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Abstract—Identifying a network misuse takes days or even
weeks, and network administrators usually neglect zero-day
threats until a large number of malicious users exploit them.
Besides, security applications, such as anomaly detection and
attack mitigation systems, must apply real-time monitoring to
reduce the impacts of security incidents. Thus, information
processing time should be as small as possible to enable an
effective defense against attacks. In this paper, we present
a fast preprocessing method for network traffic classification
based on feature correlation and feature normalization. Our
proposed method couples a normalization and a feature selection
algorithms. We evaluate the proposed algorithms against three
different datasets for eight different machine learning classifica-
tion algorithms. Our proposed normalization algorithm reduces
the classification error rate when compared with traditional
methods. Our Feature Selection algorithm chooses an optimized
subset of features improving accuracy by more than 11% within
a 100-fold reduction in processing time when compared to
traditional feature selection and feature reduction algorithms.
The preprocessing method is performed in batch and streaming
data, being able to detect concept-drift.

I. INTRODUCTION

Maintaining the stability, reliability, and security of com-
puter networks implies understanding type, volume and intrin-
sic features of flows comprising carried traffic. Efficient net-
work monitoring allows the administrator to achieve a better
understanding of the network [1]. Nevertheless, the process of
network monitoring varies in complexity levels, from a simple
collection of link utilization statistics, up to complex upper-
layer protocol analysis to achieve network intrusion detection,
network performance tuning and protocol debugging. Current
network analyzing tools, such as tcpdump, NetFlow, SNMP,
Bro IDS [2], Snort [3], among others, are mainly executed
in one server, and the systems are not able to cope with ever-
growing traffic throughput [4]. Bro IDS, for example, evolved
to be used in a cluster to reach up to 10 Gb/s. Another example
is the Suricata IDS, which was proposed as an improvement
of the Snort IDS, using Graphical Processing Units (GPUs) to
parallelize packet inspection.

In traffic analyzing and network monitoring applica-
tions, data arrives in real time from different heterogeneous
sources [5], such as packets captured over the network, or
multiple kinds of logging from systems and applications.
An infinite sequence of events characterizes real-time stream
applications, representing a continuously arriving sequence of

tuples [6]. This kind of applications generates a significant
volume of data. Even moderate speed networks generate huge
amounts of data, for instance, monitoring a single gigabit
Ethernet link, running at 50% of utilization, generates a
terabyte of data in a couple of hours.

One way to attain data processing optimization is to employ
Machine Learning (ML) methods. ML methods are well suited
for big data since with more samples to train methods tend to
have higher effectiveness [7]. Nevertheless, with high dimen-
sional data machine learning methods tend to perform with
high latency, due to computational resources consumption. For
example, the K-Nearest Neighbours (K-NN) algorithm uses
Euclidean distance to calculate the similarity between points.
Nonetheless, Euclidean distance is unrepresentative in high
dimensions. Thus, it is necessary to apply other similarity
metrics, such as cosine distance, which have a higher com-
putational cost, introducing more latency to the preprocessing.
The high latency is a drawback for machine learning methods,
as they must analyze data as fast as possible to reach near real-
time responses. Feature Selection is a process to overcome the
drawback, reducing the number of dimensions or features to
a smaller subset than the set of original ones [8]. Whereas
traditional Machine learning methods, also known as batch
processing, deal with non-continuous data, in-stream process-
ing Machine Learning methods, data continuously arrive, one
sample at a time. Stream processing methods must process
data under strict constraints of time and resources [9]. When
data continuously arrive, changes in the distribution of the data
as well as the relationship between input and output variables
are observed over the time. This behavior, known as concept-
drift [10], deteriorates the accuracy and the performance
of machine learning models. As a consequence, in case of
occurrence of concept-drift, we must train a new model must.

Streaming data arrives continuously form different hetero-
geneous source and frequently contain duplicated or missing
information producing incorrect or misleading statistics [11].
Data preprocessing deals with detecting and removing errors
and inconsistencies from data to improve the quality of data.
The purpose of data preprocessing is to prepare the data set
that will be used to fit the model. In general, the preprocessing
step consumes 60% to 80% of the time of the entire machine
learning process and provides essential information that will
guide the analysis and adjustment of the models [12].



The number of input variables is often reduced before apply
machine learning methods to minimize the use of compu-
tational resource and to improve Machine learning metrics.
The variable reduction can be made in two different ways, by
feature selection or by dimensionality reduction. On the one
hand, feature selection only keeps the most relevant variables
from the original dataset, creating a new subset of features
from the originals. On the other hand, dimensionality reduction
exploits the redundancy of the input data by finding a smaller
set of new synthetic variables, each being a linear, or non-
linear combination of the input variables.

In this paper, we present a preprocessing data method
for network traffic monitoring. First, we propose a fast and
efficient feature-selection algorithm. Our algorithm performs
feature selection in an unsupervised manner, i.e., with no a pri-
ori knowledge of the output classes of each flow. We compare
the presented algorithm with three traditional methods: Reli-
efF [13], Sequential Feature Selection (SFS), and the Principal
Component Analysis (PCA) [14]. Our algorithm shows better
accuracy fulfillment with the used Machine Learning methods,
as well as a reduction in the total processing time. Second, we
propose a normalization algorithm for streaming data, which
can detect and to adapt to concept-drift.

The remainder of the paper is organized as follows. In
Section II, we introduce the concept of data preprocessing. We
present our preprocessing method in Section III. In Section IV,
we validate our proposal and show the results. Section V
presents the related work. Finally, Section VI concludes the
work.

II. DATA PREPROCESSING

Data preprocessing is the most time-consuming task in
machine learning [15]. As shown in Figure 1 Data prepro-
cessing is composed of four main steps [16]. The first step,
Data Consolidation, several sources generate data; the system
collects the data, and specialists interpret the data for better
understanding. The second step, Data Cleaning, the system
analyzes all samples and verifies if there are values that are
empty or missing and is an anomaly in the dataset, also this
step check if there are some inconsistencies. In the third step,
Data Transformation, different functions are applied to data
to improve the machine learning process. Data Normalization,
this step converts variables from categorical into numerical
values. In the last step, Data Reduction, techniques such as
feature selection are applied to reduce data to improve and
fast machine learning process. As the entire process finishes,
data is ready for input in any Machine Learning algorithm. In
this work, we focus on the last two steps Data Transformation
and Data Reduction which are the most time-consuming steps.

Furthermore, all Feature Selection algorithms assume that
data arrive preprocessed. Normalization, also known as feature
scaling, is an essential method for proper use of classification
algorithms because normalization bounds the domain of each
feature to a known interval. If the dataset features have
different scales, they may impact in different ways on the

performance of the classification algorithm. Ensuring normal-
ized feature values, usually in [−1, 1]; implicitly weights all
features equally in their representation. Classifier algorithms
that calculate the distance between two points, e.g., K-NN and
K-Means, suffer from the weighted feature effect [17]. If one
of the features has a broader range of values, this feature will
profoundly influence the distance calculation. Therefore, the
range of all features should be normalized, and each feature
contributes approximately proportionately to the final distance.

Besides, many preprocessing algorithms consider that data
is statically available before the beginning of the learning
process [18].

Figure 1. Preprocessing steps composed of Data Consolidation, Data Clean-
ing, Data Transformation and Data Reduction. Data Transformation and Data
Reduction are the most time-consuming steps.

Although dealing with high dimensional data is compu-
tationally possible, the more the number of dimensions in-
creases, the more the computational costs are challenging, and
the more machine learning techniques are ineffective. Most
machine learning techniques are ineffective in handling high
dimensional data because they incur in overfitting while classi-
fying data. As a consequence, if the number of input variables1

is reduced before running a machine learning algorithm, the
algorithm can achieve better accuracy. We achieve the desired
variable number reduction in two different ways, dimensional-
ity reduction, and feature selection. Dimensionality reduction
exploits the redundancy of the input data by computing a
smaller set of new synthetic features, each being a linear or
non-linear combination of the data features. Hence, in this
case, the set of input variables is a subset of synthetic features
that better describe the data than the original set of features. On
the other hand, feature selection only keeps the most relevant
variables from the original dataset, creating a new subset of
features from the original one. Thus, the set of variables is a
subset of the set of features.

Dimensionality reduction is the process of deriving a
set of degrees of freedom to reproduce most of a data set
variability [19]. Ideally, the reduced representation should have
a dimensionality that corresponds to the data intrinsic dimen-
sionality. The data intrinsic dimensionality is the minimum
number of parameters to account for the observed proper-
ties of the data. Mathematically, in dimensionality reduction,
given the p-dimensional random variable x = (x1, x2, . . . , xp),

1Features refer to the original set of attributes that describe the data.
Variables refer to the input of the machine learning algorithms applied over
the data. If no preprocessing method handles the original data, the set of
variables and the set of features are the same.



we calculate a lower dimensional representation of it, s =
(s1, s2, . . . , sk) with k ≤ p.

Algorithms with different approaches have been developed
to reduce dimensionality, classified into two linear, or non-
linear. The linear reduction of dimensionality is a linear
projection, in which the p-dimensional data are reduced in
k-dimensional data using k linear combinations of p original
features. Two important examples of linear dimension reduc-
tion algorithms are principal component analysis (PCA) and
independent component analysis (ICA). The goal of the PCA
is to find an orthogonal linear transformation that maximizes
the feature variance. The first PCA base vector, the main
direction, best describes the variability of the data. The second
vector is the second-best description and must be orthogonal
to the first and so on in order of importance. On the other
hand, the goal of ICA is to find a linear transformation, in
which the base vectors are statistically independent and not
Gaussian, i.e., the mutual information between two features in
the new vector space is equal to zero. Unlike PCA, the base
vectors in ICA are neither orthogonal nor ranked in order.
All vectors are equally important. PCA is usually applied to
reduce the representation of the data. On the other hand, the
ICA is usually used to obtain feature extraction, identifying
and selecting the features that best suit the application.

Dimensionality reduction techniques lack expressiveness
since the generated features are combinations of other original
features. Hence, the meaning of the new synthetic feature is
lost. When there is a need for an interpretation of the model,
for example, when creating rules in a firewall, it is necessary
to use other methods. The feature selection produces a subset
of the original features, which are the best representatives of
the data. Thus, there is no loss of meaning. There are three
types of feature selection techniques [8], wrapper, filtering and
embedded.

Wrapper methods, also called closed loop, uses different
classifiers, such as Support Vector Machine (SVM), Decision
tree, among others, to measure the quality of a feature subset
without incorporating knowledge about the specific structure
of the classification function. Thus, the method will evaluate
subsets based on the accuracy of the classifier. These methods
consider the feature selection as a search problem, creating
a NP-hard problem. An exhaustive search in the full dataset
must be done to evaluate the relevance of the feature. Wrapper
methods tend to be more accurate than the filtering methods,
but they present a higher computational cost [20]. One popular
Wrapper Method is the Sequential Forward Selection (SFS)
for its simplicity. The algorithm begins with an empty set S
and the full set of all features X . The SFS algorithm does a
bottom-up search and gradually adds features, selected by an
evaluation function, to S, minimizing the mean square error
(MSE). Each iteration, the algorithm selects the feature to be
included in S from the remaining available features of X .
The main disadvantage of SFS is adding a feature to the set S
prevents the method to remove the feature if it has the smallest
error after adding others.

Filtering methods are computationally lighter than wrapper

methods and avoid overfitting. Filtering methods also called
open-loop methods, use heuristics to evaluate the relevance
of the feature in the dataset [21]. As its name implies, the
algorithm filters feature that does fill the heuristic criterion.
One of the most popular filtering algorithms is the Relief.
The Relief algorithm associates each feature with a score,
which is calculated as the difference between the distance
from the nearest example of the same class and the nearest
example of the other class. The main drawback of this method
is the obligation of labeling data records in advance. Relief is
limited to problems with just two classes, but ReliefF [13] is
an improvement of the Relief method that deals with multiples
classes using the technique of the k-nearest neighbors.

Embedded methods have a behavior similar to wrapper
methods, using a classifier accuracy to evaluate the feature
relevance. However, embedded methods make the feature
selection during the learning process and use its properties to
guide feature evaluation. Therefore, this modification reduces
the computational time of wrapper methods. Support Vector
Machine Recursive Feature Elimination (SVM-RFE) firstly
appears in gene selection for cancer classification [22]. The
algorithm ranks features according to a classification problem
based on the training of a Support Vector Machine (SVM)
with a linear kernel. The feature with the smallest ranking is
removed, according to a criterion w, in sequential backward
elimination manner. The criterion w is the value of the decision
hyperplane on the SVM.

All the previous feature selection algorithms are supervised
methods, in which the label of the class is presented before the
preprocessing step. In applications such as network monitoring
and threat detection, network streams reach classifiers without
a known label. Therefore, unsupervised algorithms must be
applied.

III. THE PROPOSED PREPROCESSING METHOD

Our preprocessing method comprises two algorithms. First,
a normalization algorithm enforces data to a normal distribu-
tion re-scaling the values in a range between −1 and 1 interval.
Indeed, the largest value for each attribute is 1 and the smallest
value is -1. Normalization and standardization methods such as
Max-Min or Z-score output values in a known range, usually
[−1, 1] or [0, 1]. Our normalization method is parametric-
less. Then, we propose a feature selection algorithm based
on the correlation between pairwise features. The Correlation
Features Selection (CFS) [23] inspires the proposed algorithm.
CFS scores the features through the correlation between the
feature and the target class. The CFS algorithm calculates the
correlation between pairwise features and the target class to
get the importance of each feature. Thus, the CFS depends
on target class information a priori, so it is a supervised
algorithm. The proposed algorithm performs an unsupervised
feature selection. The correlation and variance between the
features measure the amount of information that each feature
represents compared to others. Thus, the presented algorithm
demands less computational time independently of class label-
ing a priori.



A. The proposed Normalization Algorithm

Normalization should be applied when the data distribution
is unknown. Determine the distribution of streaming data is
computationally expensive [24]. In our normalization algo-
rithm 1, a histogram of a feature fi is represented as a vector
b1, b2, . . . , bn, such that bk represents the number of samples
that falls in the bin k.

In practice, it is not possible to know in advance the min
and max for any feature. As a consequence, we use a sliding
window approach, where the dataset X are the s last seen
samples. For every sliding window, we obtain the min and
max values for each feature. Then, data values join in a set
b of intervals called bins. The idea is to divide the feature fi
in a histogram composed by bins b1, b2, . . . , bm, where m =√
n + 1, being n the number of features, as shown in line 3

in Algorithm 1.
Each bin consists of thresholds k, for example the feature

fi is grouped in b1 = [mini, k1), b2 = [k1, k2), . . . , bm =
[km − 1,maxi]. The step between threshold k is called pivot
and it is determined as (maxi − mini)/m, as it is shown
in Algorithm 2. If the min or max values of the previous
sliding window are smaller or bigger than min or max of the
current window, that is, mini−1 < mini or maxi−1 > maxi,
new bins are created until the new values of min or max are
reached. With the creation of new bins, the proposal is able
to detect changes in the concept-drift.

Algorithm 1: Stream Normalization Algorithm
Input : X: Sliding window of Features, w: Window

Number
Output: H: Normalized Features, fr: relative frequency

1 if w == 1 then

2 for feature f in X do
3 bn=

√
n+ 1;/* n: number of features

*/
4 H=CreateHistogram(X ,bn);
5 end
6 else if w > 1 then
7 for sample s in f do
8 [H, fr]=UpdateHistogram(X ,b);
9 end

The rate between the number of observed samples in a
bin and the total number of samples in the entire histogram
produces the frequency of each bin. Comparing the sample
xi against the thresholds k of the bins, line 4 Algorithm 3,
we define in which bin we have to increment the number of
observed samples. If the value of the sample xi is in-between
the thresholds of the binj , then the hit number of observed
samples fqj of the binj is increased by one. Moreover, we
calculate the relative frequency of each bin as the relation
between the bin hit number and the total number of samples,
frj = fqj/N . Finally, the relative frequency values fr are
mapped into a normal distribution by:

Algorithm 2: CreateHistogram() Function
Input : X: Sliding window of Features, bn: number of

bins
Output: H: Histogram

1 [max,min]=CalculateMaxMin;
2 k=(max−min)/(bn); /* k: threshold */
3 for bin b in bn do
4 b=[mini, k);
5 k+=min;
6 end

Algorithm 3: UpdateHistogram() Function
Input : X: Sliding window of Features, bn: number of

bins
Output: H: Histogram, fr: relative frequency

1 for sample s in X do
2 for b in bin do
3 if s in b then
4 b+ = 1;/* getting frequency */
5 else if then
6 add bin to b until s in b
7 end
8 fr=Calculate using Equation 1;
9 H=map s to NormalDistribution;

10 end

Z > P

(
x =

m∑
0

frj

)
. (1)

with Equation 1 is it possible to see that all values are now
mapped into a normal probability distribution with µ = 0 and
σ = 1, line 8 in algorithm 3. As a consequence, all samples
are normalized between −1 ≤ xi ≤ 1.

Figure 2. Representation of the feature divided in histogram. Each feature is
divided in bins that represent the relative frequency of the samples comprised
between the thresholds k. The second step of the algorithm approximate the
histogram to a normal distribution.

If we consider the process that generates the stream is non-
stationary, it implies a possible concept-drift. Haim and Tov
affirm that histogram must be dynamic when dealing with
streaming data [25]. As a consequence, intervals do not have a
fixed value, and the bins adapt to concept-drift. However, if the
bins remain static, it reflects the evolution of the change during



time [26]. In our application, feature normalization for network
monitoring, we follow the former approach. Maintaining fixed
intervals allow us to see how a feature evolves. Also, as our
histogram algorithm creates new bins when a value does not
enter in any of the current intervals, it enables to detect outliers
dynamically. In streaming data, it is not possible to maintain
all the samples xi, because it is computationally inefficient
and, in case of unlimited data, it does not fit in memory. Our
algorithm only efficiently keeps the frequency of each bin.

The most complicated function in the normalization process
is to update the bins. If the max and min reference values
of the window change, the bins update functions takes the
complexity O(n) on time. The creation of the histogram is
only done in the first window and takes constant time. The
histogram update uses a binary search to fill the bin value in
O(log n) time.

B. The proposed Correlation-Based Feature Selection

We propose the Correlation-Based Feature Selection, a
simple unsupervised filter method for feature selection. Our
method uses the correlation between features. The Pearson
correlation of two variables is a measure of their linear
dependence. The key idea of the method is to weight each
feature based on the correlation of the feature against all
other features that describe the dataset. We adopt the Pearson’s
coefficient as the correlation metric. Pearson’s coefficient value
is between −1 ≤ ρ ≤ 1, where 1 means that the two variables
are directly correlated, linear relationship, and −1 in the case
of an inverse linear relationship, also called anticorrelation.

The Pearson Coefficient ρ, can be calculated in terms of
mean µ and standard deviation σ,

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)
, (2)

or in terms the of covariance

ρ(A,B) =
cov(A,B)

σAσB
, (3)

then we calculate the weight vector,

wi =
σ2
i∑j=N

j=0 |ρij |
. (4)

Firstly, we need to obtain the correlation matrix, calculated
by Equation 3, line 1 algorithm 4. The correlation matrix is
the pairwise covariance calculations between features. Then,
applying the Equation 4, we establish a weight w that is
a measure of the importance of the feature. To calculate
w, we sum the absolute values of the correlation features,
lines 5-6 algorithm 4. This absolute value sum is due to
Pearson’s coefficient, ρ may assume negative values. Then
we calculate the variance V̂ of each feature that privileges
the feature that has greater variance and lower covariance,
line 8 algorithm 4. The idea is to establish which feature
represent the most information, giving the correlation between
two features. Furthermore, the weights give us an indication of

the amount of information the feature has independently from
the others. The weight w has values between 0 ≤ N , where
N is the number of features and 0 means that the features
are independent of the other. The higher the w value is, the
higher is the variance of the feature and lesser correlation with
other features. Thus, more information is the aggregated by
this feature.

Algorithm 4: Correlation Based Feature Selection
Input : X: Matrix of Features and Data
Output: r: Vector of Ranked Features, w: Vector of

weights

1 ρ = Corr(X) /* Correlation Matrix */
2 for 0 ≤ i < len (ρ) do
3 Wi = 0
4 for 0 ≤ j < len (ρi) do
5 ki = abs(ρij) /* Absolute Values */
6 auxi+ = ki /* Sample Addition */
7 end
8 wi = V̂ (i)/auxi /* Calculate Weights */
9 end

10 r = sort(w, byhighervalues)

IV. EVALUATION

To evaluate the proposed algorithm, we perform traffic clas-
sification to detect threats. We chose the traffic classification
application because it is time sensitive and our algorithm can
significantly reduce the processing time, enabling prompt de-
fense mechanisms. We implemented traffic classification using
machine learning algorithms against three different datasets.
The NSL-KDD is a modification of the original KDD-99
dataset and has the same 41 features and the same five classes,
Denial of Service (DoS), Probe, Root2Local (R2L), User2Root
(U2R) and normal, as the KDD 99 [27]. The improvements of
the NSL-KDD over KDD 99 are the elimination of redundant
and duplicate samples, to avoid a biased classification and
overfitting, and a better cross-class balancing to avoid random
selection. GTA/UFRJ dataset2 [28] combines real network traf-
fic captured from a laboratory and network threats produced
in a controlled environment. Network traffic is abstracted
in 26 features and contains three classes, DoS, probe and
normal traffic. The NetOp2 is a real data set from a Brazilian
operator [29]. The dataset has anonymous access traffic of
373 broadband users of the South Zone of the city of Rio
de Janeiro. We collected data during 1 week of uninterrupted
data collection, from February 24 to March 4, 2017. We
summarized packets in a dataset of 46 flow features, associated
with an IDS alarm class or the legitimate traffic class. All
datasets are summarized in Table I.

We count on Intel Xeon processors with a clock frequency
of 2.6 GHz and 256 GB of RAM for conducting the measure-
ments.

2Anonymized data can be asked by sending an email contact to the
authors



Table I
SUMMARY OF DATASETS USED FOR EVALUATION (FE: FEATURES; FL:

FLOWS).

Dataset Format Size Attacks Type
NSL-KDD 41 Fe 150k Fl 80.5 % Synthetic
GTA/UFRJ 26 Fe 95 GB 30 % Synthetic
NetOp 46 Fe 5M Fl - Real

In the first experiment, we use one day from NetOp dataset
to evaluate our normalization method. Shapiro–Wilk test was
used to verify that our proposal enforces a normal distribution
for the normalized features. Table II shows Shapiro-Wilk test,
we considered α = 0.05. We evaluate the hypothesis that our
proposal normalization method follows a normal distribution.
According to the results, the proposed method has a p-value
of 0.24 > 0.05, and W is closer to one, W = 0.93, then
we assume that samples are not significantly different from a
normal population. In the case of Max-Min normalization [30],
p-value is very smaller than the α, and W indicates that it
is far from 1. As a consequence, we refuse the hypothesis
assuming than sampling data are significantly different from a
normal population. Figure 3 shows a graphical interpretation
of the Shapiro–Wilk test, it represents a sample after being
normalized. As our proposal follows the normal distribution,
the blue points follow the dashed line, while the max-min
approach follows a right-skewed distribution.

Table II
HYPOTHESIS COMPARISON FOR A NORMAL DISTRIBUTION APPROACH. IN

SHAPIRO-WILK TEST p-VALUE IS 0.24 > 0.05, AND W IS CLOSER TO
ONE, W =0.93, CONFIRMING THAT VALUES FOLLOW A NORMAL

DISTRIBUTION.

Shapiro-Wilk
Mean W Mean p

proposal 0.93 0.24
max-min 0.65 9.28e-07
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Figure 3. Representation of the feature divided in histogram. Each feature is
divided in bins that represent the relative frequency of the samples comprised
between the thresholds k.

In the following experiments, we verify our preprocessing
method in a use case of traffic classification. Thus, we imple-
ment the Decision Tree (DT), with the C4.5 algorithm, Arti-
ficial Neural Networks (ANN), and Support Vector Machine

(SVM) as classification algorithms to evaluate the proposed
feature selection algorithm. We selected these algorithms be-
cause they are the most used ones for network security [31]. In
all methods, we perform the training in a 70% partition of the
dataset and the test run over the remaining 30%. During the
training phase, we perform tenfold cross-validation to avoid
overfitting. In cross-validation, parts of the dataset are divided
and not used in model parameters estimation. They are further
used to check whether the model is general enough to adapt
to new data, avoiding overfitting to training data.

The Decision Tree Algorithm: In a decision tree, leaves
represent the final class and branches represent conditions
based on the value of one of the input variables. During the
training part, the C4.5 algorithm determines a tree-like classifi-
cation structure. The real-time implementation of the decision
tree consists of if-then-else rules that generate the tree-like
structure previously calculated. The results are presented in the
Section IV-A, along with the ones from the other algorithms.

The Artificial Neural Network Algorithm: The artificial
neural networks are inspired on the human brain, in which
each neuron performs a small part of the processing and
transfers the result to the next neuron. In artificial neural
networks, the output represents a degree of membership for
each class, and the highest degree is selected. The weight
vectors Θ are calculated during the training. These vectors
determine the weight of each neuron connection. In training,
there are input and output sample spaces and the errors, caused
by each parameter. The back-propagation algorithm minimizes
the errors.

In order to determine to which class a sample belongs each
neural network layer computes the following equations:

z(i+1) = Θ(i)a(i)
(5)

a(i+1) = g(z(i+1))
(6)

g(z) =
1

1 + e−z
(7)

where a is the vector that determines the output of layer i,
Θ(i) is the weight vector that leads layer i to layer i+ 1, and
a(i+1) is the output of layer i + 1. The function g(z) is the
activation function, represented by Sigmoid function, which
plays an important role in the classification. For high values
of z, g(z) returns one and for low values g(z) returns zero.
Therefore, the output layer gives the degree of membership in
each class, between zero and one, classifying the sample as
the highest one. The activation function enables and disables
the contribution of a certain neuron to the final result.

The Support Vector Machine Algorithm: The Support Vec-
tor Machine (SVM) is a binary classifier, based on the concept
of a decision plane that defines the decision thresholds. SVM
algorithm classifies through the construction of a hyperplane
in a multidimensional space that split different classes. An
iterative algorithm minimizes an error function, finding the
best hyperplane separation. A kernel function defines this
hyperplane. In this way, SVM finds the hyperplane with
a maximum margin, that is, the hyperplane with the most
significant distance possible between both classes.

The real-time detection is performed by the classification to
each class pairs: normal and non-normal; DoS and non-DoS;



and probe and non-probe. Once SVM calculates the output, the
chosen class is the one with the highest score. The classifier
score of a sample x is the distance from x to the decision
boundaries, that goes from −∞ to +∞. The classifier score
is given by:

f(x) =

n∑
j=1

αjyjG(xj , x) + b, (8)

where (α1, . . . , αn.b) are the estimated parameters of SVM,
and G(xj , x) is the used kernel. In this work, the kernel
is linear, that is, G(xj , x) = x

′

jx, which presents a good
performance with the minimum quantity of input parameters.

A. Classification Results

This experiment shows the efficiency of our feature selection
algorithm when compared to literature methods. We try a
linear Principal Component Analysis (PCA), The ReliefF
algorithm, the Sequential Forward Selection (SFS), and the
Support Vector Machine Recursive Feature Elimination (SVM-
RFE). For all methods, we analyze their version with four and
six output features in the GTA/UFRJ dataset. For the sake
of fairness, we tested all the algorithms with the classification
methods presented before. We use a decision tree with the with
a minimum of 4096 leaves, a binary support vector machine
(SVM) with linear kernel, and finally a neural network with
one hidden layer with 10 neurons. We use ten-fold cross-
validation for our experiments.

Figure 4 presents information gain (IG) sum of the se-
lected feature for each evaluated algorithm. Information gain
measures the amount of information, in bits, that a feature
adds compared to the class prediction. Thus, information gain
calculation computes the difference of target class entropy and
the conditional entropy of the target class given the feature
value as known. When employing six features, the results show
our algorithm has information retention capability between
SFS and ReliefF, and higher than SVM-RFE. The information
retention capability of PCA, is higher than feature selection
methods, as each feature is a linear combination of the original
features and is computed to retain most of the dataset variance.

Figure 5 shows the accuracy of the three classification
methods, Decision Tree, Neural Network and Support Vec-
tor Machine (SVM), when different dimensionality reduction
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Figure 4. Information gain sum for feature selection algorithms. The selected
features by our algorithm keeps an information retention capability between
SFS and ReliefF in the GTA/UFRJ dataset.

methods choose the input variables. In the first group, our
proposal with six features reaches 97.4% accuracy, which is
the best results for the decision tree classifier. The following
result is PCA with four and six features in 96% and 97.2%.
The Sequential Forward Selection (SFS) presents the same
result with four and six features with 95.5%. The ReliefF
algorithm has the same results in both four and six features
is 91.2%. Finally, the lowest result is shown by the SVM-
RFE algorithm with four and six features. As the decision tree
algorithm creates the decision nodes based on the variables
with higher entropy, the proposed feature selection algorithm
better performs because it keeps most of the variance of the
dataset.

The second classifier, the neural network, the best result is
shown by the PCA with six features in 97.6% of accuracy.
However, the PCA with four features presents a lower perfor-
mance with 85.5%. ReliefF presents the same results for both
features in 90.2%. Our proposal shows a result with 83.9% and
85.0% for four and six features. On the other hand, the SFS
presents the worst results of all classifiers, 78.4% with four
features and 79.2% with six features. One impressive result is
the SVM-RFE, with four features presents a deficient result
of 73.6% that is one of the worst for all classifiers, however,
with six features present almost the same best second result
with 90.1%.

In the Support Vector Machine (SVM) classifier, the PCA
presents a similar behavior compared with the neural networks.
For six features presents the highest accuracy of all classifiers
with 98.3%, but just 87.8% for four features. ReliefF again
presents the same result for both cases in 91.4%. Our proposal
has 84% for four features and 85% for six features. SFS
present the same result for both features in 79.5%. The lowest
accuracy of this classifier is the SVM-RFE with 73.6% for
both cases. As our proposal maximizes the variance on the
resulting features, the resulting reduced dataset spreads into
the new space. For a linear classifier, such as SVM, it is hard
to define a classification surface for a spread data. Thus, the
resulting accuracy is not among the highest. However, as the
selected set of features still being significant for defining the
data, the resulting accuracy is not the worst one.

The Sensitivity metric shows the rate of correctly classified
samples. It is a good a metric to evaluate the success of a
classifier when using a dataset in which a class has much
more samples than others. In our problem, we use sensitivity
as a metric to evaluate our detection success. For this, we
consider the detection problem as a binary classification, i.e.,
we consider two classes: normal and abnormal traffic. In
this way, the Denial of Service (DoS) and Port Scanning
threat classes compose a common attack class. Similar to
Accuracy representation in Figure 5, Figure 6 represents the
sensitivity of the classifiers applying the different methods
of feature selection. In the first group, the classification with
Decision Three, PCA shows the best sensitivity with 99% of
correct classification, our algorithm achieves a performance
of almost 95% of sensitivity, with four and six features.
Neural Networks, represented in the second group, has the best
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Figure 5. Accuracy comparison of features selection methods. Our Proposal, Linear PCA, ReliefF, SFS and SVM-RFE compared in decision tree, SVM, and
neural network algorithms in the GTA/UFRJ dataset.

sensitivity with PCA using six features with 97.7%, then our
results show good performance with both four and six features
in 89%. In this group, the worst sensitivity of all classifiers is
reached by the SVM-RFE with four and six features in 69.3%.
Finally, the last group shows the Sensitivity for Support Vector
Machine (SVM) classifier. Again, showing a similar behavior
to the previous group PCA with six features shows the best
sensitivity with 97.8%. Then, the second-best result is reached
by our algorithm, as well as with ReliefF, with 89% sensitivity
with both features. It is worthy to note that our algorithm
presents a stable behavior in Accuracy as well as in Sensitivity.
We highlight that our algorithm performs nearly equal to PCA.
PCA creates artificial features that are a composition of all real
features, while our algorithm selects some features from the
complete set of features. In this way, our algorithm was the
best feature-selection method among the evaluated ones, and it
also introduces less computing overload when compared with
PCA.

When analyzed the features each method chooses, it is
possible to see none of the methods selects the set of same
features. Nevertheless, ReliefF and SFS select as the second-
best amount of IP packets. One surprising result from the
SFS is the election of Amount of ECE Flags and Amount
of CWR Flags. In a correlation test, these two features show
that there is no information inclusion because they are empty
variables. However, we realized that one of the main features
is Average Packet Size. In this dataset, the average packet size
is fundamental to classify attacks. One possible reason is that,
during the creation of the dataset, an automated tool performed
the Denial of Services (DoS) and Probe attacks. Mainly this
automated tool produces attacks without altering the length of
the packet.

Figure 7 shows a comparison of the processing time of all
implemented feature selection and dimensionality reduction
methods. All measures are in relative value. We can see
that SFS presents the worst performance. The SFS algorithm
performs multiple iterations to minimize the mean square
error (MSE). Consequently, all these iterations increase the
processing time. Our proposal shows the best processing time
together with PCA because both implementations perform

matrix multiplication. Matrix multiplication is a simple com-
putation function.

The next experiment is to evaluate our proposal in different
datasets. We use the NSL-KDD dataset and the NetOp dataset.
Besides linear SVM, Neural Network and Decision Tree, we
also evaluate K-Nearest Neighbors (K-NN), Random Forest,
two kernels, linear and Radial Basis Function (RBF) kernel
in Support Vector Machine (SVM), Gaussian Naive Bayes,
and Stochastic Gradient Descendant. Adding these algorithms,
we cover the full range of the most important algorithms for
supervised machine learning.

The Random Forests (RF) algorithm avoids overfitting
when compared to the simple decision tree because it con-
structs several decision trees, trained in different parts of
the same dataset. This procedure decreases the variance of
classification and improves the performance regarding the
classification of a single tree. The prediction of the class in
the RF classifier consists of applying the sample as input to
all the trees, obtaining the classification of each one of them
and, then, a voting system decides the resulting class. The
construction of each tree must follow the rules: (i) for each
node d, select k input variables of total m input variables,
such that k � m; to calculate the best binary division of the
k input variables for the node d, using an objective function;
repeat the previous steps until each tree reaches l number of
nodes or until its maximum extension.

The simple Bayesian classifier (Naive Bayes - NB) takes the
strong premise of independence between the input variables to
simplify the classification prediction, that is, given the value
of each input variable, it does not influence the value of
the others input variables. From this, the method calculates
the probabilities a priori of each input variable, or a set of
them, to set up a given class. As a new sample arrives, the
algorithm calculates for each input variables the probability of
being a sample of each class. The output of all probabilities
of each input variable results in a posterior probability of
this sample belonging to each class. The algorithm, then,
returns the classification that contains the highest estimated
probability.

In the K-Nearest Neighbors (K-NN) the class definition
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Figure 7. Performance of features selection algorithms according to process-
ing time. Our proposal and the PCA present the best processing time in the
GTA/UFRJ dataset.

of an unknown sample is based on the k-neighbors classes
closest to the sample. The value k is a positive integer and
usually small. If k = 1, then the sample class is assigned to
the class of its nearest neighbor. If k > 1, the sample class
is obtained by starting a resultant function, such as a simple
voting or weighted voting, of the k-neighbors’ classes. The
neighborhood definition uses a measure of similarity between
samples in the feature space. Threat detection literature often
use Euclidean distance, although other distances have good
results and the best choice for a similarity measure will depend
on the type of the used dataset [32]. The Euclidean distance
of two samples p and q in the space of n features is given by

d(p,q) =

√√√√ n∑
i

(pi − qi)2. (9)

Stochastic Gradient Descent with Momentum: This
scheme relies on the Stochastic Gradient Descent (SGD) [33]
algorithm, is a stochastic approximation of Gradient Descent,
in which a single sample approximates the gradient. In our
application, we consider two classes, normal and threat. There-
fore, we use the Sigmoid Function, expressed by

hθ(x) =
1

1 + e−θᵀx
, (10)

to perform logistic regression. In the Sigmoid function, low
values of the parameters θᵀ times the sample feature vector
x return zero, whereas high values return one. When a new

sample x(i) arrives, the SGD evaluates the Sigmoid function
and returns one for hθ(x(i)) greater than 0.5 and zero other-
wise. This decision presents an associated cost, based on the
real class of the sample y(i). The cost function is defined in
Equation 11. This function is convex, and the goal of SGD
algorithm is to find its minimum, expressed by

J(i)(θ) = y(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i))). (11)

On each new sample, the algorithm takes a step toward the cost
function minimum based on the gradient of the cost function.

Validation in NSL-KDD and NetOp Datasets: The first
experiment evaluates the performance of the feature selection
in both datasets. In this experiment, we vary the number
of selected features to evaluate the impact on the accuracy.
We analyze the performance with no feature selection (No
FS), and then we reduce features from 10% to 90% of the
original set of features. All the experiments were performed
using a K-fold cross-validation. The K-fold cross-validation
performs K training iterations in the partitions of the data and,
at each iteration, in the remaining K − 1 partition, the K-
fold cross-validation performs the test in a mutually exclusive
manner. We use K = 10, which is the commonly used value.
Figure 8 shows the effect of feature selection. No Feature
Selection performs well for almost all algorithms. Reducing
the number of features in 10%, however, improve accuracy in
all algorithms, except for Random Forest. In contrast, a bigger
reduction of feature deteriorates the accuracy for all classifiers.
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NSL-KDD dataset.



We also measure others metrics, such as Precision, Sensi-
tivity, F1-Score, training and classification time. We compare
the effect of 10% reduction in all these metrics. Figure 910
show accuracy, precision, sensitivity and F1 - score for dataset
with no feature selection Figure 9 and with 10% of reduction
Figure 10. For K-NN, SVM with Radial Basis Function (RBF)
kernel, and Gaussian Naive Bayes metrics remain the same.
For the Neural Network, MLP and SVM with a linear kernel,
an improvement between 2-3% in all metrics is reached with
10% of features reduction. Random Forest present the worst
performance when features are reduced; all metrics worsen
their values between 8-9%. Stochastic Gradient Descendant
(SGD) also suffer a small reduction of 1% in their metrics.
The decision tree is the most benefited improving between
3-4% their metrics, which shows the capability of reducing
overfitting when applying feature selection.
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Figure 9. Accuracy, precision, sensitivity and F1-Score for NSL-KDD.
Metrics with no future selection.
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Figure 10. Metrics reducing only 10% of the initial features in the NSL-KDD
dataset.

Figure 11 shows training and classification time with no
features selection, while Figure 12 shows results with 10%
of reduced features. The K-NN algorithm training time aug-
mented considerably, passing from 0.63 seconds to 5.03, while
classification time also suffers an increase passing from 1.89
seconds to 2.88. Neural Network reduced 9% of the training
time, from 22.99 seconds to 20.92, classification time got 0.01
second increased. Random Forest training time increased 0.02
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Figure 11. Classification and training time in NSL-KDD Dataset with no
feature Selection
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Figure 12. Classification and training time in NSL-KDD Dataset with only
10% of the initial features

second, and classification time remained the same, which is
negligible because of the intrinsic error of the cross-validation.
SVM with Radial Basis Function (RBF) and SVM with linear
kernel are the most benefited from features selection. SVM-
RBF training time reduced 11% while the classification time,
16%. SVM-Linear classification time reduced 46%, from 654
seconds to 349 seconds, and training time, 40%, from 54.86
to 32.88 seconds. Feature selection in Gaussian Naive Bayes,
Stochastic Gradient Descendant, and Decision Tree strongly
impact in training time with an approximate reduction of 30%,
while the classification time was reduced of a one-time unit
in three algorithms.

We performed the same experiment in the NetOp Dataset.
Figure 13 shows the accuracy of different classifiers while
reducing from 10% to 90% of the features. Using the NetOp
dataset, applying feature selection keeps unaffected classifier
accuracy unaffected. In the case of K-NN, the accuracy
variation is less than 0.02%. A similar case occurs with Neural
Networks, SVN with linear and with RBF kernels, Stochastic
Gradient Descendant, and Decision Tree. In Random Forest,
the best accuracy is found with a reduction of 30% of the
original set of features of the dataset. The best result is reached
in Gaussian Naive Bayes, in which 90% of the reduction in
the selected features increases the accuracy from 57% to 78%,



using only five features.
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Figure 13. Evaluation of Feature Selection varying the selected features in
NetOp dataset.

Reducing 90% of selected features, we analyze other met-
rics, such as Precision, Sensitivity, and F1-Score, for all
classifiers. We compare the results with no feature selection,
Figure 14, and with only five features, Figure 15. All metrics
remains almost equal. We achieve a slight positive variation in
Gaussian Naive Bayes and Random Forest. We conclude that,
for this dataset, our Feature Selection method maintains the
metrics unaltered or increase classifier performance, because
our proposal keeps the most of independent features in the
dataset.
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Figure 14. Accuracy, precision, sensitivity and F1-Score for NetOp dataset.
Metrics with no future selection.

Figure 16 shows the training and classification times with no
feature selection, while Figure 16 shows the training and clas-
sification times for the dataset with 90% of feature reduction.
All the classifiers reduced their times. K-NN training time is
reduced by 71%, while classification time is reduced by 84%.
For Neural Networks reduced the training time by 25% and
classification time is reduced in 0.02 seconds. Random Forest
reduced their training time by 38% while their classification
time remains the same. SVM with RBF kernel training time
is reduced by 78% and training time is reduced by 54%.
SVM with linear kernel received the biggest improvement.
Training time was reduced by 88% while classification time
was reduced by 81%. Gaussian Naive Bayes reduced their
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Figure 15. Metrics reducing only 90% of the initial features in the NetOp
dataset.

training time in 80% while classification time was reduced in
76%. Stochastic Gradient Descendant also shows a reduction
of 61% in training and 66% for classification time. Finally,
Decision Tree reduced training time by 79% and classification
time got faster, being reduced by 28%. As a consequence,
a feature reduction of 90% impacts directly in the training
and classification time of the machine learning classifiers.
Therefore, our Feature Selection method improves training and
classification times in all classifiers.
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Figure 16. Classification and training time in NetOp Dataset with no feature
Selection
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Figure 17. Classification and training time in NetOp Dataset with only 90%
of the initial features

In this experiment, we show the most important group of
features. Thus, we group features into eight groups in the
NetOp dataset. We remove the flow tuple information features



because our algorithm works on numerical features and tuple
information features are categorical. Table III describes the
groups. We established the window size at 1000 samples.
Figure 18 shows the accuracy for all seven algorithms for clas-
sification. In Decision Tree, all groups show similar behavior
and present high accuracy. Gaussian Naive Bayes and SVM
with the linear kernel for group 3, Time Between Packets, and
for group 5, subflow information, present the lowest accuracy.
For the rest of the groups, these classifiers also reach high
accuracy. K-Nearest Neighbors (K-NN) shows a special case,
besides group 2, which is the highest accuracy, all the other
groups show different behaviors. In Neural Networks, groups
2 and 3, Packet Statistics and Time between Packets, show the
highest accuracy, while the reminding groups maintain in 50%.
Random Forest shows a similar behavior than Decision Tree,
with high accuracy in all their groups. Nevertheless, the group
5, subflow information, present the lowest accuracy. Stochastic
Descendant Gradient shows the highest accuracy in group 2,6
and 7. We conclude that group 2, Packet Statistics, is the most
important for the accuracy calculation for all the classifiers.

Table III
FEATURES GROUPS

Group Description Number of Features
G1 Packet Volume 4
G2 Packet Statistics 8
G3 Time Between Packets 8
G4 Flow Time Statistics 9
G5 SubFlow Information 4
G6 TCP Flags 4
G7 Bytes in headers + ToS 3

Finally, this experiment shows how our preprocessing
method when executing with machine learning classifiers in
stream data, can detect concept-drift. This experiment also
demonstrates that the proposed preprocess method can run
under batch and stream data. We use the flow diagram of the
Figure 19. We force traditional learning methods to become
adaptive learners to detect the concept-drift. Adaptive learners
dynamically adapt to new training data when the learned
concept is contradicted. Once a concept-drift is detected, a
new model is created.

We validate the proposal with the NetOp dataset. The
dataset presents labeled samples in threats and normal traffic, a
binary classification problem. We divide the dataset in training
set and test set, in a relation of 70% for training and 30%
for the test. We consider the training set as static with T
consecutive sample windows. We have used the Synthetic Mi-
nority class Oversampling TEchnique (SMOTE) [34] approach
to oversampling the minority class, only in the training set,
initial window. When the number of samples in a class is
predominant in the dataset, it is called class imbalance. Class
imbalance is typical in our kind of threat detection application
when attacks are rare events when compared to normal traffic.
The test set is streaming data arriving at the same frequency.
We group data in sliding windows of N samples.

Figure 20 shows the accuracy when we analyze one day
from NetOp dataset. In the experiment, we measure the impact
of the concept-drift on the final accuracy. Determining the
concept-drift helps to improve the performance of the system,
since the model will not be recalculated. We train different
static algorithm with 30% of the dataset. We use 1000 samples
as window size. The trained static algorithms are the Support
Vector Machine (SMV) with linear kernel, and with Radial
Basis Function (RBF) kernel, Gaussian Naive Bayes, Decision
Tree, and Stochastic Gradient Descent (SGD). The decision
tree has the worst accuracy when compared with the other
algorithms. Decision tree shows a low accuracy in the second
window. This behavior means that the created model during
the training step does not adequately represent the model of the
entire dataset. Stochastic Gradient Descendant shows a similar
behavior of decision tree, having a concept-drift in the second
window. The SVM with linear kernel presents a concept-
drift in the seventh window. SVM with RBF shows a lower
accuracy during all experiment and a concept-drift at the last
window. Finally, due to the implementation of the Gaussian
Naive Bayes, it follows the same probability distribution as
our normalization method, as a consequence does not present
any concept-drift.

V. RELATED WORK

State-of-art proposals focus on algorithms for online feature
selection. Perkins and Theiler Grafting algorithm based on a
stage-wise gradient descent approach. Gradient Feature Test-
ing (grafting) [35] treats feature selection in the core of the
learning process. The objective function is a binomial negative
log-likelihood loss. The Grafting method uses an incremental
and iterative gradient descent. For each step, a heuristic is
used to identify which feature improves the existent model.
If the feature optimizes the model, the selected feature and
the model are returned. The Grafting algorithm is able to
operate with streaming features. A value of the regularization
parameter λ must be determined in advance to establish which
feature is most likely to improve the model at each iteration.
To determine the value of λ is required information about
the global feature set. As a consequence, Grafting method is
ineffective with streaming data with unknown feature size.

The Alpha-investing method [36] considers that new fea-
tures arrive in a streaming manner generated sequentially for
a predictive model. The main advantage of Alpha-investing
is the possibility to run in a feature set of unknown or even
infinite sizes. Every time a feature arrives, alpha-investing uses
linear regression to reduce the threshold of error dynamically.
As a drawback, alpha-investing only considers the addition
of new features without evaluating the redundancy after the
feature inclusion.

Wu et al. presented the OSFS (Online Streaming Feature
Selection) algorithm and its faster version, the Fast-OSFS
algorithm, to avoid the redundancy of added features [37].
The OSFS algorithm uses a Markov blanket of a feature to
determine the relevance of the feature in relation with their
neighbors. The Markov blanket of a node A, MB(A), is its
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Figure 18. Evaluation of group features with different machine learning algorithms.

Figure 19. Flow diagram used for proposal evaluation
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Figure 20. concept-drift detection in one day of the NetOp dataset. Our
proposal was able to detect early concept-drift in SGD and in SVM with
linear kernel. Gaussian Naive Bayes shows a very high performance with no
concept-drift.

set of neighboring nodes. The computational cost to calculate
the Markov blanket of a feature is prohibitive when dealing
with high dimensional data.

Smart Preprocessing for Streaming Data (SPSD) is an
approach that uses min-max normalization of numerical fea-
tures [30]. The authors use two metrics to avoid unnecessary
renormalization. SPSD only renormalizes when a threshold
exceeds some threshold value of the metrics. Streaming data

joins equal size chunk where all operations originate. The first
data chunk is used to take the references min-max values and
to send the normalized data for the training model. The metric
1 represents the amount of sample falling outside the min-
max reference values; the metric 2 is the relation between
new sample values in each dimension and the referenced min-
max value for that dimension. Similar to our proposal, the
algorithm works with numerical data.

Incremental Discretization Algorithm (IDA) uses a quan-
tile approach to discretize data stream [26]. The algorithm
discretizes data stream in m equal frequency bins. A sliding
window version of the algorithm is proposed to follow the
evolution of the data stream. The algorithm maintains the data
into bins with fixed quantiles of the distribution, rather than
fixed absolute values, to follow the distribution drift.

In our proposal, we propose an unsupervised preprocessing
method. Our method includes normalization, and feature selec-
tion altogether. The proposal is parametric-less. Our algorithm
follows an active approach for concept-drift detection. The
active approach monitors the concept, the label, to determine
when drift occurs before taking any action. A passive ap-
proach, in contrast, updates the model every time new data
arrives, wasting resources. We modified our proposed Feature
Selection algorithm to calculate the correlation between fea-
tures in a sliding window. Also, a normalization algorithm is
proposed to handle data stream.

VI. CONCLUSION

Achieving good classification metrics for streaming data is
a challenge because neither the number of samples nor the
domain of each sample feature is bounded. Therefore, it is
mandatory to apply preprocessing methods to streaming data
to bound the domain of each feature and to select only the
most representative features for the classification model. In
this paper, we presented a method for data preprocessing for
classification of network traffic. The method is composed of
two algorithms. First, we propose a normalization algorithm
that enforces data to a normal distribution within values be-
tween −1 and 1, which produces a more accurate classification
model and reduces the classification error. Then, a feature
selection algorithm calculates the correlation of all pairs of
features and selects the best features in an unsupervised way.



We select the features with the highest absolute correlation.
When compared with traditional feature selection algorithms,
our proposal selects an optimized subset of features improving
the accuracy by more than 11% within a 100-fold reduction
in processing time. Moreover, we modified our preprocessing
method to work both on batch and on streaming data. When
applied over streaming data, our preprocessing method was
able to detect concept-drift due to the sensibility for detecting
changes on the accuracy over a threshold.
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