on infinite matrices: strong symmetry, e.g. invariance by translation (soluble non-linear Volterra equations)

In other words:

- infinity of cycles ... but self-similar like in a fractal
- the corresponding continued fraction is of finite breadth

To go further - Taylor... or Neumann series?

- take one entry: $\mathrm{f}(\mathrm{t})=\mathrm{OE}[\mathrm{A}(\mathrm{t})]_{\mathrm{ij}}$
- Taylor series: expansion in t^{n} i.e. $f(t)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} t^{n}$ ex.: $\frac{1}{1-t}=\sum_{n=0}^{\infty} t^{n}=1+t+t^{2}+\cdots+t^{n}+\cdots$ with $\mathbf{r}=1$ (radius of $\boldsymbol{C V}$)
- Neumann series: uses the $*$ - product, i.e. $f(t)=\sum_{n=0}^{\infty} f^{* n}$
each order contains functions represented by intinite Taylor series
$r=\infty$ (!) with uniform \& superexponential CV

To go further - \mathbf{N} spins starting with a pure state

- starting with a pure state with 1 up-spin (total: \mathbf{N}, any geometry)

Path-sum contains all \boldsymbol{N}-order correlations
\rightarrow if $\omega_{r o t}=0$
all terms of the Neumann series are explicitly known
\rightarrow if $\omega_{\text {rot }} \neq 0$
still analytical up to the CV of the series to the solution

- starting with a pure state with 4 or 5 up-spin is still tractable
(i.e. no exponential explosion)

To go further - Pure state vs partial polarization

- Pure state: if \boldsymbol{k} up-spins over N and $\boldsymbol{k} \ll \boldsymbol{N} \rightarrow$ space of states dim. $\approx \boldsymbol{N}^{\boldsymbol{k}}$ (suppression of the exponential explosion)
- Partial polarization: a cut-off is needed \rightarrow if $\left|\frac{\text { int }_{i, j}}{\text { intV }} \leq \frac{1}{\text { cut-off }}\right|$ then int $_{i, j}=0$
cut-off : « high » for chains but decreases for more «dense » spin systems

next target: to extend Path-Sum to mixed states via a decomposition on pure states

To go further - Path-Sum vs Floquet theory for Bloch-Siegert effect

$P(t)$ transition probability

```
\omega= \omega
```


$\beta / \omega=1 / 10$

$\beta / \omega=3 / 2$

$\beta / \omega=10$

To go further -N spin chains and $\boldsymbol{H}_{\boldsymbol{D}}$

P.L. Giscard, C. Bonhomme, to be submitted

To go further - Liouvillian space, Feynman paths and diagrams

- extension of Path-Sum in the Liouvillian space is possible using the adjoint operator of $\mathrm{H}(\mathrm{t})$

" With application to quantum mechanics, path integrals suffer most grievously from a serious defect. They do not permit a discussion of spin operators or other such operators in a simple and lucid way » (R.P. Feynman)
- Path-sum can be used starting from the Lagrangian with action as weight on a given w
- Path-sum can be used starting from the Hamiltonian with energy as weight on a given w
- Feynman diagrams: \mathbb{W} of \mathcal{G} in the state space (but continuous)
- Path-sum performs a formal re-summation of an infinite number of \mathcal{W}, i.e. Feynman diagrams !

